Комплексные поставки запорной арматуры
и деталей трубопроводов →

Тел: +7 (3522) 55-48-26

Золотое сечение это


Золотое сечение. Божественная пропорция | Журнал Ярмарки Мастеров

Золотое сечение (лат. Sectio aurea) - термин, знакомый многим. Освежим немного нашу память, друзья!

Золотое сечение, или золотая пропорция - идеальное соотношение величин, лежащее в основе гармонии природы и человека. «Золотое сечение» имеет массу удивительных свойств (из разряда «Ух, ты! Занимательная геометрия»), возможно, именно поэтому, ему приписывается некое божественное происхождение и ряд вымышленных свойств.

Если выражаться сухо по-научному, то ЗС - это соотношение величин или отрезков, при котором отношение большей части к меньшей равно отношению всей величины к большей части. Приблизительное округленное процентное соотношение частей - 62% и 38%.

Числовая величина золотого сечения – 1, 6180339887 (и это еще округление =)) до десятого знака!)

Пример золотого сечения в лучах пятиконечной звезды.

С Вашего позволения, я опущу многострочные математические фомулы и фомулировки =) Перейдем сразу к Прекрасному!

Зачатки этого понятия встречаются еще в античной литературе, датированной 300 гг. до нашей эры, а «божественная пропорция» широко применялась в трудах и работах мастеров Эпохи Возрождения. Иоган Кеплер, астроном 16 в. назвал золотое сечение одним из сокровищ геометрии. Он впервые обращает внимание то, как проявляется ЗС в ботанике (рост растений и строение стеблей и соцветий).

В середине 19 в. немецкий исследователь золотого сечения профессор Цейзинг опубликовал свой труд «Эстетические исследования». Цейзинг проделал колоссальную работу. Он измерил около двух тысяч человеческих тел и пришел к выводу, что золотое сечение лежит в основе некой среднестатистической пропорции человеческого тела. Деление тела точкой пупка – важнейший показатель золотого сечения. Пропорции мужского тела колеблются в пределах среднего отношения 13 к 8 = 1,625 и несколько ближе подходят к ЗС, чем пропорции женского тела, в отношении которого среднее значение пропорции выражается в соотношении 8 к 5 = 1,6. Пропорции золотого сечения проявляются и в отношении всех частей тела – длина плеча, предплечья и кисти, кисти и пальцев и т.д.

На протяжении веков существовало общеприянтое мнение, что рукотворные объекты, созданные с применением принципа ЗС, воспринимаются Человеком как наиболее гармоничные, совершенные. Пропорции золотого сечения можно выделить в проекциях египетских пирамид. Соотношение сторон плана Парфенона в Афинском Акрополе также являет собой не простое кратное число, а бесконечно дробное (догадайтесь, какое?). Таковыми же являются соотношение сторон планов и фасадов многих византийских церквей, романских готических соборов. Принято считать, что еще со времен Ренессанса многие художники и архитекторы сознательно используют принципы золотого сечения в своих творениях.

Золотое сечение на примере фасада храма Парфенона

Однако же, бытует и мнение, что значение ЗС в искусстве сильно преувеличенно, порой притянуто за уши исследователями, либо основано наошибочных расчетах. Тут каждый останется при своем. Помню, как на втором курсе в архитектурном нас, лопоухих, профессора пытались приобщить к прекрасному и долго-долго втолковывали про принципы золотого сечения в зодчестве, ряды Фибоначчи и прочее-прочее =)) Но настоящее понимание этой волшебной геометрии пришло ко мне много позже, при изучении бионики (один из стилей архитектуры), которая базируется именно на совершенстве природных форм. Согласитесь, мы не в силах оспаривать очевидное, а примеры идеальной пропорции встречаются сплошь и рядом: в раковинах аммонитов, в расположении ветвей на стебле растения, прожилках листьев. Ведь все, что приобретало какую-то форму, образовывалось, росло, осуществляло свое развитие в основном в двух вариантах – рост вверх или расстилание по поверхности земли и закручивание по спирали. Раковина закручена по спирали. И вообще, представление о золотом сечении будет неполным, если не сказать о спирали. Форма спирально завитой раковины привлекла внимание Архимеда. Он изучал ее и вывел уравнение спирали: увеличение ее шага всегда равномерно.

Спираль Архимеда

Винтообразное и спиралевидное расположение листьев на ветках деревьев подметили давно. Спираль увидели в расположении семян подсолнечника, в шишках сосны, ананасах, кактусах и т.д. Совместная работа ботаников и математиков пролила свет на эти удивительные явления природы. Выяснилось, что в расположении листьев на ветке , семян подсолнечника, шишек сосны проявляет себя закон золотого сечения. Паук плетет паутину спиралеобразно. Спиралью закручивается ураган. Испуганное стадо северных оленей разбегается по спирали. Молекула ДНК закручена двойной спиралью. Гете называл спираль «кривой жизни».

Стебель цикория

Полюбуйтесь, как наглябно иллюстрирует природа принципы Золотого сечения! Совершенные спирали без изъян, соотношения витков которых строго соответсвует канонам и принципам построения ЗС.

© Copyright: Tihomir Balkonskiy

© Copyright: Kibardindesign

Материалы взяты из Интернета.

Текст преимущественно авторский =)

Спасибо за Ваше внимание, Даша Самаркина

🍀 Божественная гармония: что такое золотое сечение: пропорции и принципы

Эта гармония поражает своими масштабами...

Здравствуйте, друзья!

Вы что-нибудь слышали о Божественной гармонии или Золотом сечении? Задумывались ли о том, почему нам что-то кажется идеальным и красивым, а что-то отталкивает?

Если нет, то вы удачно попали на эту статью, потому что в ней мы обсудим золотое сечение, узнаем что это такое, как оно выглядит в природе и в человеке. Поговорим о его принципах, узнаем что такое ряд Фибоначчи и многое многое другое, включая понятие золотой прямоугольник и золотая спираль.

Да, в статье много изображений, формул, как-никак, золотое сечение — это еще и математика. Но все описано достаточно простым языком, наглядно. А еще, в конце статьи, вы узнаете, почему все так любят котиков =)

Что такое золотое сечение?

Если по-простому, то золотое сечение — это определенное правило пропорции, которое создает гармонию?. То есть, если мы не нарушаем правила этих пропорций, то у нас получается очень гармоничная композиция.

Наиболее емкое определение золотого сечения гласит, что меньшая часть относится к большей, как большая ко всему целому.

Но, кроме этого, золотое сечение — это математика: у него есть конкретная формула и конкретное число. Многие математики, вообще, считают его формулой божественной гармонии, и называют «асимметричной симметрией».

До наших современников золотое сечение дошло со времен Древней Греции, однако, бытует мнение, что сами греки уже подсмотрели золотое сечение у египтян. Потому что многие произведения искусства Древнего Египта четко построены по канонам этой пропорции.

Золотое сечение в математике

Считается, что первым ввел понятие золотого сечения Пифагор. До наших дней дошли труды Евклида (он при помощи золотого сечения строил правильные пятиугольники, именно поэтому такой пятиугольник назван «золотым»), а число золотого сечения названо в честь древнегреческого архитектора Фидия. То есть, это у нас число «фи» (обозначается греческой буквой φ), и равно оно 1.6180339887498948482… Естественно, это значение округляют: φ = 1,618 или φ = 1,62, а в процентном соотношении золотое сечение выглядит, как 62% и 38%.

В чем же уникальность этой пропорции (а она, поверьте, есть)? Давайте для начала попробуем разобраться на примере отрезка. Итак, берем отрезок и делим его на неравные части таким образом, чтобы его меньшая часть относилась к большей, как большая ко всему целому. Понимаю, не очень пока ясно, что к чему, попробую проиллюстрировать наглядней на примере отрезков:

Итак, берем отрезок и делим его на два других, таким образом, чтобы меньший отрезок а, относился к большему отрезку b, так же, как и отрезок b относится к целому, то есть ко всей линии (a + b). Математически это выглядит так:

Этот правило работает бесконечно, вы можете делить отрезки сколь угодно долго. И, видите, как это просто. Главное один раз понять и все.

Но теперь рассмотрим более сложный пример, который попадается очень часто, так как золотое сечение еще представляют в виде золотого прямоугольника (соотношение сторон которого равно φ = 1,62). Это очень интересный прямоугольник: если от него «отрезать» квадрат, то мы снова получим золотой прямоугольник. И так бесконечно много раз. Смотрите:

Но математика не была бы математикой, если бы в ней не было формул. Так что, друзья, сейчас будет немножко «больно». Решение золотой пропорции спрятала под спойлер, очень много формул, но без них не хочу оставлять статью.

Ряд Фибоначчи и золотое сечение

Продолжаем творить и наблюдать за магией математики и золотого сечения. В средние века был такой товарищ — Фибоначчи (или Фибоначи, везде по-разному пишут). Любил математику и задачи, была у него и интересная задачка с размножением кроликов =) Но не в этом суть. Он открыл числовую последовательность, числа в ней так и зовутся «числа Фибоначчи».

Сама последовательность выглядит так:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233... и дальше до бесконечности.

Если словами, то последовательность Фибоначчи — это такая последовательность чисел, где каждое последующее число, равно сумме двух предыдущих.

Причем здесь золотое сечение? Сейчас увидите.

Спираль Фибоначчи

Чтобы увидеть и прочувствовать всю связь числового ряда Фибоначчи и золотого сечения, нужно снова взглянуть на формулы.

Иными словами, с 9-го члена последовательности Фибоначчи мы начинаем получать значения золотого сечения. И если визуализировать всю эту картину, то мы увидим, как последовательность Фибоначчи создает прямоугольники все ближе и ближе к золотому прямоугольнику. Вот такая вот связь.

Теперь поговорим о спирали Фибоначчи, ее еще называют «золотой спиралью».

Золотая спираль — логарифмическая спираль, коэффициент роста которой равен φ4, где φ — золотое сечение.

В общем и целом, с точки зрения математики, золотое сечение — идеальная пропорция. Но на этом ее чудеса только начинаются. Принципам золотого сечения подчинен почти весь мир, эту пропорцию создала сама природа. Даже эзотерики, и те, видят в ней числовую мощь. Но об этом точно не в этой статье будем говорить, поэтому, чтобы ничего не пропустить, можете подписаться на обновления сайта.

Золотое сечение в природе, человеке, искусстве

Прежде, чем мы начнем, хотелось бы уточнить ряд неточностей. Во-первых, само определение золотого сечения в данном контексте не совсем верно. Дело в том, что само понятие «сечение» - это термин геометрический, обозначающий всегда плоскость, но никак не последовательность чисел Фибоначчи.

И, во-вторых, числовой ряд и соотношение одного к другому, конечно, превратили в некий трафарет, который можно накладывать на все, что кажется подозрительным, и очень радоваться, когда есть совпадения, но все же, здравый смысл терять не стоит.

Однако, «все смешалось в нашем королевстве» и одно стало синонимом другого. Так что в общем и целом, смысл от этого не потерялся. А теперь к делу.

Вы удивитесь, но золотое сечение, точнее пропорции максимально приближенные к нему, можно увидеть практически везде, даже в зеркале. Не верите? Давайте с этого и начнем.

Пропорции золотого сечения в человеке

Знаете, когда я училась рисовать, то нам объясняли, как проще строить лицо человека, его тело и прочее. Все надо рассчитывать, относительно чего-то другого.

Все, абсолютно все пропорционально: кости, наши пальцы, ладони, расстояния на лице, расстояние вытянутых рук по отношению к телу и так далее. Но даже это не все, внутреннее строение нашего организма, даже оно, приравнивается или почти приравнивается к золотой формуле сечения. Вот какие расстояния и пропорции:

  • от плеч до макушки к размеру головы = 1:1.618

  • от пупка до макушки к отрезку от плеч до макушки = 1:1.618

  • от пупка до коленок и от коленок до ступней = 1:1.618

  • от подбородка до крайней точки верхней губы и от нее до носа = 1:1.618

Разве это не удивительно!? Гармония в чистом виде, как внутри, так и снаружи. И именно поэтому, на каком-то подсознательном что-ли уровне, некоторые люди не кажутся нам красивыми, даже если у них крепкое подтянутое тело, бархатная кожа, красивые волосы, глаза и прочее и все остальное. Но, все равно, малейшее нарушений пропорций тела, и внешность уже слегка «режет глаза».

Короче говоря, чем красивее кажется нам человек, тем ближе его пропорции к идеальным. И это, кстати, не только к человеческому телу можно отнести.

Золотое сечение в природе и ее явлениях

Классическим примером золотого сечения в природе является раковина моллюска Nautilus pompilius и аммонита. Но это далеко не все, есть еще много примеров:

  • в завитках человеческого уха мы можем увидеть золотую спираль;

  • ее же (или приближенную к ней) в спиралях, по которым закручиваются галактики;

  • и в молекуле ДНК;

  • по ряду Фибоначчи устроен центр подсолнуха, растут шишки, середина цветов, ананас и многие другие плоды.

Друзья, примеров настолько много, что я просто оставлю тут видеоролик (он чуть ниже), чтобы не перегружать текстом статью. Потому что, если эту тему копать, то можно углубиться в такие дебри: еще древние греки доказывали, что Вселенная и, вообще, все пространство, - спланировано по принципу золотого сечения.

Вы удивитесь, но эти правила можно отыскать даже в звуке. Смотрите:

  • Наивысшая точка звука, вызывающая боль и дискомфорт в наших ушах, равна 130 децибелам.

  • Делим пропорцией 130 на число золотого сечения φ = 1,62 и получаем 80 децибел — звук человеческого крика.

  • Продолжаем пропорционально делить и получаем, скажем так, нормальную громкость человеческой речи: 80 / φ = 50 децибел.

  • Ну, а последний звук, который получим благодаря формуле – приятный звук шепота = 2,618.

По данному принципу можно определить оптимально-комфортное, минимальное и максимальное число температуры, давления, влажности. Я не проверяла, и не знаю, насколько эта теория верна, но, согласитесь, звучит впечатляюще.

Абсолютно во всем живом и не живом можно прочесть высшую красоту и гармонию.

Главное, только не увлекаться этим, ведь если мы хотим что-то в чем-то увидеть, то увидим, даже если этого там нет. Вот я, например, обратила внимание на дизайн PS4 и увидела там золотое сечение =) Впрочем, эта консоль настолько классная, что не удивлюсь, если дизайнер, и правда, что-то там мудрил.

Золотое сечение в искусстве

Тоже очень большая и обширная тема, которую стоит рассмотреть отдельно. Тут лишь помечу несколько базовых моментов. Самое примечательное, что многие произведения искусства и архитектурные шедевры древности (и не только) сделаны, по принципам золотого сечения.

  • Египетские и пирамиды Майя, Нотр-дам де Пари, греческий Парфенон и так далее.

  • В музыкальных произведениях Моцарта, Шопена, Шуберта, Баха и прочих.

  • В живописи (там это наглядно видно): все самые знаменитые картины известных художников сделаны с учетом правил золотого сечения.

  • Эти принципы можно встретить и в стихах Пушкина, и в бюсте красавицы Нефертити.

  • Даже сейчас правила золотой пропорции используются, например, в фотографии. Ну, и конечно, во всем остальном искусстве, включая кинематограф и дизайн.

Золотые котики Фибоначчи

Ну и, наконец, о котиках! Вы задумывались о том, почему все так любят котеек? Они же ведь заполонили Интернет! Котики везде и это чудесно =)

А все дело в том, что кошки — идеальны! Не верите? Сейчас докажу вам это математически!

Видите? Тайна раскрыта! Котейки идеальны с точки зрения математики, природы и Вселенной =)

* Я шучу, конечно. Нет, кошки, действительно, идеальны) Но математически их никто не измерял, наверное.

На этом, в общем-то, все, друзья! Мы увидимся в следующих статьях. Удачи вам!

P. S. Изображения взяты с сайта medium.com.

Золотая пропорция

Золотое сечение – это универсальное проявление структурной гармонии. Оно встречается в природе, науке, искусстве – во всём, с чем может соприкоснуться человек. Однажды познакомившись с золотым правилом, человечество больше ему не изменяло.

Наиболее ёмкое определение золотого сечения гласит, что меньшая часть относится к большей, как большая ко всему целому. Приблизительная его величина – 1,6180339887. В округленном процентном значении пропорции частей целого будут соотноситься как 62% на 38%. Это соотношение действует в формах пространства и времени.

Древние видели в золотом сечении отражение космического порядка, а Иоганн Кеплер называл его одним из сокровищ геометрии. Современная наука рассматривает золотое сечение как «ассиметричную симметрию», называя его в широком смысле универсальным правилом отражающим структуру и порядок нашего мироустройства.

История

Представление о золотых пропорциях имели древние египтяне, знали о них и на Руси, но впервые научно золотое сечение объяснил монах Лука Пачоли в книге «Божественная пропорция», иллюстрации к которой предположительно сделал Леонардо да Винчи. Пачоли усматривал в золотом сечении божественное триединство: малый отрезок олицетворял Сына, большой – Отца, а целое – Святой дух.

Непосредственным образом с правилом золотого сечения связано имя итальянского математика Леонардо Фибоначчи. В результате решения одной из задач ученый вышел на последовательность чисел, известную сейчас как ряд Фибоначчи: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и т.д.

На отношение этой последовательности к золотой пропорции обратил внимание Кеплер: «Устроена она так, что два младших члена этой нескончаемой пропорции в сумме дают третий член, а любые два последних члена, если их сложить, дают следующий член, причем та же пропорция сохраняется до безконечности». Сейчас ряд Фибоначчи – это арифметическая основа для расчетов пропорций золотого сечения во всех его проявлениях.

Леонардо да Винчи также много времени посвятил изучению особенностей золотого сечения, скорее всего именно ему принадлежит и сам термин. Его рисунки стереометрического тела, образованного правильными пятиугольниками, доказывают, что каждый из полученных при сечении прямоугольников дает соотношения сторон в золотом делении.

Со временем правило золотого сечения превратилось в академическую рутину, и только философ Адольф Цейзинг в 1855 году вернул ему вторую жизнь. Он довел до абсолюта пропорции золотого сечения, сделав их универсальными для всех явлений окружающего мира. Впрочем, его «математическое эстетство» вызывало много критики.

Природа

Самым удивительным в золотом сечении является то, что оно может рассматриваться как естественное явление в природе. Золотое сечение выражается в расположении ветвей вдоль стволов деревьев, прожилок в листьях. Его можно увидеть в строении скелетов животных и людей, в разветвлении их вен и нервов.

Оно даже может быть замечено в пропорции химических соединений и геометрии кристаллов.

Белорусский ученый Эдуард Сороко, который изучал формы золотых делений в природе, отмечал, что все растущее и стремящееся занять своё место в пространстве, наделено пропорциями золотого сечения. По его мнению, одна из самых интересных форм это закручивание по спирали.

Ещё Архимед, уделяя внимание спирали, вывел на основе её формы уравнение, которое и сейчас применяется в технике. Позднее Гете отмечал тяготение природы к спиральным формам, называя спираль «кривой жизни».

Современными учеными было установлено, что такие проявления спиральных форм в природе как раковина улитки, расположение семян подсолнечника, узоры паутины, движение урагана, строение ДНК и даже структура галактик заключают в себе ряд Фибоначчи.

Человек

Модельеры и дизайнеры одежды все расчеты делают, исходя из пропорций золотого сечения. Человек – это универсальная форма для проверки законов золотого сечения. Конечно, от природы далеко не у всех людей пропорции идеальны, что создает определенные сложности с подбором одежды.

В дневнике Леонардо да Винчи есть рисунок вписанного в окружность обнаженного человека, находящегося в двух наложенных друг на друга позициях. Опираясь на исследования римского архитектора Витрувия, Леонардо подобным образом пытался установить пропорции человеческого тела. Позднее французский архитектор Ле Корбюзье, используя «Витрувианского человека» Леонардо, создал собственную шкалу «гармонических пропорций», повлиявшую на эстетику архитектуры XX века.

Адольф Цейзинг, исследуя пропорциональность человека, проделал колоссальную работу. Он измерил порядка двух тысяч человеческих тел, а также множество античных статуй и вывел, что золотое сечение выражает среднестатистический закон. В человеке ему подчинены практически все части тела, но главный показатель золотого сечения это деление тела точкой пупа.

В результате измерений исследователь установил, что пропорции мужского тела 13:8 ближе к золотому сечению, чем пропорции женского тела – 8:5.

Искусство пространственных форм

Художник Василий Суриков говорил, «что в композиции есть непреложный закон, когда в картине нельзя ничего ни убрать, ни добавить, даже лишнюю точку поставить нельзя, это настоящая математика». Долгое время художники следователи этому закону интуитивно, но после Леонардо да Винчи процесс создания живописного полотна уже не обходится без решения геометрических задач. Например, Альбрехт Дюрер для определения точек золотого сечения использовал изобретенный им пропорциональный циркуль.

Искусствовед Ф. В. Ковалев, подробно исследовав картину Николая Ге «Александр Сергеевич Пушкин в селе Михайловском», отмечает, что каждая деталь полотна будь-то камин, этажерка, кресло или сам поэт строго вписаны в золотые пропорции.

Исследователи золотого сечения без устали изучают и замеряют шедевры архитектуры, утверждая, что они стали таковыми, потому что созданы по золотым канонам: в их списке Великие пирамиды Гизы, Собор Парижской Богоматери, Храм Василия Блаженного, Парфенон.

И сегодня в любом искусстве пространственных форм стараются следовать пропорциям золотого сечения, так как они, по мнению искусствоведов, облегчают восприятие произведения и формируют у зрителя эстетическое ощущение.

Слово, звук и кинолента

Формы временного искусства по-своему демонстрируют нам принцип золотого деления. Литературоведы, к примеру, обратили внимание, что наиболее популярное количество строк в стихотворениях позднего периода творчества Пушкина соответствует ряду Фибоначчи – 5, 8, 13, 21, 34.

Действует правило золотого сечения и в отдельно взятых произведениях русского классика. Так кульминационным моментом «Пиковой дамы» является драматическая сцена Германа и графини, заканчивающаяся смертью последней. В повести 853 строки, а кульминация приходится на 535 строке (853:535=1,6) – это и есть точка золотого сечения.

Советский музыковед Э. К. Розенов отмечает поразительную точность соотношений золотого сечения в строгих и свободных формах произведений Иоганна Себастьяна Баха, что соответствует вдумчивому, сосредоточенному, технически выверенному стилю мастера.

Это справедливо и в отношении выдающихся творений других композиторов, где на точку золотого сечения обычно приходится наиболее яркое или неожиданное музыкальное решение.

В фотографии и видеопроизводстве методика золотого сечения также используется повсеместно.

По сути, Золотая пропорция вокруг и внутри нас, и по этой причине немецкий психолог Адольф Цейзинг (1810 – 1876 гг.) назвал его «универсальным законом, в котором содержится основной принцип формирования всего, стремление к красоте и полноте в природе и искусстве, который пронизывает, как первостепенный духовный идеал, все структуры, формы и пропорции, будь то космические или индивидуальные, органические или неорганические, акустические или оптические; который полностью реализован в теле человека».

Благодаря уникальным свойствам золотого сечения многие считают его священным или божественным, позволяющим обрести более глубокое понимание красоты и духовности в жизни, увидеть скрытую гармонию и связность во всём, что нас окружает.

Источник: http://econet.ru/articles/149170-zolotoe-sechenie-kak-eto-rabotaet

Золотое сечение: как это работает

Золотое сечение - это универсальное проявление структурной гармонии. Оно встречается в природе, науке, искусстве – во всем, с чем может соприкоснуться человек. Однажды познакомившись с золотым правилом, человечество больше ему не изменяло.

Определение

Наиболее емкое определение золотого сечения гласит, что меньшая часть относится к большей, как большая ко всему целому. Приблизительная его величина – 1,6180339887. В округленном процентном значении пропорции частей целого будут соотноситься как 62% на 38%. Это соотношение действует в формах пространства и времени. Древние видели в золотом сечении отражение космического порядка, а Иоганн Кеплер называл его одним из сокровищ геометрии. Современная наука рассматривает золотое сечение как «ассиметричную симметрию», называя его в широком смысле универсальным правилом отражающим структуру и порядок нашего мироустройства.

История

Принято считать, что понятие о золотом делении ввёл в научный обиход Пифагор, древнегреческий философ и математик (VI в. до н.э.). Есть предположение, что Пифагор своё знание золотого деления позаимствовал у египтян и вавилонян. И действительно, пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Французский архитектор Ле Корбюзьенашёл, что в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют величинам золотого деления. Зодчий Хесира, изображённый на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого деления.

Греки были искусными геометрами. Даже арифметике обучали своих детей при помощи геометрических фигур. Квадрат Пифагора и диагональ этого квадрата были основанием для построения динамических прямоугольников.

Платон (427...347 гг. до н.э.) также знал о золотом делении. Его диалог «Тимей» посвящён математическим и эстетическим воззрениям школы Пифагора и, в частности, вопросам золотого деления.

В фасаде древнегреческого храма Парфенона присутствуют золотые пропорции. При его раскопках обнаружены циркули, которыми пользовались архитекторы и скульпторы античного мира. В Помпейском циркуле (музей в Неаполе) также заложены пропорции золотого деления.

     Рис.  Античный циркуль золотого сечения

В дошедшей до нас античной литературе золотое деление впервые упоминается в «Началах» Евклида. Во 2-й книге «Начал» даётся геометрическое построение золотого деления. После Евклида исследованием золотого деления занимались Гипсикл (II в. до н.э.), Папп (III в. н.э.) и др. В средневековой Европе с золотым делением познакомились по арабским переводам «Начал» Евклида. Переводчик Дж. Кампано из Наварры (III в.) сделал к переводу комментарии. Секреты золотого деления ревностно оберегались, хранились в строгой тайне. Они были известны только посвящённым.

Представление о золотых пропорциях имели и на Руси, но впервые научно золотое сечение объяснил монах Лука Пачоли в книге «Божественная пропорция» (1509), иллюстрации к которой предположительно сделал Леонардо да Винчи. Пачоли усматривал в золотом сечении божественное триединство: малый отрезок олицетворял Сына, большой – Отца, а целое – Святой дух. По мнению современников и историков науки, Лука Пачоли был настоящим светилом, величайшим математиком Италии в период между Фибоначчи и Галилеем. Лука Пачоли был учеником художника Пьеро делла Франчески, написавшего две книги, одна из которых называлась «О перспективе в живописи». Его считают творцом начертательной геометрии.

Лука Пачоли прекрасно понимал значение науки для искусства. В 1496 г. по приглашению герцога Моро он приезжает в Милан, где читает лекции по математике. В Милане при дворе Моро в то время работал и Леонардо да Винчи. 

Непосредственным образом с правилом золотого сечения связано имя итальянского математика Леонардо Фибоначчи. В результате решения одной из задач ученый вышел на последовательность чисел, известную сейчас как ряд Фибоначчи: 1, 2, 3, 5, 8, 13, 21, 34, 55 и т.д. На отношение этой последовательности к золотой пропорции обратил внимание Кеплер: «Устроена она так, что два младших члена этой нескончаемой пропорции в сумме дают третий член, а любые два последних члена, если их сложить, дают следующий член, причем та же пропорция сохраняется до бесконечности». Сейчас ряд Фибоначчи это арифметическая основа для расчетов пропорций золотого сечения во всех его проявлениях.

Леонардо да Винчи также много времени посвятил изучению особенностей золотого сечения, скорее всего именно ему принадлежит и сам термин. Его рисунки стереометрического тела, образованного правильными пятиугольниками, доказывают, что каждый из полученных при сечении прямоугольников дает соотношения сторон в золотом делении.

Со временем правило золотого сечения превратилось в академическую рутину, и только философ Адольф Цейзинг в 1855 году вернул ему вторую жизнь. Он довел до абсолюта пропорции золотого сечения, сделав их универсальными для всех явлений окружающего мира. Впрочем, его «математическое эстетство» вызывало много критики.

Природа

Астроном XVI в. Иоганн Кеплер назвал золотое сечение одним из сокровищ геометрии. Он первый обращает внимание на значение золотой пропорции для ботаники (рост растений и их строение).

Кеплер называл золотую пропорцию продолжающей саму себя «Устроена она так, – писал он, – что два младших члена этой нескончаемой пропорции в сумме дают третий член, а любые два последних члена, если их сложить, дают следующий член, причём та же пропорция сохраняется до бесконечности».

Построение ряда отрезков золотой пропорции можно производить как в сторону увеличения (возрастающий ряд), так и в сторону уменьшения (нисходящий ряд).

Если на прямой произвольной длины, отложить отрезок m, рядом откладываем отрезок M. На основании этих двух отрезков выстраиваем шкалу отрезков золотой пропорции восходящего и нисходящего рядов.

    Рис. Построение шкалы отрезков золотой пропорции

     Рис. Цикорий

Даже не вдаваясь в расчеты, золотое сечение можно без труда обнаружить в природе. Так, под него попадают соотношение хвоста и тела ящерицы, расстояния между листьями на ветке, есть золотое сечение и в форме яйца, если условную линию провести через его наиболее широкую часть.

     Рис. Ящерица живородящая

     Рис. Яйцо птицы

Белорусский ученый Эдуард Сороко, который изучал формы золотых делений в природе, отмечал, что все растущее и стремящееся занять свое место в пространстве, наделено пропорциями золотого сечения. По его мнению, одна из самых интересных форм это закручивание по спирали.

Еще Архимед, уделяя внимание спирали, вывел на основе ее формы уравнение, которое и сейчас применяется в технике. Позднее Гёте отмечал тяготение природы к спиральным формам, называя спираль «кривой жизни». Современными учеными было установлено, что такие проявления спиральных форм в природе как раковина улитки, расположение семян подсолнечника, узоры паутины, движение урагана, строение ДНК и даже структура галактик заключают в себе ряд Фибоначчи.

Человек

Модельеры и дизайнеры одежды все расчеты делают, исходя из пропорций золотого сечения. Человек – это универсальная форма для проверки законов золотого сечения. Конечно, от природы далеко не у всех людей пропорции идеальны, что создает определенные сложности с подбором одежды.

В дневнике Леонардо да Винчи есть рисунок вписанного в окружность обнаженного человека, находящегося в двух наложенных друг на друга позициях. Опираясь на исследования римского архитектора Витрувия, Леонардо подобным образом пытался установить пропорции человеческого тела. Позднее французский архитектор Ле Корбюзье, используя «Витрувианского человека» Леонардо, создал собственную шкалу «гармонических пропорций», повлиявшую на эстетику архитектуры XX века. Адольф Цейзинг, исследуя пропорциональность человека, проделал колоссальную работу. Он измерил порядка двух тысяч человеческих тел, а также множество античных статуй и вывел, что золотое сечение выражает среднестатистический закон. В человеке ему подчинены практически все части тела, но главный показатель золотого сечения это деление тела точкой пупа.

В результате измерений исследователь установил, что пропорции мужского тела 13:8 ближе к золотому сечению, чем пропорции женского тела – 8:5.

Искусство пространственных форм

Художник Василий Суриков говорил, «что в композиции есть непреложный закон, когда в картине нельзя ничего ни убрать, ни добавить, даже лишнюю точку поставить нельзя, это настоящая математика». Долгое время художники следователи этому закону интуитивно, но после Леонардо да Винчи процесс создания живописного полотна уже не обходится без решения геометрических задач. Например, Альбрехт Дюрер для определения точек золотого сечения использовал изобретенный им пропорциональный циркуль.

Искусствовед Ф. В. Ковалев, подробно исследовав картину Николая Ге «Александр Сергеевич Пушкин в селе Михайловском», отмечает, что каждая деталь полотна будь-то камин, этажерка, кресло или сам поэт строго вписаны в золотые пропорции. Исследователи золотого сечения без устали изучают и замеряют шедевры архитектуры, утверждая, что они стали таковыми, потому что созданы по золотым канонам: в их списке Великие пирамиды Гизы, Собор Парижской Богоматери, Храм Василия Блаженного, Парфенон.

И сегодня в любом искусстве пространственных форм стараются следовать пропорциям золотого сечения, так как они, по мнению искусствоведов, облегчают восприятие произведения и формируют у зрителя эстетическое ощущение.

Гёте, поэт, естествоиспытатель и художник (он рисовал и писал акварелью), мечтал о создании единого учения о форме, образовании и преобразовании органических тел. Это он ввёл в научный обиход термин морфология.

Пьер Кюри в начале нашего столетия сформулировал ряд глубоких идей симметрии. Он утверждал, что нельзя рассматривать симметрию какого-либо тела, не учитывая симметрию окружающей среды.

Закономерности «золотой» симметрии проявляются в энергетических переходах элементарных частиц, в строении некоторых химических соединений, в планетарных и космических системах, в генных структурах живых организмов. Эти закономерности, как указано выше, есть в строении отдельных органов человека и тела в целом, а также проявляются в биоритмах и функционировании головного мозга и зрительного восприятия.

Золотое сечение и симметрия

Золотое сечение нельзя рассматривать само по себе, отдельно, без связи с симметрией. Великий русский кристаллограф Г.В. Вульф (1863...1925) считал золотое сечение одним из проявлений симметрии.

Золотое деление не есть проявление асимметрии, чего-то противоположного симметрии. Согласно современным представлениям золотое деление – это асимметричная симметрия. В науку о симметрии вошли такие понятия, как статическая и динамическая симметрия. Статическая симметрия характеризует покой, равновесие, а динамическая – движение, рост. Так, в природе статическая симметрия представлена строением кристаллов, а в искусстве характеризует покой, равновесие и неподвижность. Динамическая симметрия выражает активность, характеризует движение, развитие, ритм, она – свидетельство жизни. Статической симметрии свойственны равные отрезки, равные величины. Динамической симметрии свойственно увеличение отрезков или их уменьшение, и оно выражается в величинах золотого сечения возрастающего или убывающего ряда.

Слово, звук и кинолента

Формы временно̀го искусства по-своему демонстрируют нам принцип золотого деления. Литературоведы, к примеру, обратили внимание, что наиболее популярное количество строк в стихотворениях позднего периода творчества Пушкина соответствует ряду Фибоначчи – 5, 8, 13, 21, 34.

Действует правило золотого сечения и в отдельно взятых произведениях русского классика. Так кульминационным моментом «Пиковой дамы» является драматическая сцена Германа и графини, заканчивающаяся смертью последней. В повести 853 строки, а кульминация приходится на 535 строке (853:535=1,6) – это и есть точка золотого сечения.

Советский музыковед Э. К. Розенов отмечает поразительную точность соотношений золотого сечения в строгих и свободных формах произведений Иоганна Себастьяна Баха, что соответствует вдумчивому, сосредоточенному, технически выверенному стилю мастера. Это справедливо и в отношении выдающихся творений других композиторов, где на точку золотого сечения обычно приходится наиболее яркое или неожиданное музыкальное решение.

Кинорежиссер Сергей Эйзенштейн сценарий своего фильма «Броненосец Потёмкин» сознательно согласовывал с правилом золотого сечения, разделив ленту на пять частей. В первых трех разделах действие разворачивается на корабле, а в последних двух – в Одессе. Переход на сцены в городе и есть золотая середина фильма.

Источники: http://russian7.ru; http://n-t.ru.

Приглашаем к обсуждению темы в нашей группе - https://vk.com/dostoyanieplaneti

* * *

 

Рекомендуем к ознакомлению: 

Геометрия Великой пирамиды

Наука вторит индийским ведам

 

Золотое сечение | Блог 4brain

Золотым сечением называют число, полученное путем деления линии на две части таким образом, что более длинная часть (а), разделенная на меньшую часть (b), равна полной длине линии (а+b), разделенной на более длинную часть (а). Такое отношение часто символизируют с помощью литеры Ф (читается как «фи») – 21-й буквы греческого алфавита. В форме уравнения это выглядит так:

a / b = (a + b) / a = 1.6180339887498948420…

Как и в случае с π (пи, отношение длины окружности к ее диаметру), число Ф является бесконечным. Обычно его округляют до значения 1,618.

История открытия золотой середины

Это число было найдено и открыто много раз, поэтому у него так много разных названий — золотая середина, золотое сечение, божественная пропорция и т.д. Исторически его можно увидеть в архитектуре многих древних творений, таких как Великие Пирамиды и Парфенон. В пирамиде Гизы длина каждой стороны основания составляет 230,5 метров при высоте 146,6 метров. Отношение основания к высоте составляет примерно 1,5717, что близко к золотой пропорции.

Фидий (500 г. до н.э. — 432 г. до н.э.) был греческим скульптором и математиком, который, как считается, применил Ф, создавая скульптуры для Парфенона. Платон (428 г. до н.э. — 347 г. до н.э.) считал, что золотое сечение является наиболее универсальным связующим звеном математических отношений. Позднее Евклид (365 г. до н.э. — 300 г. до н.э.) связал золотое сечение с построением пентаграммы.

Последовательность Фибоначчи и золотое сечение

Около 1200 года математик Леонардо Фибоначчи открыл уникальные свойства последовательности Фибоначчи. Эта последовательность непосредственно связана с золотым сечением, потому что если взять любые два последовательных числа Фибоначчи, их отношение будет очень близко к золотому сечению. По мере того как числа возрастают, соотношение приближается к значению 1,618. Например, соотношение 3 к 5 составляет 1,666. Но соотношение 13 к 21 составляет 1,625. Возрастая, соотношение 144 к 233 составляет 1,618. Все эти числа являются последовательными числами в последовательности Фибоначчи.

Такие соотношения из ряда Фибоначчи, близкие к значению золотого сечения, могут быть применены к пропорциям прямоугольника, называемого золотым прямоугольником. Он известен как одна из наиболее визуально совершенных из всех геометрических форм — следовательно, правило золотого сечения очень широко применяется во всех видах визуального искусства. Золотой прямоугольник также связан с золотой спиралью, которая создается путем создания смежных квадратов измерений Фибоначчи.

Пропорции золотого сечения в материальном мире

В 1509 году Лука Пачоли написал книгу, которая называет число Ф «Божественной пропорцией», что было наглядно показано Леонардо да Винчи. Позже да Винчи назвал эту пропорцию золотым сечением. Оно использовалось для достижения баланса и красоты во многих картинах и скульптурах эпохи Возрождения.

Да Винчи сам использовал золотое сечение, чтобы определить все пропорции в «Тайной вечере», включая размеры стола, пропорции стен и деталей интерьера. Золотое сечение также появляется в «Витрувианском Человеке» да Винчи и «Мона Лизе». Считается, что золотое сечение использовали и другие великие художники, включая Микеланджело, Рафаэля, Рембрандта, Сьюрата и Сальвадора Дали.

Термин «фи» был придуман американским математиком Марком Барром в 1900-х годах. Ф продолжал применяться в математике и физике, в том числе в плитках Пенроуза 1970-х годов, которые позволяли мозаичным поверхностям иметь пятикратную симметрию. В 1980-х годах Ф появился в квазикристаллах – недавно открывшейся форме материи.

Фи — более чем загадочный и неясный термин в математике и физике. Он появляется вокруг нас в нашей повседневной жизни, даже в наших эстетических взглядах. Исследования показали, что когда испытуемые видят случайные лица, они считают наиболее привлекательными те, которые имеют четкие параллели с золотым сечением. Лица, оцененные как наиболее привлекательные, показывают золотые соотношения между шириной лица и шириной глаз, носа и бровей. Испытуемые не были математиками или физиками, знакомыми с правилом золотого сечения (они были просто среднестатистическими людьми), и оно вызвало инстинктивную реакцию.

Золотое сечение также проявляется во всех видах природы и науки. Ниже приведены примеры самых неожиданных мест, в которых можно его встретить.

  • Цветочные лепестки. Количество лепестков на некоторых цветах соответствует последовательности Фибоначчи. С точки зрения теории Дарвина считается, что каждый лепесток помещается таким образом, чтобы обеспечить максимально возможное воздействие солнечного света и других факторов.
  • Семенные головки. Семена цветка часто начинают произрастать в центре семенной головки и мигрируют наружу, заполняя свободное пространство. Например, семечки подсолнухов следуют этой схеме.
  • Сосновые шишки. Семенные коробочки сосновых шишек наполнены семенами, которые растут спирально вверх, в противоположных направлениях. Количество шагов, которые делают спирали, как правило, соответствует числам Фибоначчи.
  • Ветви дерева. То, как ветки дерева формируются или расщепляются, является примером последовательности Фибоначчи. Корневые системы и водоросли также придерживаются такого способа формирования.
  • Раковины. Многие раковины, в том числе раковины улитки и раковины наутилуса, являются прекрасными примерами золотой спирали.
  • Спиральные галактики. Млечный путь имеет несколько спиральных рукавов, каждый из которых имеет логарифмическую спираль примерно 12 градусов. Форма спирали идентична золотой спирали, а золотой прямоугольник можно нарисовать над любой спиральной галактикой.
  • Ураганы. Внутреннее строение ураганов часто следует правилу золотой спирали.
  • Пальцы руки человека. Каждый участок пальца от кончика основания до запястья больше, чем предыдущий, примерно на соотношение Ф.
  • Тела человека и животных. Расстояние от пупка человека до пола и от макушки головы до пупка – это золотое сечение. Но человек не единственный пример золотого сечения в животном мире. Дельфины, морские звезды, морские ежи, муравьи и пчелы также демонстрируют эту пропорцию.
  • Молекулы ДНК. Молекула ДНК имеет размеры 34 ангстрем на 21 ангстрем на каждом полном цикле спирали в виде сдвоенной спирали. В рядах Фибоначчи 34 и 21 являются последовательными числами.

Таким образом, примеров, где встречаются пропорции и соотношения, следующие правилу золотого сечения, более чем достаточно. Кроме перечисленных примеров, число «Фи» часто встречается в математике, физике, астрономии, биологии и иных сферах деятельности человека. Можно смело утверждать, что название «Божественное сечение» по праву присвоено числу Ф – видимо им руководствовался создатель, наполняя эту Вселенную всем живым и неживым.

Золотое сечение в архитектуре, строительстве, дизайне

Главная » Разное » Правило золотого сечения в архитектуре, строительстве и дизайне

Наблюдения за природой и попытки раскрыть тайны ее прекрасных созданий принесли немало открытый. Одно из них — золотое сечение. Это некоторая закономерность, которой подчиняется все, что мы называем красивым. Люди, животные, цветы, здания, галактики… 

Содержание статьи

Что такое золотое сечение и как его понимать

Часто мы сталкиваемся с домами, предметами, строениями, растениями, которые нас чем-то завораживают. Люди издавна пытались понять, почему одно нам кажется красивым, другое нет, искали закономерности. И вроде нашли. Это некоторое соотношение частей, которое назвали золотым сечением.

О том, кто и когда придумал золотое сечение никто не знает точно. Кто-то приписывает открытие Пифагору, но первое упоминание нашли еще в «Началах» Евклида, а жил он в 3 веке до нашей эры. Так что находка явно давняя. Именно по этому принципу построены древнегреческие и римские храмы. Конечно, это могут быть совпадения, но очень уж странные и очень их много. Так что, скорее всего, они были в курсе идеальных пропорций.

Сохранившиеся постройки древности тоже подчинены правилу золотого сечения

Совершенно точно то, что Леонардо да Винчи искал подтверждение этому принципу в строении человеческого тела. И, что самое интересное, нашел. Те лица и тела, которые кажутся нам красивыми, имеют пропорции, которые как раз и подчиняются закону золотого сечения.

Формальное определение звучит и просто, и сложно. Его связывают с двумя разными по размеру отрезками. Звучит этот принцип примерно так: если отрезок разделить на две неравные части, то это деление будет пропорциональным, если большая часть отрезка относится к целому так же, как и меньшая часть к большему. Будет понятнее, если посмотреть на иллюстрацию и формулу.

Принцип и формула золотого сечения

На рисунке целый отрезок разделен так, что если а разделить на b, получим 1,1618, та же цифра получается, если целый отрезок разделить на большую часть — a. Это число и есть воплощением идеальной пропорции. Теперь, если посмотрите на картинку с Парфеноном, пропорции этого строения также подчиняются указанному соотношению.

Ту же закономерность можно представить в виде процентов. Может, кому-то так проще. Для того, чтобы деление целого было пропорциональным, части должны составлять 62% и 38%. Возможно, так будет проще запомнить.

Последовательность Фибоначчи — не только математическая формула

Эту закономерность развил дальше математик Фибоначчи. Он разработал числовую последовательность, элементы которой, начиная с девятого, подчиняются тому же закону. Графическое изображение этой последовательности — спираль. Если присмотреться, и в природе, и в архитектуре, и в человеческом теле пропорции красоты присутствуют.

Как построить прямоугольник с идеальными пропорциями

Чтобы применять на практике полученную информацию, надо каким-то образом научиться делить пространство или строить его согласно этому закону. Для начала давайте научимся строить прямоугольник с идеальными пропорциями. За основу берем квадрат.

Построение прямоугольника с золотым сечением

Квадрат делим пополам, в одном из полученных прямоугольников проводим линию, которая соединяет противоположные углы. Дальше берем циркуль, ставим иголку в центр нижней стороны квадрата, откладываем длину полученной диагонали и отмечаем ее на линии, которая будет продолжением нижней стороны квадрата. Полученный прямоугольник имеет соотношение сторон 1,62 (это как раз то соотношение, которое и дает 62% и 38%).

Это явно неспроста. Хотя далеко не все подчиняется этой закономерности

Что еще интересно, что если вы начнете делить прямоугольник с соотношением сторон 1,62 на квадрат и прямоугольник, вы получите снова прямоугольник с идеальными пропорциями, но меньшего размера. Если вы его снова разделите по тому же принципу, будет еще одна пара квадрат+прямоугольник со сторонами, соотношение которых будет соответствовать золотому сечению. И так до тех пор, пока вы сможете проводить деление. Но что еще интереснее, в это деление отлично вписывается ряд Фибоначчи, который имеет вид раскручивающейся спирали. Иллюстрация на рисунке выше.

Как разделить отрезок по правилу золотого сечения

Это умение пригодится, например, при создании проекта дома, планировки, при разработке дизайна квартиры, расстановке мебели и т.д. Точно также может понадобиться при планировке участка, клумб, высадке растений и т.д. В общем, применяться может практически везде.

Ничего особенного, но взгляд не оторвать. Знаете почему?

Итак, порядок деления отрезка по правилу золотого сечения:

  • Берем отрезок, делим его пополам.
  • Из одного из концов восстанавливаем перпендикуляр (прямая под углом 90°), который длиной равен половине отрезка. На рисунке это отрезок BC.
  • Полученную точку C соединяем прямой с другим концом отрезка (A).
  • На отрезке AC ставим точку D. Она находится на расстоянии, равном длине отрезка . Проще всего это сделать при помощи циркуля, но можно и линейкой.
  • Замеряем длину отрезка AD (снова циркулем, либо линейкой). Такую же длину откладываем на отрезке AB. Получаем точку E.
  • Теперь, если измерить длины отрезков AE и EB и разделить их, получим то самое заветное число — 1,62.

Деление отрезка на участки с идеальным соотношением

Пару раз повторив процедуру, вы научитесь делать все буквально за считанные минуты. Если же вам надо, например, определить высоту окна, его форму, также можно воспользоваться данными пропорциями. По тому же принципу можно определять местоположение всех архитектурных элементов, их размеры. При планировании уже имеющихся объектов, деление проще проводить при помощи процентного соотношения. Тут уже либо считаете в уме, либо используете калькулятор.

Идеальный треугольник и пентаграмма

Идеальным называют равнобедренный треугольник, основание которого относится к длине стороны как 1/3. То есть, снова-таки соблюдается золотое сечение. Начертить треугольник с идеальным соотношением сторон несложно. Удобнее циркулем, но можно обойтись и линейкой.

Золотой треугольник, правило его построения и применение в создании интерьера, например

Построение такое. На прямой от точки A трижды откладываем отрезок произвольной длины. Эту длину обозначим O. Получаем точку B. Через нее проводим прямую, перпендикулярную отрезку AB. На этой линии в обе стороны от точки B откладываем величину O. Получаем две точки d и d1. Соединяем их с точкой A. Вот и получили треугольник, стороны которого относятся как 1,62. Проверить это можно, если отложить при помощи циркуля длину основания на боковой стороне (точка C). Вторая проверка — противолежащий угол составляет 36°.

Построение пентаграммы несколько сложнее. Ее вписываем в круг, без циркуля не обойтись.

  • Центр окружности обозначаем O, через него проводим прямую до пересечения с окружностью. Одну из точек пересечения обозначаем A. Отрезок OA — диаметр окружности.
  • Находим середину отрезка OD, ставим точку E. Из центра окружности вверх до пересечения с окружностью восстанавливаем перпендикуляр. Это точка D.

Построение пентаграммы

  • Соединяем точки E и D. При помощи циркуля откладываем на радиусе точку C. Отрезок СD равен длине отрезка ED. Циркулем замеряем длину отрезка ED. Иглу ставим в точку E, ведем грифель до пересечения с радиусом. Вот и получили точку C.
  • Длинна отрезка DC — сторона пентаграммы. Замеряем ее, при помощи циркуля переносим на окружность. Для этого циркулем с отложенным расстоянием ставим еще четыре точки на окружности, поочередно соединив их, получаем пентаграмму.

Вот что интересно, если вершины полученной пентаграммы использовать для прорисовки звезды, она будет состоять из идеальных треугольников.

Применение в строительстве

Как уже говорили, неизвестно кто открыл золотое сечение, но все, что кажется нам красивым, имеет именно такое соотношение сторон. Примеров в природе очень много. Если рассматривать известные здания, то и там тоже есть та же закономерность.

Исаакиевский собор — можете посчитать ради интереса

Если вы хотите, чтобы ваш дом внутри и снаружи был привлекательным, запоминался и нравился, при создании или выборе проекта можно просчитать хотя бы основные пропорции. Внести корректировки в пропорции, возможно, не всегда легко, часто связано с дополнительными расходами. Но, если при создании проекта сразу держать в уме золотое сечение, вопросы сами по себе отпадают. На самом деле не так уж это сложно.

Например, вы хотите дом площадью около 100 квадратных метров. Длинную сторону можно принять за 12 метров. Тогда короткая находится как 62% от длинной и составит 7,44 метра. Можно сделать 7 метров или 7,5, можно увеличить до 8. Точное, до сантиметра соблюдение размеров совсем не обязательно. Важно соотношение. А «на глаз» даже в приближении смотрится гармонично. Площадь застройки в таком случае получается несколько меньше — 90-96 квадратов. Если вам надо больше — берите длинную сторону равной 13 метрам и снова считайте. Вроде как применять золотое сечение при создании плана дома понятно.

Если основные параметры строения имеют правильную пропорцию, в любом стиле здание смотрится интересно

Высота этажа в таком случае принимается как 32% от длинной части. Она составит 12*0,32 = 3,84 метра. В принципе, это соответствует нынешним представлениям о комфортных габаритах помещения, но при желании можно сделать высоту меньше. Примерно также рассчитываются, подбираются все остальные фрагменты дома.

Не стоит забывать, что дом должен вписываться также в ландшафт. Если есть какая-то доминанта — высокий холм, например, то просчитывать надо и соотношение с холмом, и с пропорциями участка. В общем, для создания гармоничной усадьбы очень многие факторы надо учитывать.

Не только прямые линии можно использовать. Правда с изогнутыми поверхностями работать сложнее, да и обходятся они дороже — нестандартное устройство всегда более затратное

По такому же принципу разрабатывают внутреннюю планировку, стараясь по возможности соблюдать требуемое соотношение. Но еще раз повторим: по возможности. Не зацикливайтесь на точном соответствии до сантиметра. Важна общая тенденция.

Золотое соотношение во внутреннем оформлении

Что еще дает золотое сечение кроме визуального наслаждения? Психологи говорят, что в интерьере, созданном по этому правилу человек чувствует себя более комфортно. Это, конечно, субъективно, но можно попробовать. Итак, вот как интерпретируют правило золотого сечения в дизайне интерьеров:

  • Если вы собираетесь разделить комнату на зоны, воспользуйтесь правилом. Это значит, что одна из частей должна быть около 62%, вторая — 38%.
  • Площадь, занятая предметами мебели, не должна быть больше чем 2/3.
  • При подборе мебели руководствуемся правилом: каждый средний предмет по габаритам относится к крупным так же, как маленький к средним.
  • При выборе цвета придерживайтесь примерно тех же правил:
    • Второй вариант: 60% — основной цвет, 30% дополнительные и 10% — это акцентные.

      Пример подбора цвета по правилам правильной пропорциональности

  • При использовании горизонтального деления стены (панели), высоту панели можно брать 1/3 или 2/3 от общей высоты комнаты. Но при этом мебель подбирается пропорциональной по высоте, а не по длине.

Относительно мебели правило кажется непонятным, но это только на первый взгляд. Например, подбираем группу отдыха. Крупный предмет в этом случае — диван или софа. Средний — журнальный или кофейный столик, кресла. Мелкие — аксессуары. Так вот, размеры журнального столика не должны быть больше длинной стороны дивана, кресла — не больше его короткой стороны. Аксессуары по размерам не больше размеров столика или кресел. В идеале, они соотносятся с ними как 62% и 38%.

Пропорциональность — важная вещь

Почему не указывается точное соотношение? Потому что, во-первых, найти такие предметы нереально. Во-вторых, золотое сечение — это не только 62% и 38%. Это еще и последовательность Фибоначчи, следование которой также делает оформление гармоничным. Есть люди, у которых следование этой последовательности является «встроенной функцией». Им не надо считать, они выбирают основываясь на чутье и интуиции. Но если проанализировать их выбор, пропорции будут близки к идеальным. Вот так.

При создании ландшафта на участке, принцип идеальных пропорций применяют, называя его правилом треугольника. В композиции должна быть одна доминанта, остальные ее составляющие лишь подчеркивают, оттеняют ее. Например, на участке есть большое дерево и вы хотите его обыграть. Оно и будет центром композиции — доминантой. Нанесите его на план, расчертите клумбу или рокарий, альпинарий — то, что хотите сделать.

Правило треугольника в садовом дизайне

От главенствующего растения или камня, под прямым углом проведите две линии. На этих линиях надо будет высадить более низкие растения. Причем второе по высоте не должно быть выше чем 2/3 от высоты основного объекта. Третий объект — не выше чем 1/3. Дополняют композицию еще более низкорослыми насаждениями. Это коротко о том, как применять золотое сечение в планировке посадок.

Но это не все. Растения надо подбирать по цветам — сочетание зелени разных оттенков, вкрапления цветов и декоративно-лиственных растений — все подчиняется тому же закону. Доминирующий оттенок составляет порядка 60%, дополнительные цвета — 30%, акценты — 10 %. Это если говорить о правилах подбора в одной группе. Но также надо согласовывать и весь план целиком — по размерам, высоте, цветам.

Золотое сечение - Простая английская Википедия, бесплатная энциклопедия

С одним числом a и другим меньшим числом b соотношение этих двух чисел находится путем их деления. Их соотношение составляет a / b . Другое соотношение находится путем сложения двух чисел и деления их на большее число a . Новое соотношение составляет ( a + b ) / a . Если эти два отношения равны одному и тому же числу, то это число называется золотым сечением .Греческая буква φ {\ displaystyle \ varphi} (фи) обычно используется в качестве названия золотого сечения. [1] [2]

Например, если b = 1 и a / b = φ {\ displaystyle \ varphi}, то a = φ {\ displaystyle \ varphi} . Второе соотношение ( a + b ) / a будет тогда (φ + 1) / φ {\ displaystyle (\ varphi +1) / \ varphi}. Поскольку эти два соотношения равны, это правда:

φ знак равно φ + 1φ {\ Displaystyle \ varphi = {\ гидроразрыва {\ varphi +1} {\ varphi}}}

Один из способов написать это число -

φ = 1 + 52 = 1.61803 ... {\ displaystyle \ varphi = {\ frac {1 + {\ sqrt {5}}} {2}} = 1,61803 ...} [1] [2]

5 {\ displaystyle {\ sqrt {5}}} похоже на любое число, которое при умножении само на себя дает 5 (или какое число умножается): 5 × 5 = 5 {\ displaystyle {\ sqrt {5}} \ раз {\ sqrt {5}} = 5}.

Золотое сечение - иррациональное число. Если человек попытается написать это число, оно никогда не остановится и никогда не создаст узор, но начнется так: 1.6180339887 ... Важная особенность этого числа состоит в том, что человек может вычесть из него 1 или разделить на него 1.В любом случае, число будет продолжаться и никогда не остановится.

φ − 1 = 1,6180339887 ...− 1 = 0,6180339887 ... 1 / φ = 11,6180339887 ... = 0,6180339887 ... {\ displaystyle {\ begin {array} {ccccc} \ varphi -1 & = & 1.6180339887 ...- 1 & = & 0.6180339887 ... \\ 1 / \ varphi & = & {\ frac {1} {1.6180339887 ...}} & = & 0.6180339887 ... \ end {array}}}
Большой прямоугольник BA - золотой прямоугольник; то есть пропорция b: a равна 1: φ {\ displaystyle \ varphi}. Для любого такого прямоугольника и только для прямоугольников этой конкретной пропорции, если мы удалим квадрат B , то, что останется, A , будет еще одним золотым прямоугольником; то есть с теми же пропорциями, что и исходный прямоугольник.

Если длина прямоугольника, деленная на его ширину, равна золотому сечению, то прямоугольник является «золотым прямоугольником». Если с одного конца золотого прямоугольника отрезать квадрат, то другой конец будет новым золотым прямоугольником. На рисунке большой прямоугольник (синий и розовый вместе) представляет собой золотой прямоугольник, потому что a / b = φ {\ displaystyle a / b = \ varphi}. Синяя часть (B) - это квадрат, а розовая часть (A) - это еще один золотой прямоугольник, потому что b / (a ​​− b) = φ {\ displaystyle b / (a-b) = \ varphi}.Большой прямоугольник и розовый прямоугольники имеют одинаковую форму, но розовый прямоугольник меньше и повернут.

Числа Фибоначчи - это список чисел. Человек может найти следующий номер в списке, сложив два последних числа вместе. Если человек делит число в списке на число, которое было перед ним, это соотношение все ближе и ближе к золотому сечению.

Число Фибоначчи делится на предыдущий соотношение
1
1 1/1 = 1.0000
2 2/1 = 2,0000
3 3/2 = 1,5000
5 5/3 = 1,6667
8 8/5 = 1,6000
13 13/8 = 1,6250
21 21/13 = 1,6154 ...
34 34/21 = 1.6190 ...
55 55/34 = 1,6177 ...
89 89/55 = 1,6182 ...
... ... ...
φ {\ displaystyle \ varphi} = 1,6180 ...
Использование золотого угла позволит оптимально использовать солнечный свет. Это вид сверху.

В природе золотое сечение часто используется для расположения листьев или цветов.В них используется золотой угол приблизительно 137,5 градусов. Листья или цветы, расположенные под таким углом, лучше всего используют солнечный свет.

  1. 1.0 1.1 «Сборник математических символов». Математическое хранилище . 2020-03-01. Проверено 10 августа 2020.
  2. 2,0 2,1 Вайсштейн, Эрик У. «Золотое сечение». mathworld.wolfram.com . Проверено 10 августа 2020.
.

Phi: Золотое сечение | Живая наука

Число фи, часто известное как золотое сечение, - это математическое понятие, известное людям со времен древних греков. Это иррациональное число, такое как пи, и е, что означает, что его члены бесконечно идут после десятичной точки без повторения.

На протяжении веков вокруг фи было построено множество преданий, например, идея о том, что он представляет собой совершенную красоту или уникально встречается в природе.Но многое из этого не имеет под собой реальных оснований.

Определение phi

Phi можно определить, взяв палку и разбив ее на две части. Если соотношение между этими двумя частями такое же, как соотношение между всей палкой и большим сегментом, считается, что части находятся в золотом сечении. Впервые это было описано греческим математиком Евклидом, хотя он назвал это «делением на крайнее и среднее отношение», согласно математику Джорджу Марковскому из Университета штата Мэн.2 = phi + 1

Это представление может быть преобразовано в квадратное уравнение с двумя решениями: (1 + √5) / 2 и (1 - √5) / 2. Первое решение дает положительное иррациональное число 1.6180339887… (точки означают, что числа продолжаются бесконечно), и это обычно называется фи. Отрицательное решение - -0,6180339887 ... (обратите внимание, как совпадают числа после десятичной точки) и иногда называют маленьким фи.

Последний и довольно элегантный способ представления фи выглядит следующим образом:

5 ^ 0.5 * 0.5 + 0.5

Это пять в половинной степени, умноженная на половину плюс половина.

Связанный: 11 самых красивых математических уравнений

Phi тесно связан с последовательностью Фибоначчи , в которой каждое последующее число в последовательности находится путем сложения двух предыдущих чисел. Эта последовательность идет 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 и так далее. Это также связано со многими заблуждениями.

Взяв отношение последовательных чисел Фибоначчи, вы можете приближаться к фи. Интересно, что если вы расширите последовательность Фибоначчи назад - то есть до нуля и на отрицательные числа - соотношение этих чисел будет приближать вас к отрицательному решению, маленький фи -0,6180339887…

Существует ли золотое сечение в природа?

Хотя люди знают о фи уже давно, большую известность он приобрел только в последние столетия.По словам Нотта, итальянский математик эпохи Возрождения Лука Пачоли написал книгу под названием «De Divina Proportione» («Божественная пропорция») в 1509 году, в которой обсуждалась и популяризовалась фи.

Пачоли использовал рисунки, сделанные Леонардо да Винчи , которые включали фи, и возможно, что да Винчи был первым, кто назвал это «sectio aurea» (латинское «золотое сечение»). Только в 1800-х годах американский математик Марк Барр использовал греческую букву Φ (фи) для обозначения этого числа.

Как свидетельствуют другие названия числа, такие как божественная пропорция и золотое сечение, фи приписывают множество чудесных свойств. Писатель Дэн Браун включил длинный отрывок в свой бестселлер «Код да Винчи» (Doubleday, 2000), в котором главный герой обсуждает, как фи представляет собой идеал красоты и встречается на протяжении всей истории. Более трезвые ученые обычно опровергают подобные утверждения.

Например, энтузиасты фи часто упоминают, что некоторые измерения Великой пирамиды в Гизе , такие как длина ее основания и / или высота, находятся в золотом сечении.Другие утверждают, что греки использовали фи при проектировании Парфенона или в своих прекрасных скульптурах.

Энтузиасты Пхи любят указывать на то, что пирамиды Гизы, построенные между 2589 и 2504 годами до нашей эры, были построены в золотом сечении. Но измерения по своей природе неточны и произвольны, поэтому пирамиды не являются точными примерами золотого сечения. (Изображение предоставлено Дэном Брекволдтом Shutterstock)

Но, как Марковский указал в своей статье 1992 года в журнале College Mathematics Journal под названием «Заблуждения о золотом сечении»: «измерения реальных объектов могут быть только приблизительными.Поверхности реальных объектов никогда не бывают идеально плоскими ». Далее он написал, что неточности в точности измерений приводят к еще большим неточностям, когда эти измерения выражаются в соотношениях, поэтому заявления о древних зданиях или искусстве, соответствующих фи, должны приниматься с большой долей вероятности. крупица скепсиса

Часто говорят, что размеры архитектурных шедевров близки к фи, но, как отмечал Марковский, иногда это означает, что люди просто ищут соотношение, которое дает 1,6, и называют это фи.Найти два отрезка с коэффициентом 1,6 не составляет особого труда. Выбор места измерения может быть произвольным и при необходимости отрегулирован, чтобы приблизить значения к фи.

Попытки найти фи в человеческом теле также поддаются подобным заблуждениям. В недавнем исследовании утверждалось, что золотое сечение обнаруживается в разных пропорциях человеческого черепа. Но, как сказал Live Science :

Дейл Риттер, ведущий преподаватель анатомии человека в Медицинской школе Альперта (AMS) при Университете Брауна в Род-Айленде, сказал Live Science :

: «Я считаю, что основная проблема этой статьи заключается в том, что ее очень мало (возможно ) наука… с таким количеством костей и таким количеством интересных точек на этих костях, я мог бы предположить, что где-то еще в скелетной системе человека будет хотя бы несколько «золотых соотношений».

Связанный: Фотографии: большие числа, определяющие Вселенную

И хотя фи считается обычным явлением в природе, его значение преувеличено. Лепестки цветов часто имеют числа Фибоначчи, такие как пять или восемь, а сосновые шишки растут свои семена наружу по спирали чисел Фибоначчи. Но есть столько же растений, которые не следуют этому правилу, так и те, которые соблюдают, - сказал Live Science Кейт Девлин, математик из Стэнфордского университета .

Люди утверждали, что морские ракушки, такие как ракушки наутилуса, обладают свойствами, присущими фи.Но, как указывает Девлин на своем веб-сайте , «наутилус действительно наращивает свою раковину по логарифмической спирали, то есть спирали, которая поворачивается на постоянный угол по всей своей длине, что делает его везде самоподобным. постоянный угол - это не золотое сечение. Жалко, я знаю, но вот оно. "

Хотя фи, безусловно, представляет собой интересную математическую идею, именно мы, люди, придаем значение тому, что мы находим во Вселенной. Защитник, смотрящий через очки цвета фи, может повсюду видеть золотое сечение.Но всегда полезно выйти за рамки конкретной точки зрения и спросить, действительно ли мир соответствует нашему ограниченному пониманию его.

Дополнительные ресурсы:

.

Золотое сечение - RationalWiki

Прямоугольник с соотношением сторон, равным золотому сечению. Это вроде бы особенно приятно визуально. Золотое сечение: Золотое сечение, применяемое к делению линии.

Золотое сечение , золотая середина , золотое число или золотое сечение - математическая константа

Что еще более важно, это отношение двух величин A и B, такое, что отношение от A к B (где A - меньшее) такое же, как отношение от B к A + B; это происходит из-за того, что это положительный реальный корень.

Считается, что он приятен и гармоничен для человеческого восприятия и является основой многих классических архитектур. Использование греческой буквы фи (φ) для обозначения золотого сечения было предложено математиком Марком Барром из первой буквы Фидия (древнегреческий, Φειδίας), скульптора, который якобы использовал ее в создание статуй Парфенона.

Золотое сечение тесно связано с последовательностью Фибоначчи. Среди прочего, отношения последовательных чисел Фибоначчи сходятся к фи:

1/1 = 1.000000
2/1 = 2,000000
3/2 = 1.500000
5/3 = 1.666666
8/5 = 1,600000
13/8 = 1,625000
21/13 = 1,615385
34/21 = 1.619048
55/34 = 1,617647
89/55 = 1,618182
144/89 = 1,617978
233/144 = 1.618056
377/233 = 1.618026
610/377 = 1.618037
987/610 = 1.618033

Phi woo [править]

Фи и числа Фибоначчи наделяют множеством очень увлекательных математических свойств, но некоторые чудаки готовы продвинуть их дальше, добавив хорошую дозу парейдолии. [1] [2] Классический пример - раковины наутилуса: часто говорят, что это золотые спирали, хотя на самом деле это просто логарифмические спирали с отношениями обычно около 1,3. Другие утверждают, что нашли золотое сечение или числа Фибоначчи в красоте человеческого лица, исторической архитектуре (иногда законной), продуктах Apple, планетах, музыкальных инструментах, идеальных громкоговорителях ... список можно продолжать и продолжать.Во многих случаях они действительно находили золотое сечение в объекте X, но это не особый результат; при достаточной настойчивости вы можете найти золотое сечение почти в чертовом и где угодно .

Aloe polyphylla , демонстрирующий филлотаксис, подобный спирали Фибоначчи

Разница между реальным случаем «магии» золотого сечения и простым наблюдением кривошипа состоит в том, что наличие золотого сечения может быть фактически объяснено. То есть золотое сечение должно присутствовать как в теоретических моделях, описывающих X, так и в измеренных результатах в X.Изучая филлотаксис, ботаники не только наблюдали семена подсолнечника, растущие по спирали, пронумерованной Фибоначчи, но и дали научное объяснение тому, почему это происходит: пример золотого сечения, законно появляющийся в природе.

Нумерологическое ухаживание, окружающее фи и Фибоначчи, является примером строгого закона малых чисел; , то есть маленьких чисел (или визуально различимых соотношений между 1 и 2) не так много, и они будут появляться во многих несвязанных местах.См. Также теорию Рамсея.

Между тем, в стране креационистов… Годдидит. [3]

Библиография [править]

  • Золотое сечение: История Фи, самое удивительное число в мире Марио Ливио (2002) Broadway Books. ISBN 0767908155.

Ссылки [править]

См. Также [править]

.

золотое сечение -

золотое сечение - wikiwand

Для более быстрой навигации этот iframe предварительно загружает страницу Wikiwand для Золотое сечение .

Подключено к:
{{:: readMoreArticle.title}}

Из Википедии, свободной энциклопедии

{{bottomLinkPreText}} {{bottomLinkText}} Эта страница основана на статье в Википедии, написанной участники (читать / редактировать).
Текст доступен под Лицензия CC BY-SA 4.0; могут применяться дополнительные условия.
Изображения, видео и аудио доступны по соответствующим лицензиям.
{{current.index + 1}} из {{items.length}}

Спасибо за жалобу на это видео!

Пожалуйста, помогите нам решить эту ошибку, написав нам по адресу support @ wikiwand.com
Сообщите нам, что вы сделали, что вызвало эту ошибку, какой браузер вы используете и установлены ли у вас какие-либо специальные расширения / надстройки.
Спасибо! .

Смотрите также

Сделать заказ

Пожалуйста, введите Ваше имя
Пожалуйста, введите Ваш номер телефона
Пожалуйста, введите Ваше сообщение