Комплексные поставки запорной арматуры
и деталей трубопроводов →

Тел: +7 (3522) 55-48-26

Сообщение о теплопроводности


Доклад Теплопроводность 8 класс сообщение

Тепловодность – это своеобразный процесс, при котором более нагретые тела либо частицы отдают свою энергию «собратьям» с гораздо меньшим нагревом, можно сказать, делятся своим теплом ради того, чтобы другие тела либо частицы могли также полноценно существовать и функционировать.

Довольно благородно, не правда ли? Теперь стоит разобраться в нюансах данного явления. Перенос энергии происходит только при тесном взаимодействии частиц, где менее нагретая получает долю энергии, распространяющейся от более нагретой. Подобный вид энергии называется «кинетической».

Иногда способность вещества производить тепло также называется «теплопроводностью».

Пожалуй, основной доктриной, на которую стоит опираться, в данной сфере является закон Фурье, утверждающий, что существует зависимость и пропорциональность между потоком энергии и температурой. Что же касается, вакуума, то здесь теплопроводность практически нулевая, что довольно обосновано – поскольку в подобной среде концетрация каких – либо веществ и частиц предельно низкая.

Именно поэтому стенки термоса предаются специальной обработке золотом либо иными металлами. Теплопроводность также имеет связь с электропроводностью, что доказывает закон Видемана – Франца. Инертные газы имеют наименьшую теплопроводность, а наибольшей – легкие, поскольку имеют достаточное количество частиц.

Что же касается различного рода высокочастотных и ультразвуковых процессов, на них вышеупомянутый закон Фурье и вовсе не распространяется. В любом случае, даже имея достаточное количество доказательств и формул, стоит учитывать все нюансы, такие как: условия среды, в  которых происходит теплообмен, виды и типы частиц, которые в данном процессе могут действовать по разному и прочее, учитывая также, что в любых расчетах возможна погрешность.

К слову, теплопроводность имеют не только газы, но и огромное количество материалов, например строительные, также дерево, пластик, керамика и многие другие. Даже воздух имеет коэффициент данного явления.

В завершение следует отметить, что невозможно отрицать важность данного явления для науки и жизни конкретного человека. Так или иначе, мы существуем в мире частиц, материалов и веществ, которые этим обладают, да и сами люди  вполне способны передавать друг другу тепло, что тоже можно назвать своего рода теплопроводностью.

Доклад №2

Что такое теплопроводность? Под теплопроводностью принято понимать процесс,, при котором более нагретые частицы отдают свою энергию частицам с гораздо меньшим нагревом. Это явление дает возможность вторым частицам за счет перенятой энергии полноценно функционировать.

Для успешного протекания процесса необходимо соблюдение следующего условия: возможность переноса энергии зависит от взаимодействия частиц – частицы должны находиться в тесной связи между собой. При таком состоянии менее нагретые частицы получают часть энергии от более нагретых. Такую энергию называют кинетической.

Существует также процесс не только передачи частицами энергии, но и выработки энергии самими частицами. Это явление также называют теплопроводность.

Для того, чтобы не быть голословными в вопросах теплопроводности, обратимся к основному закону Фурье. В нем говорится, что между потоками энергии и определенной температурой прослеживается пропорциональная зависимость. Если говорить о ваккууме, то в таких условиях теплопроводность будет почти равна нулю. Этому есть логичное объяснение – ваккуумная среда практически не дает возможность существовать концентрации какого-либо вещества.
Теперь зная это, мы можем применить свои знания на практике – например, обосновать, по какой причине термосы делают с металлической колбой внутри.

Помимо теплопроводности рассмотрим явление электропроводности. Эти два процесса имеют связь между собой. Об этом нам говорит закон Видемана-Франца. Здесь речь идет об инертных газах, которые в свою очередь имеют небольшую теплопроводность. Легкие же газы обладают большей теплопроводностью – это обусловлено тем, что они имеют большее количество частиц.
Также помимо вышеперечисленных процессов существуют ультразвуковые и высокочастотные процессы, но закон Фурье, о котором также говорилось ранее, не распространяется.

Существуют нюансы, которые, несмотря на наличие выведенных формул и доказательств, стоит учитывать при протекании процесса теплопроводности. К таким нюансам относятся:

  • виды частиц, типы частиц, которые участвуют в процессе;
  • условия среди протекания процесса теплопроводности;
  • погрешности в математических расчетах.

Теперь поговорим о том, какие вещества обладают теплопроводностью. Ранее уже было сказано, что теплопроводностью обладают газы. Стоит отметить, что помимо газов огромное количество веществ и материалов также обладают этим свойством. Например, различные строительные материалы, такие как пластик, дерево, керамика. Не стоит забывать и об агрегатных состояниях веществ – жидкости также имеют свойство отдавать и перенимать тепло.

Явление теплопроводности играет важную роль не только в науке, но и в жизни человека. Наш мир состоит из многообразия веществ и материалов с данным свойством. Можно сказать, что даже сами люди в какой-то степени обладают теплопроводностью, ведь тела также способны отдавать и вырабатывать тепло.

8 класс

Теплопроводность

Популярные темы сообщений

  • История изобретения турбин

    Турбина — это такого рода мотор способный вращаться, в основном при высокой температуре, с помощью газа или иной жидкости. Образцом является водяная мельница.

  • Планета Юпитер

    Юпитер считается пятой по счету планетой в нашей Солнечной системе. Он поражает и удивляет своими размерами. Космические аппараты, которые ученые отправляют для изучения планеты, возвращаются с огромным запасом интересных фотоснимков.

  • Древняя Греция

    Древняя Греция (Эллада) – колыбель цивилизаций древнего мира, которая поражает весь мир своими гениальными учёными и философами, произведениями искусств. Древняя Греция находилась на юге Балканского полуострова, также островах Эгейского моря

Теплопроводность. Примеры вокруг нас

Способы передачи тепла

В самой обычной квартире находится множество объектов и устройств, которые помогут продемонстрировать некоторые физические явления и законы, причем из самых разных разделов этой науки — от классической механики до квантовой физики и начал теории относительности.

Например, почему окно в квартире, отделяющее ее от морозного воздуха всего двумя тонкими стеклами, сохраняет тепло? Причина заключается в особом свойстве вещества — теплопроводности.

Теплообмен, или теплопередача, — это физический процесс, при котором тепло переносится от теплого объекта к холодному (или от теплой части одного объекта к холодной). Теплопередача может происходить при непосредственном контакте двух объектов (теплопроводность), перемешивании газов или жидкостей (конвекция) и излучении тепла.

Теплопроводность — способность материала передавать через свой объем тепловой поток, возникающий вследствие разности температур на противоположных поверхностях предмета. Данное явление объясняется тем, что кинетическая энергия атомов и молекул, которая определяет температуру тела, переносится из более нагретых частей предмета к его менее нагретым частям.

Различные материалы проводят теплоту по-разному: одни быстрее (например, металлы), другие медленнее (теплоизоляционные материалы). Воздух — очень плохой проводник тепла, если только он не движется. А вот перемещение воздуха помогает теплу переходить от одного тела к другому, в чем легко убедиться, подержав руку над пламенем (только не следует подносить ее близко к огню!). Поэтому такие вещества или устройства, внутри которых удерживается воздух, превосходно останавливают утечку тепла. Про них можно сказать, что они хорошие тепло-изоляторы. Именно таковы наши окна.

Отдаваемое нашим телом тепло нагревает верхние слои холодного предмета. Но если он обладает высокой теплопроводностью (как металл), то энергия быстро растекается по всему его объему, рост температуры оказывается незначительным, и перетекание тепла продолжается — мы чувствуем, что предмет остается холодным.

Высокая теплопроводность металлов объясняется наличием в них свободных электронов — тех самых, что обеспечивают электропроводность металлов. Электроны в металлах, в отличие от атомов, не остаются на месте, а быстро перемещаются по всему объему тела, перенося при этом тепло.

Что произойдет, если обычный чайник или кастрюлю с водой поставить на плиту (неважно какую — газовую или электрическую)? Молекулы горящего газа или раскаленной электрической спирали станут двигаться намного быстрее, чем до включения плиты. Потому-то они и горячие — газ и спираль. Эти быстрые молекулы ударяются о молекулы металла на внешней стороне донышка чайника, и те, в свою очередь, начинают двигаться быстрее. Затем уже они соударяются с молекулами, находящимися повыше, которые тоже начинают бегать интенсивнее. Вот так, от молекулы к молекуле, это быстрое тепловое движение передается через металл к жидкости в чайнике.

ОТ ЧЕГО ЗАВИСИТ ТЕПЛОПРОВОДНОСТЬ?

Теплопроводность зависит от плотности материала, его строения, пористости, а также от того, как упорядочены атомы в веществе. С увеличением средней плотности теплопроводность возрастает, а чем выше пористость (меньше плотность) материала, тем ниже теплопроводность. У металлов атомы упакованы плотно и упорядоченно, поэтому теплопроводность металлов очень высока — они быстро отдают и получают тепло. В газах основную часть объема составляет пустота, молекулы в газе встречаются редко и пробегают большие расстояния, пока не столкнутся друг с другом, поэтому газы плохо передают тепло и являются хорошими теплоизоляторами. Чем менее плотный газ, тем медленнее он передает тепло. К примеру, в космосе, где царит почти абсолютная пустота (вакуум), тепло передается только путем излучения.

Поделиться ссылкой

Виды теплопередачи: теплопроводность, конвекция, излучение

«Виды теплопередачи:
теплопроводность, конвекция, излучение»



Теплопередача – это способ изменения внутренней энергии тела при передаче энергии от одной части тела к другой или от одного тела к другому без совершения работы. Существуют следующие виды теплопередачи: теплопроводность, конвекция и излучение.

Теплопроводность

Теплопроводность – это процесс передачи энергии от одного тел а к другому или от одной части тела к дpугой благодаря тепловому движению частиц. Важно, что при теплопроводности не происходит перемещения вещества, от одного тела к другом у или от одной части телa к другой передается энергия.

Разные вещества обладают разной теплопроводностью. Если на дно пробирки, наполненной водой, положить кусочек льда и верхний её конец поместить над пламенем спиртовки, то через некоторое время вода в верхней части пробирки закипит, а лёд при этом не растает. Следовательно, вода, так же как и все жидкости, обладает плохой теплопроводностью.

Ещё более плохой теплопроводность ю обладают газы. Возьмём пробирку, в которой нет ничего, кроме воздуха, и расположим её над пламенем спиртовки. Палец, помещённый в пробирку, не почувствует тепла. Следовательно, воздух и другие газы обладает плохой теплопроводностью.

Хорошими проводниками теплоты являются металлы, самыми плохими — сильно разреженные газы. Это объясняется особенностями их строения. Молекулы газов находятся друг от друга на расстояниях, больших, чем молекулы твёрдых тел, и значительно реже сталкиваются. Поэтому и передача энергии от одних молекул к другим в газах происходит не столь интенсивно, как в твёрдых телах. Теплопроводность жидкости занимает промежуточное положение между теплопроводностью газов и твёрдых тел.

Конвекция

Как известно, газы и жидкости плохо проводят теплоту. В то же время от батарей парового отопления нагревается воздух. Это происходит благодаря такому виду теплопроводности, как конвекция.

Если вертушку, сделанную из бумаги, поместить над источником тепла, то вертушка начнёт вращаться. Это происходит потому, что нагретые менее плотные слои воздуха под действием выталкивающей силы поднимаются вверх, а более холодные движутся вниз и занимают их место, что и приводит к вращению вертушки.

Конвекция — вид теплопередачи, при котором энергия передаётся слоями жидкости или газа.  Конвекция связана с переносом вещества, поэтому она может осуществляться только в жидкостях и газах; в твёрдых телах конвекция не происходит.

Излучение

Третий вид теплопередачи — излучение. Если поднести руку к спирали электроплитки, включённой в сеть, к горящей электрической лампочке, к нагретому утюгу, к батарее отопления и т.п., то можно явно ощутить тепло.

Опыты также показывают, что чёрные тела хорошо поглощают и излучают энергию, а белые или блестящие плохо испускают и плохо поглощают её. Они хорошо энергию отражают. Поэтому понятно, почему летом носят светлую одежду, почему дома на юге предпочитают красить в белый цвет.

Путём излучения энергия передаётся от Солнца к Земле. Поскольку пространство между Солнцем и Землёй представляет собой вакуум (высота атмосферы Земли много меньше расстояния от неё до Солнца), то энергия не может передаваться ни путём конвекции, ни путём теплопроводности. Таким образом, для передачи энергии путём излучения не требуется наличия какой-либо среды, эта теплопередача может осуществляться и в вакууме.


Конспект урока «Виды теплопередачи: теплопроводность, конвекция, излучение».

Следующая тема: «Количество теплоты. Удельная теплоёмкость».

 

Доклад по теме:"Теплопередача. Виды теплопередачи"

2. Теплопередача. Виды теплопередачи

Процесс изменения внутренней энергии без совершения работы называется теплопередачей. Без совершения работы тела могут нагреваться и остывать. Без совершения работы могут перемешиваться теплые и холодные слои жидкостей и газов. Без совершения работы может изменяться внутренняя энергия тела путем излучения, в том числе и через пустоту - вакуум. Рассмотрим виды теплопередачи.

Теплопроводность – явление передачи энергии от более нагретой части тела к менее нагретой в результате теплового движения и взаимодействия частиц, из которых состоит тело.

Можно провести опыт, сконструировав установку: на треноге помещается кольцо из тонкой оцинкованной жести. В кольцо под углом 120 градусов вставляются (прикрепляются) три проволоки (медь, алюминий и сталь) в виде спиц, предварительно нужно окунуть их в расплавленный воск от старых свечей. Пока воск на них застывает, нужно прикрепить хотя бы через сантиметр сапожные гвоздики шляпками к стержню. Три начала спиц близко расположены в середине кольца. Зажжем спиртовку (или таблетку сухого спирта), поместим на подставке так, чтобы три начала спиц одинаково нагревались. И наблюдаем: через некоторое время начинает таять воск и первыми начинают отпадать гвоздики на медной спице, чуть позже – на алюминиевой и ещё позже – на железной.

Металлы обладают хорошей теплопроводностью, плохой теплопроводностью обладают пластмасса, резина, стекло, дерево, плексиглас, большинство изоляторов.

Второй вид теплопередачи – конвекция.

Конвекция – процесс теплообмена, осуществляемый путём переноса энергии потоками жидкости или газа. Проведём опыт: в колбу налить подкрашенную воду: капнуть раствора медного купороса или кристаллик марганцовки и снизу на спиртовке (или таблетка сухого спирта , или свеча) нагревать колбу. Через некоторое время можно заметить перемещение слоёв воды снизу вверх (а потом и по кругу).

Воздух – плохой проводник тепла, но он в комнате нагревается сам и, перемешивая тёплые и холодные слои, нагревает всю комнату. Под окнами находятся батареи центрального отопления. Здесь прикоснувшиеся к чугунной батарее, слои теплого воздуха по закону Архимеда, вытесняются холодными и поднимаются вверх. На освободившееся место подходят холодные слои, прикасаясь к поверхности батареи, нагреваются, и опять идут вверх и т.д. Слои теплого и холодного воздуха перемешиваются и нагревают всю комнату.

Третий вид теплопередачи - излучение. Излучение – перенос энергии от одного тела к другому, обусловленный процессами испускания, распространения, рассеяния и поглощения электромагнитного излучения. Можно показать распространение солнечного света и тепла, проговорив, что излучение передаётся и через вакуум. Светлая поверхность отражает излучение, а темная поглощает. Поэтому летом нужно использовать светлую одежду, а зимой – темную. Поэтому самолеты и ракеты красят светлой краской, цистерны с перевозимым топливом – то же красят в светлые тона.

Трубы больших котельных строят высокими для того, чтобы «тяга» была лучше: столб теплого воздуха в трубе быстрее поднимается вверх, на его место снизу в топку быстрее поступает воздух с новой порцией кислорода и топливо горит лучше, нагрев воды быстрее, снабжение горячей водой квартир в системе центрального отопления – более уверенное. В термосе учитываются все три вида теплопередачи, чтобы горячий чай дольше не остывал: колба устанавливается на пластмассе, пробка – из пробкового дерева, т.к. у него теплопроводность минимальная, из двустенной колбы выкачан воздух, чтобы исключить конвекцию; и внутренняя поверхность колбы посеребрена, чтобы отражать внутрь тепловое излучение.

Что такое теплопроводность в физике?

Явление теплопроводности заключается в передаче энергии в виде тепла при непосредственном контакте двух тел без какого-либо обмена материей или с ее обменом. При этом энергия переходит из одного тела или области тела, имеющего более высокую температуру, в тело или область с более низкой температурой. Физической характеристикой, которая определяет параметры передачи тепла, является теплопроводность. Что такое теплопроводность, и как ее описывают в физике? На эти вопросы ответит данная статья.

Общее понятие о теплопроводности и ее природа

Если отвечать простыми словами на вопрос о том, что такое теплопроводность в физике, то следует сказать, что передача тепла между двумя телами или различными областями одного и того же тела является процессом обмена внутренней энергией между частицами, составляющими тело (молекулы, атомы, электроны и ионы). Сама внутренняя энергия состоит из двух важных частей: из кинетической и из потенциальной энергии.

Что такое теплопроводность в физике с точки зрения природы этой величины? На микроскопическом уровне способность материалов проводить тепло зависит от их микроструктуры. Например, для жидкостей и газов указанный физический процесс происходит за счет хаотичных столкновений между молекулами, в твердых телах основная доля переносимого тепла приходится на обмен энергией между свободными электронами (в металлических системах) или фононами (неметаллические вещества), которые представляют собой механические колебания кристаллической решетки.

Математическое представление теплопроводности

Ответим на вопрос о том, что такое теплопроводность, с математической точки зрения. Если взять однородное тело, тогда количество тепла, переданного через него в данном направлении, будет пропорционально площади поверхности, перпендикулярной направлению теплопередачи, теплопроводности самого материала и разнице температур на концах тела, а также будет обратно пропорционально толщине тела.

В итоге получается формула: Q/t = kA(T2-T1)/x, здесь Q/t - теплота (энергия), переданная через тело за время t, k - коэффициент теплопроводности материала, из которого изготовлено рассматриваемое тело, A - площадь поперечного сечения тела, T2-T1 - разница температур на концах тела, причем T2>T1, x - толщина тела, через которую передается тепло Q.

Способы передачи тепловой энергии

Рассматривая вопрос о том, что такое теплопроводность материалов, следует упомянуть о возможных способах передачи тепла. Тепловая энергия может передаваться между различными телами с помощью следующих процессов:

  • проводимость - этот процесс идет без переноса материи;
  • конвекция - перенос тепла непосредственно связан и с движением самой материи;
  • излучение - передача тепла осуществляется за счет электромагнитного излучения, то есть с помощью фотонов.

Чтобы тепло было передано с помощью процессов проводимости или конвекции, необходим непосредственный контакт между различными телами с тем отличием, что в процессе проводимости не существует макроскопического движения материи, а в процессе конвекции это движение присутствует. Отметим, что микроскопическое движение имеет место во всех процессах теплопередачи.

Для обычных температур в несколько десятков градусов Цельсия можно сказать, что на долю конвекции и проводимости приходится основная часть передаваемого тепла, а количество энергии, переданной в процессе излучения, является незначительным. Однако излучение начинает играть главную роль в процессе теплопередачи при температурах в несколько сотен и тысяч Кельвин, поскольку количество энергии Q, передаваемой этим способом, растет пропорционально 4-й степени абсолютной температуры, то есть ∼ T4. Например, наше солнце теряет большую часть энергии именно за счет излучения.

Теплопроводность твердых тел

Так как в твердых телах каждая молекула или атом находятся в определенном положении и не могут его покинуть, то передача тепла с помощью конвекции оказывается невозможной, и единственным возможным процессом является проводимость. При увеличении температуры тела кинетическая энергия составляющих его частиц увеличивается, и каждая молекула или атом начинают интенсивнее колебаться. Этот процесс приводит к их столкновению с соседними молекулами или атомами, в результате таких столкновений передается кинетическая энергия от частицы к частице до тех пор, пока все частицы тела не будут охвачены этим процессом.

В результате описанного микроскопического механизма при нагреве одного конца металлического стержня температура через некоторое время выравнивается по всему стержню.

Тепло не передается одинаково в различных твердых материалах. Так, существуют материалы, которые обладают хорошей теплопроводностью. Они легко и быстро проводят тепло через себя. Но также существуют плохие теплопроводники или изоляторы, через которые тепло практически не проходит.

Коэффициент теплопроводности для твердых тел

Коэффициент термической проводимости для твердых тел k имеет следующий физический смыл: он указывает на количество теплоты, которое проходит за единицу времени через единицу площади поверхности в каком-либо теле единичной толщины и бесконечной длины и ширины при разнице температур на его концах, равной одному градусу. В международной системе единиц СИ коэффициент k измеряется в Дж/(с*м*К).

Данный коэффициент в твердых веществах зависит от температуры, поэтому его принято определять при температуре 300 K с целью сравнения способности проводить тепло различными материалами.

Коэффициент теплопроводности для металлов и неметаллических твердых материалов

Все металлы без исключения являются хорошими проводниками тепла, за перенос которого в них отвечает электронный газ. В свою очередь ионные и ковалентные материалы, а также материалы, имеющие волокнистую структуру, являются хорошими теплоизоляторами, то есть плохо проводят тепло. Для полноты раскрытия вопроса о том, что такое теплопроводность, следует заметить, что этот процесс требует обязательного наличия вещества, если он осуществляется за счет конвекции или проводимости, поэтому в вакууме тепло может передаваться только за счет электромагнитного излучения.

В списке ниже приведены значения коэффициентов теплопроводности для некоторых металлов и неметаллов в Дж/(с*м*К):

  • сталь - 47-58 в зависимости от марки стали;
  • алюминий - 209,3;
  • бронза - 116-186;
  • цинк - 106-140 в зависимости от чистоты;
  • медь - 372,1-385,2;
  • латунь - 81-116;
  • золото - 308,2;
  • серебро - 406,1-418,7;
  • каучук - 0,04-0,30;
  • стекловолокно - 0,03-0,07;
  • кирпич - 0,80;
  • дерево - 0,13;
  • стекло - 0,6-1,0.

Таким образом, теплопроводность металлов на 2-3 порядка превышает значения теплопроводности для изоляторов, которые являются ярким примером ответа на вопрос о том, что такое низкая теплопроводность.

Значение теплопроводности играет важную роль во многих индустриальных процессах. В одних процессах стремятся увеличить ее, используя хорошие теплопроводники и увеличивая площадь контакта, в других же стараются уменьшить теплопроводность, уменьшая площадь контакта и применяя теплоизолирующие материалы.

Конвекция в жидкостях и газах

Передача тепла в текучих средах осуществляется за счет процесса конвекции. Этот процесс предполагает перемещение молекул вещества между зонами с различной температурой, то есть при конвекции происходит перемешивание жидкости или газа. Когда текучая материя отдает тепло, ее молекулы теряют часть кинетической энергии, и материя становится более плотной. Наоборот, когда текучая материя нагревается, ее молекулы увеличивают свою кинетическую энергию, их движение становится более интенсивным, соответственно, объем материи увеличивается, а плотность уменьшается. Именно поэтому холодные слои материи стремятся опуститься вниз под действием силы тяжести, а горячие слои пытаются подняться вверх. Этот процесс приводит к перемешиванию материи, способствуя передачи тепла между ее слоями.

Коэффициент теплопроводности некоторых жидкостей

Если отвечать на вопрос о том, что такое теплопроводность воды, то следует понимать, что она обусловлена конвекционным процессом. Коэффициент теплопроводности для нее равен 0,58 Дж/(с*м*К).

Для других жидкостей эта величина приведена в списке ниже:

  • этиловый спирт - 0,17;
  • ацетон - 0,16;
  • глицерол - 0,28.

То есть значения теплопроводности для жидкостей сравнимы с таковыми для твердых теплоизоляторов.

Конвекция в атмосфере

Важность атмосферной конвекции велика, поскольку благодаря ней существуют такие явления, как ветры, циклоны, образование облаков, дожди и другие. Все эти процессы подчиняются физическим законам термодинамики.

Среди процессов конвекции в атмосфере самым важным является круговорот воды. Здесь следует рассмотреть вопросы о том, что такое теплопроводность и теплоемкость воды. Под теплоемкостью воды понимается физическая величина, показывающая, какое количество теплоты необходимо передать 1 кг воды, чтобы ее температура увеличилась на один градус. Оно равно 4220 Дж.

Круговорот воды осуществляется следующим образом: солнце нагревает воды Мирового океана, и часть воды испаряется в атмосферу. За счет процесса конвекции водяной пар поднимается на большую высоту, охлаждается, образуются облака и тучи, которые приводят к возникновению осадков в виде града или дождя.

Виды теплопередачи – внеурочная деятельность (конкурсная работа) – Корпорация Российский учебник (издательство Дрофа – Вентана)

  

  • Участник: Ромашов Владимир Михайлович
  • Руководитель: Гурьянова Галина Александровна   

Цель работы: расширение кругозора, повышение эрудиции, развитие интереса к экспериментальной физике, умений демонстрировать и объяснять опыты, научиться работать самостоятельно. 

Техника безопасности по теме «Тепловые явления»

  1. Будьте внимательны, дисциплинированны, аккуратны, точно выполняйте указания учителя.
  2. До начала работы приборы не трогать и не приступать к выполнению лабораторной работы до указания учителя.
  3. Перед тем как приступить к выполнению работы, тщательно изучите её описание, уясните ход её выполнения.
  4. Не оставляйте рабочего места без разрешения учителя.
  5. Располагайте приборы, материалы, оборудование на рабочем месте в порядке, указанном учителем.
  6. Не держите на рабочем столе предметы, не требующиеся при выполнении задания.
  7. При выполнение опытов нельзя пользоваться разбитой стеклянной посудой или посудой с трещинами.
  8. Стеклянные колбы при нагревании нужно ставить на асбестовые сетки. Воду можно нагревать до 60–70°С.
  9. Осколки стекла нельзя собирать со стола руками. Для этого нужно использовать щетку с совком.
  10. Нельзя оставлять без присмотра нагревательные приборы.
  11. Не устанавливайте на краю стола штатив, во избежание его падения.
  12. Будьте внимательны и осторожны при работе с колющими и режущимися  предметами.
  13. Берегите оборудование и используйте его по назначению.
  14. При получении травмы обратитесь к учителю.

Введение

В своей работе по теме «Виды теплопередачи» я проведу и объясню три эксперимента, описанные в учебнике Перышкина А.В. Физика. 8класс.

Цель работы: расширение кругозора, повышение эрудиции, развитие интереса к экспериментальной физике, умений демонстрировать и объяснять опыты, научиться работать самостоятельно.

Выдвигаемая гипотеза: внутреннюю энергию тел можно изменять путем теплопередачи. Теплопередача всегда происходит в определенном направлении: от тел с более высокой температурой к телам с более низкой.

Опыт № 1. Теплопроводность

На примере этого опыта я хотел показать действие теплопроводности наглядно. При нормальных условиях тепло должно передаваться равномерно вследствие колебательных движений частиц.

К металлической линейке с помощью воска я прикрепил несколько кнопок. Закрепив линейку в штативе, я начал нагревать один конец линейки с помощью спиртовки. Линейка начала постепенно нагреваться, это можно доказать тем, что воск начал таять постепенно и кнопки поочерёдно начали отпадать.

Вывод из опыта № 1

Скорость колебательного движения частиц металла увеличивается в той части проволоки, которая ближе расположена к пламени. Поскольку частицы постоянно взаимодействуют друг с другом, то увеличивается скорость движения соседних частиц. Начинает повышаться температура в следующей части линейки. При теплопроводности не происходит переноса самого вещества. Теплопроводность металла хорошая, у жидкостей невелика, у газов еще меньше.

Применения теплопроводности

  • Теплопроводность используется при плавлении металлов.
  • В электронике используют настолько плотное расположение плат, что теплоноситель проникает туда с трудом. Поэтому приходится тепло от электронных чипов отводить теплопроводностью.
  • Нагрев дна кастрюли на плите газом. Горящий газ греет дно кастрюли, а тепло передается через стенку дна путем теплопроводности. В кухонной посуде ручки чайников и кастрюль обычно делают деревянными или пластмассовыми в связи с тем, что у дерева и пластмассы плохая теплопроводность.
  • Поверхность утюга, которой гладят металлическая, чтобы хорошо прогревалась, а вся остальная часть утюга пластмассовая, чтобы не обжечься.
  • Плохую теплопроводность газов в основном используют, как теплоизоляцию, чтобы предохранять помещения от замерзания.
  • Плохая теплопроводность газов используется в окнах. Между двумя стёклами в окне находится воздух, поэтому воздух долгое время сохраняет тепло.
  • Термос работает по такому же принципу, что и окно. Между внутренними стенками и внешними находится воздух, и тепло очень медленно уходит.
  • Теплопроводность газов используется во многих строительных материалах, например, в кирпичах. В кирпиче находятся отверстия не просто так, а для сохранения тепла. Стены состоят из двух слоёв, между которыми находится воздух, это сделано для сохранения тепла.
  • Дома в зонах вечной мерзлоты строят на сваях.
  • Тонкой полиэтиленовой плёнкой можно защищать растения от холода, потому что полиэтилен – плохой проводник тепла.
  • Материалы, не пропускающие тепло, используются при космических полётах, чтобы пилоты не замерзали.
  • Горячие предметы лучше брать сухой тряпкой, нежели мокрой, потому что воздух хуже проводит тепло, чем вода.

Теплопроводность в природе

У многих не перелётных птиц температура лапок и тела может различаться до 30 °С. Это связано с тем, что им приходится ходить по холодной земле или по снегу, чтобы не замёрзнуть, низкая температура лап сильно понижает теплоотдачу.

Образование ветра это тоже теплопроводность. Зарождаются ветра обычно около водоёмов. Днём суша нагревается быстрее чем вода, то есть над водой воздух более холодный, следовательно, его давление выше, чем у воздуха, который над сушей, и ветер начинает дуть в сторону суши. Ночью же суша остывает быстрее, чем над водой, и воздух над ней становится холоднее, чем тот, что над водой и ветер дует в сторону воды.

Мех животных обладает плохой теплопроводностью, что защищает их от перегрева и замерзания.

Снег, будучи плохим проводником тепла, предохраняет озимые посевы от вымерзания.

Внешняя температура тела у человека держится постоянной благодаря теплопроводности и её свойству, согласно которому, при взаимодействии микрочастиц они передают друг другу тепло.

Интересные факты о теплопроводности

Самую большую теплопроводность имеет алмаз. Его теплопроводность почти в 6 раз больше чем у меди. Если алмазную ложечку опустить в горячий чай, то вы сразу обожжётесь из-за того, что тепло дошло до конца ложки.

Теплопроводность стекла настолько мала, что вы можете взять стеклянную палочку, раскаленную посередине, за концы, и при этом даже не почувствовать тепла.

Итальянские учёные изобрели рубашку, позволяющую поддерживать постоянную температуру тела. Лето в ней не буде жарко, а зимой – холодно. Это связано с тем, что она сшита из специального материала, не пропускающего тепло.

Опыт № 2. Излучение

В этом опыте я хотел показать способ передачи тепла без взаимодействия двух тел. Тепло должно передаваться приёмнику, а тот в свою очередь пускать его через трубку в жидкостный манометр. Вследствие нагрева воздуха в колене соединённом с жидкостным манометром, жидкость должна опуститься.

Я соединил колено жидкостного манометра с теплоприемником. Зажёг спиртовку и поднёс к ней теплоприёмник светлой стороной, но на определённое расстояние. Жидкость в колене манометра, соединённом с приёмником, немного уменьшилась. Выровняв количество жидкости в манометре, я снова поднёс теплоприемник к источнику тепла, но уже тёмной стороной. Жидкость в колене манометра, соединённом с приёмником, уменьшилась, но значительно сильнее и быстрее. Воздух в теплоприемнике нагрелся и расширился, стал давить на жидкость в колене манометра.

Вывод из опыта № 2

Энергия передавалась не теплопроводностью. Между нагретым телом и теплоприемником находился воздух – плохой проводник тепла. Следовательно, в данном случае передача энергии происходит путем излучения.

Передача тепла излучением отличается от других видов теплопередачи. Она может осуществляться даже в полном вакууме.

Важным и отличительным свойством теплового излучения является равновесный характер излучения. Это значит, что если поместить тело в теплоизолированный сосуд, то количество поглощаемой энергии всегда будет равно количеству испускаемой энергии. Часть тепла полученного излучением поглощается, а часть отражается.

Применения излучения

Способность тел по-разному поглощать энергию излучения используется на практике. Так, поверхность воздушных шаров, крылья самолетов красят в серебристой краской, чтобы они не нагревались солнцем.

Лучевой нагрев помещения специальными инфракрасными радиаторами. Такой нагрев более эффективный, чем нагрев конвекцией, так как лучи свободно проходят сквозь воздух.

Излучение используют на космических аппаратах. Так как там нет воздуха, не получится по-другому передать тепло.

Если находиться рядом с лампой накаливания можно почувствовать тепло исходящее от неё.

Солнечные батареи работают по принципу излучения. Солнце испускает мощные тепловые лучи. Солнечные батареи принимают тепловые лучи и перерабатывают их в энергию. Такие батареи хорошие приёмники для солнечных лучей, потому что их поверхность тёмного цвета, и они хорошо нагреваются. Такие батареи используются на космических станциях и спутниках.

От компьютеров и мобильных телефонов тоже исходит тепловые лучи.

Приборы ночного видения. Такие приборы сделаны из материалов способных превращать тепловые излучения в видимые. Такие приборы используются для съёмки в абсолютной темноте. Они способны улавливать различные участки, температура которых различается на сотые доли градуса.

Интересные факты

Чем более тёмное тело, тем лучше оно поглощает тепло. Зеркальные поверхности отражают тепло полученное излучением. Абсолютно черное тело – физическое тело, которое при любой температуре поглощает всё падающее на него электромагнитное излучение во всех диапазонах.

Когда объект нагревается до высокой температуры, он начинает светиться красным цветом. В процессе дальнейшего нагревания объекта, цвет его излучения меняется, проходя через оранжевый, желтый, и дальше по спектру, чем горячее — тем меньше длина волны излучения.

Когда излучение, распространяясь от тела-источника, достигает других тел, то часть его отражается, а часть ими поглощается. При поглощении энергия теплового излучения превращается во внутреннюю энергию тел, и они нагреваются.

Змеи отлично воспринимают тепловое излучение, но не глазами, а кожей. Поэтому и в полной темноте они способны обнаружить теплокровную жертву. Гремучие змеи и сибирские щитомордники реагируют на изменения температуры до тысячной доли градуса.

80 процентов тепла тела излучается головой человека.

Если бы не свойства излучения, то земля бы замёрзла. Так как земля постоянно излучает тепловые лучи в бесконечное пространство.

Глаза таракана чувствуют колебания температуры в сотую долю градуса.
На каждый квадратный метр земной поверхности попадает около 1 кВт тепловой энергии Солнца, что достаточно, чтобы вскипятить чайник за считанные минуты. 

Опыт № 3. Конвекция

Рассмотрю явление передачи тепла с помощью конвекции. Этим опытом я хочу показать, как действует конвекция. Если опыт пройдёт успешно, то тепло должно передаваться снизу вверх.

Я налил холодную воду в колбу и добавил туда марганцовокислого калия для того, чтобы видно было процесс нагрева. Зажег спиртовку и начал подогревать колбу. Видно, как струи подкрашенной воды поднимаются вверх. Нагретые слои жидкости – менее плотные и поэтому более легкие – вытесняются более тяжелыми, холодными слоями. Холодные слои жидкости, опустившись вниз, в свою очередь нагреваются от источника тепла и вновь вытесняются менее нагретой водой. Благодаря такому движению вся вода равномерно прогревается.

Вывод из опыта № 3

При конвекции энергия переносится самими струями жидкости или газа. При конвекции происходит перенос вещества в пространстве. Для того чтобы в жидкостях и газах происходила конвекция, необходимо их нагревать снизу. Конвекция в твердых телах происходить не может.

Конвекция бывает двух видов: естественная – нагревание жидкости или газа и его самостоятельное движение; принудительная – смешивание жидкостей или газов с помощью насосов или вентиляторов.

Применение конвекции

Нагрев дна кастрюли на плите газом. Горящий газ греет дно кастрюли, а тепло передается через стенку дна путем теплопроводности. Далее тепло от дна кастрюли поступает в воду и распространяется по всему объему воды путем конвекции.

Конвекция используется в конвекционных печах или микроволновках. Суть работы конвекционных печей состоит в том, что благодаря вмонтированному в заднюю стенку нагревательному элементу и вентилятору, при включении происходит принудительная циркуляция горячего воздуха. Под воздействием этой циркуляции внутреннее пространство разогревается намного быстрее и равномернее, а, значит, и воздействие на продукты будет одновременным со всех сторон. 

В холодильных устройствах также работает принцип конвекции, только в этом случае требуется заполнение внутренних отделений не теплым воздухом, а холодным.

Батареи отопления в жилых помещениях располагаются снизу, а не сверху, потому что тёплый воздух поднимается вверх и помещение прогревается везде одинаково, если бы батареи располагались у потолка, то помещение бы не нагревалось вовсе.

Батареи располагаются именно под окнами, потому что горячий воздух поднимается и распространяется по комнате, а сам уступает место холодному воздуху, поступающему из окна.

Конвекция используется в двигателях внутреннего сгорания. Если воздух не будет поступать в камеру сгорания, то горение прекратится. Из-за горения воздух там расширяется, давление уменьшается и холодный воздух поступает внутрь. К двигателю внутреннего сгорания обязательно должен поступать воздух.

Одним из средств повышения температуры участка почвы и припочвенного воздуха служат теплицы, которые позволяют полнее использовать излучение Солнца. Участок почвы покрывают стеклянными рамами или прозрачными пленками. Стекло хорошо пропускает видимое солнечное излучение, которое, попадая на темную почву, нагревает ее, но хуже пропускает невидимое излучение, испускаемое нагретой поверхностью Земли. Кроме того, стекло препятствует движению тёплого воздуха вверх, то есть осуществлению конвекции. Таким образом, теплица является ловушкой энергии.

Вентилятор фена прогоняет воздух через трубу с тонкой длинной нагревательной спиралью. Спираль нагревается проходящим по ней электрическим током. Далее происходит передача тепла от разогретой спирали окружающему её воздуху. Здесь используется явление принудительной вентиляции воздуха и явление теплопередачи.

Конвекция в природе

Конвекция участвует в образовании ветра. Если бы работала только теплопроводность, то ветров бы почти не было, но благодаря конвекции теплый воздух поднимается над сушей и уступая холодному воздуху.

Благодаря конвекции появляются облака и тучи. Так как вода испаряется, конвекция подгоняет пар высоко вверх, и там образуются облака под воздействием холодного воздуха и низкого давления.

Конвекция участвует в возникновении волн. Волны появляются благодаря ветру, а ветер в свою очередь благодаря конвекции и теплопередачи, следовательно, без конвекции волн не могло бы быть.

Стекло начинает замерзать снизу раньше, чем сверху. Это происходит потому, что холодный воздух более плотный и опускается вниз и тем самым замораживает поверхность стекла.

Листья осины дрожат даже в безветренную погоду. У листьев осины длинные, тонкие и сплющенные черенки, имеющие очень малую изгибную жесткость, поэтому листья осины чувствительны к любым, незначительным потокам воздуха. Даже в безветренную погоду, особенно в жару, над землей имеются вертикальные конвекционные потоки. Они и заставляют дрожать осину.

Интересные факты

В сильные морозы глубокие водоемы не промерзают до дна, и вода внизу имеет температуру +4 градуса Цельсия. Вода при такой температуре имеет наибольшую плотность и опускается на дно. Поэтому дальнейшая конвекция теплой воды наверх становится невозможной и вода более не остывает.

Выводы из проделанных опытов

Если изменение внутренней энергии происходит путем теплопередачи, то переход энергии от одних тел к другим осуществляется теплопроводностью, конвекцией или излучением. Когда температуры тел выравниваются, теплопередача прекращается.

Теплопроводность выбранных материалов и газов

Теплопроводность - это свойство материала, которое описывает способность проводить тепло. Теплопроводность может быть определена как

"количество тепла, передаваемого через единицу толщины материала в направлении, нормальном к поверхности единицы площади, за счет градиента единичной температуры в условиях устойчивого состояния"

Теплопроводность единицами являются [Вт / (м · К)] в системе СИ и [БТЕ / (час фут ° F)] в британской системе мер.

См. Также изменения теплопроводности в зависимости от температуры и давления , для: воздуха, аммиака, двуокиси углерода и воды

Теплопроводность для обычных материалов и продуктов:

900 900 78 0,1 - 0,22 0,606
Теплопроводность
- k -
Вт / (м · К)

Материал / вещество Температура
25 o C
(77 o F)
125 o C
(257 o F)
225 o C
(437 o F)
Ацетали 0.23
Ацетон 0,16
Ацетилен (газ) 0,018
Акрил 0,2
Воздух, атмосфера (газ) 0,0262 0,0333 0,0398
Воздух, высота над уровнем моря 10000 м 0,020
Агат 10,9
Спирт 0.17
Глинозем 36 26
Алюминий
Алюминий Латунь 121
Оксид алюминия 30
Аммиак (газ) 0,0249 0,0369 0,0528
Сурьма 18,5
Яблоко (85.6% влажности) 0,39
Аргон (газ) 0,016
Асбоцементная плита 1) 0,744
Асбестоцементные листы 1) 0,166
Асбестоцемент 1) 2,07
Асбест в рыхлой упаковке 1) 0.15
Асбестовая плита 1) 0,14
Асфальт 0,75
Бальза 0,048
Битум 0,14
Слои битума / войлока 0,5
Говядина постная (влажность 78,9%) 0.43 - 0,48
Бензол 0,16
Бериллий
Висмут 8,1
Битум 0,17
Доменный газ (газ) 0,02
Шкала котла 1,2 - 3,5
Бор 25
Латунь
Бризовый блок 0.10 - 0,20
Кирпич плотный 1,31
Кирпич огневой 0,47
Кирпич изоляционный 0,15
Кирпич обыкновенный (Строительный кирпич ) 0,6 -1,0
Кирпичная кладка плотная 1,6
Бром (газ) 0,004
Бронза
Коричневая железная руда 0.58
Масло (влажность 15%) 0,20
Кадмий
Силикат кальция 0,05
Углерод 1,7
Двуокись углерода (газ) 0,0146
Окись углерода 0,0232
Чугун
Целлюлоза, хлопок, древесная масса и регенерированные 0.23

Ацетат целлюлозы, формованный, лист

0,17 - 0,33
Нитрат целлюлозы, целлулоид 0,12 - 0,21
Цемент, Портленд 0,29
Цемент, строительный раствор 1,73
Керамические материалы
Мел 0.09
Древесный уголь 0,084
Хлорированный полиэфир 0,13
Хлор (газ) 0,0081
Хром никелевая сталь 16,3
Хром
Оксид хрома 0,42
Глина, от сухой до влажной 0.15 - 1,8
Глина насыщенная 0,6 - 2,5
Уголь 0,2
Кобальт
Треск (влажность 83% содержание) 0,54
Кокс 0,184
Бетон, легкий 0,1 - 0,3
Бетон, средний 0.4 - 0,7
Бетон, плотный 1,0 - 1,8
Бетон, камень 1,7
Константан 23,3
Медь
Кориан (керамический наполнитель) 1,06
Пробковая плита 0,043
Пробка, повторно гранулированная 0.044
Пробка 0,07
Хлопок 0,04
Вата 0,029
Углеродистая сталь
Утеплитель из шерсти 0,029
Купроникель 30% 30
Алмаз 1000
Диатомовая земля (Sil-o-cel) 0.06
Диатомит 0,12
Дуралий
Земля, сухая 1,5
Эбонит 0,17
11,6
Моторное масло 0,15
Этан (газ) 0.018
Эфир 0,14
Этилен (газ) 0,017
Эпоксидный 0,35
Этиленгликоль 0,25
Перья 0,034
Войлок 0,04
Стекловолокно 0.04
Волокнистая изоляционная плита 0,048
Древесноволокнистая плита 0,2
Огнеупорный кирпич 500 o C 1,4
Фтор (газ) 0,0254
Пеностекло 0,045
Дихлордифторметан R-12 (газ) 0.007
Дихлордифторметан R-12 (жидкость) 0,09
Бензин 0,15
Стекло 1,05
Стекло, Жемчуг, жемчуг 0,18
Стекло, жемчуг, насыщенное 0,76
Стекло, окно 0.96
Стекло-вата Изоляция 0,04
Глицерин 0,28
Золото
Гранит 1,7 - 4,0
Графит 168
Гравий 0,7
Земля или почва, очень влажная зона 1.4
Земля или почва, влажная зона 1,0
Земля или почва, сухая зона 0,5
Земля или почва, очень сухая зона 0,33
Гипсокартон 0,17
Волос 0,05
ДВП высокой плотности 0.15
Твердая древесина (дуб, клен ...) 0,16
Hastelloy C 12
Гелий (газ) 0,142
Мед ( 12,6% влажности) 0,5
Соляная кислота (газ) 0,013
Водород (газ) 0,168
Сероводород (газ) 0.013
Лед (0 o C, 32 o F) 2,18
Инконель 15
Чугун 47-58
Изоляционные материалы 0,035 - 0,16
Йод 0,44
Иридий 147
Железо
Оксид железа 0 .58
Капок изоляция 0,034
Керосин 0,15
Криптон (газ) 0,0088
Свинец
, сухой 0,14
Известняк 1,26 - 1,33
Литий
Магнезиальная изоляция (85%) 0.07
Магнезит 4,15
Магний
Магниевый сплав 70-145
Мрамор 2,08 - 2,94
Ртуть, жидкость
Метан (газ) 0,030
Метанол 0.21
Слюда 0,71
Молоко 0,53
Изоляционные материалы из минеральной ваты, шерстяные одеяла .. 0,04
Молибден
Монель
Неон (газ) 0,046
Неопрен 0.05
Никель
Оксид азота (газ) 0,0238
Азот (газ) 0,024
Закись азота (газ) 0,0151
Нейлон 6, Нейлон 6/6 0,25
Масло машинное смазочное SAE 50 0,15
Оливковое масло 0.17
Кислород (газ) 0,024
Палладий 70,9
Бумага 0,05
Парафиновый воск 0,25
Торф 0,08
Перлит, атмосферное давление 0,031
Перлит, вакуум 0.00137
Фенольные литые смолы 0,15
Формовочные смеси фенолформальдегид 0,13 - 0,25
Фосфорбронза 110 Pinchbe20 159
Шаг 0,13
Карьерный уголь 0.24
Гипс светлый 0,2
Гипс, металлическая планка 0,47
Гипс песочный 0,71
Гипс, деревянная планка 0,28
Пластилин 0,65 - 0,8
Пластмассы вспененные (изоляционные материалы) 0.03
Платина
Плутоний
Фанера 0,13
Поликарбонат 0,19
Полиэстер
Полиэтилен низкой плотности, PEL 0,33
Полиэтилен высокой плотности, PEH 0.42 - 0,51
Полиизопреновый каучук 0,13
Полиизопреновый твердая резина 0,16
Полиметилметакрилат 0,17 - 0,25
Полипропилен
Полистирол вспененный 0,03
Полистирол 0.043
Пенополиуретан 0,03
Фарфор 1,5
Калий 1
Картофель, сырая мякоть 0,55
Пропан (газ) 0,015
Политетрафторэтилен (ПТФЭ) 0,25
Поливинилхлорид, ПВХ 0.19
Стекло Pyrex 1.005
Кварц минеральный 3
Радон (газ) 0,0033
Красный металл
Рений
Родий
Порода, твердая 2-7
Порода, пористая вулканическая (туф) 0.5 - 2,5
Изоляция из каменной ваты 0,045
Канифоль 0,32
Резина, ячеистая 0,045
Резина натуральная 0,13
Рубидий
Лосось (влажность 73%) 0,50
Песок сухой 0.15 - 0,25
Песок влажный 0,25 - 2
Песок насыщенный 2-4
Песчаник 1,7
Опилки 0,08
Селен
Овечья шерсть 0,039
Аэрогель кремнезема 0.02
Силиконовая литая смола 0,15 - 0,32
Карбид кремния 120
Кремниевое масло 0,1
Серебро
Шлаковая вата 0,042
Сланец 2,01
Снег (температура <0 o C) 0.05 - 0,25
Натрий
Хвойные породы (пихта, сосна ..) 0,12
Почва, глина 1,1
Почва, с органическими материя 0,15 - 2
Грунт, насыщенный 0,6 - 4

Припой 50-50

50

Сажа

0.07

Насыщенный пар

0,0184
Пар низкого давления 0,0188
Стеатит 2
Сталь углеродистая
Сталь, нержавеющая
Изоляция из соломенных плит, сжатая 0,09
Пенополистирол 0.033
Диоксид серы (газ) 0,0086
Сера кристаллическая 0,2
Сахара 0,087 - 0,22
Тантал
Смола 0,19
Теллур 4,9
Торий
Древесина, ольха 0.17
Древесина, ясень 0,16
Древесина, береза ​​ 0,14
Древесина, лиственница 0,12
Древесина, клен 0,16
Древесина дубовая 0,17
Древесина осина 0,14
Древесина оспа 0.19
Древесина, бук красный 0,14
Древесина, сосна красная 0,15
Древесина, сосна белая 0,15
Древесина ореха 0,15
Олово
Титан
Вольфрам
Уран
Пенополиуретан 0.021
Вакуум 0
Гранулы вермикулита 0,065
Виниловый эфир 0,25
Вода, пар (пар) 0,0267 0,0359
Пшеничная мука 0.45
Белый металл 35-70
Древесина поперек волокон, белая сосна 0,12
Древесина поперек волокон, бальза 0,055
Древесина поперек волокон, сосна желтая, древесина 0,147
Дерево, дуб 0,17
Шерсть, войлок 0.07
Древесная вата, плита 0,1 - 0,15
Ксенон (газ) 0,0051
Цинк

1) Асбест плохо для здоровья человека, когда крошечные абразивные волокна попадают в легкие, где они могут повредить легочную ткань. Это, по-видимому, усугубляется курением сигарет, в результате чего возникают мезотелиома и рак легких.

Пример - кондуктивная теплопередача через алюминиевый бак по сравнению с баком из нержавеющей стали

Кондуктивная теплопередача через стенку ванны может быть рассчитана как

q = (k / s) A dT (1)

или альтернативно

q / A = (к / с) dT

где

q = теплопередача (Вт, БТЕ / ч)

A = площадь поверхности ( м 2 , фут 2 )

q / A = теплопередача на единицу площади (Вт / м 2 , БТЕ / (ч фут 2 ))

k = теплопроводность (Вт / мК, БТЕ / (час фут ° F) )

dT = t 1 - t 2 = разница температур ( o C, o F)

s = толщина стенки (м, фут)
9000 8

Калькулятор теплопроводности

k = теплопроводность (Вт / мК, БТЕ / (час фут ° F) )

с = толщина стенки (м, фут)

A = площадь поверхности (м 2 , фут 2 )

dT = t 1 - t 2 = разница температур ( o C, o F)

Примечание! - общая теплопередача через поверхность определяется « общим коэффициентом теплопередачи », который в дополнение к кондуктивной теплопередаче зависит от

Кондуктивная теплопередача через алюминиевую стенку емкости толщиной 2 мм - разность температур 80 o C

Теплопроводность для алюминия составляет 215 Вт / (м · К) (из таблицы выше).Кондуктивная теплопередача на единицу площади может быть рассчитана как

q / A = [(215 Вт / (м · K)) / (2 10 -3 м)] (80 o C)

= 8600000 (Вт / м 2 )

= 8600 (кВт / м 2 )

Кондуктивная теплопередача через стенку емкости из нержавеющей стали толщиной 2 мм - перепад температур 80 o C

Теплопроводность для нержавеющей стали 17 Вт / (м · К) (из таблицы выше).Кондуктивная теплопередача на единицу площади может быть рассчитана как

q / A = [(17 Вт / (м · K)) / (2 10 -3 м) ] (80 o C)

= 680000 (Вт / м 2 )

= 680 (кВт / м 2 )

.

Теплопроводность

Каждый газ имеет известную теплопроводность - насколько хорошо он передает тепло. Теплопроводность измеряется датчиком, в котором используются четыре согласованных нити, сопротивление которых изменяется в зависимости от теплопроводности газа, проходящего по нему.

Значения теплопроводности некоторых газов можно найти в таблице ниже.

Коэффициент теплопроводности обычных газов

Газ Теплопроводность
АЦЕТИЛЕН 4.400
АММИАК 5,135
АРГОН 3,880
ДИОКСИД УГЛЕРОДА 3,393
ОКИСЬ УГЛЕРОДА 5,425
ХЛОР 1,829
ЭТАН 4.303
ЭТИЛЕН 4,020
ГЕЛИЙ 33,60
ВОДОРОД 39.60
СУЛЬФИД ВОДОРОДА 3,045
МЕТАН 7.200
НЕОН 10,87
ОКСИД АЗОТА 5,550
АЗОТ 5,680
ОКСИД АЗОТА 3,515
КИСЛОРОД 5,700
ДИОКСИД СЕРЫ 1,950

Принцип действия для анализа теплопроводности

В датчике используются четыре согласованных нити, сопротивление которых изменяется в зависимости от теплопроводности газа, проходящего по нему.Эти четыре нити соединены в конфигурацию моста Уитстона, как показано ниже на Рисунке 1.

Рисунок 1. Мост Уитстона детектора теплопроводности

Когда все четыре сопротивления одинаковы, VOUT равен нулю, и мост считается сбалансированным. При обнулении эталонный газ пропускается через все нити, сопротивления будут одинаковыми (поскольку нити согласованы), а мост уравновешен. Когда проба газа проходит через половину моста, значение VOUT коррелирует с содержанием пробы газа в эталоне.

Детектор представляет собой четырехэлементный катарометр, имеющий два элемента, расположенных в эталонном газе, и два элемента в исследуемом газе, как показано на Рисунке 2 ниже.

Рис. 2. Датчик теплопроводности в разрезе.


Четыре элемента соединены электроникой в ​​мостовую схему, и через мост пропускается постоянный ток для нагрева элементов. Если каждый элемент окружен одним и тем же газом, тогда температура и, следовательно, сопротивление каждого элемента будут одинаковыми, и мостовая схема будет сбалансирована.

Рисунок 3. Электрическая схема датчика теплопроводности.

Когда измеряемый газ вводится в поток измеряемого газа, два элемента катарометра в этом потоке газа будут охлаждаться в большей степени, чем два элемента в эталонном газе. Мостовая схема будет несбалансированной, создавая напряжение сигнала, связанное с измерением содержания газа в измеряемом газе. Это отношение нелинейное. В результате программируемый газоанализатор Systech Illinois 542 откалиброван на нулевой, средний и высокий диапазон, а программное обеспечение математически линеаризует кривую.

Теория

Загрузите полное обсуждение уравнений для выходного напряжения моста и теплопроводности ниже.

Приложения

Измерьте содержание газа в образце смеси образец / эталон, сравнив теплопроводность смеси с теплопроводностью эталона.

Например, водород имеет теплопроводность, которая примерно в семь раз больше, чем у азота, поэтому небольшие изменения легко обнаруживаются. Все другие обычные газы имеют теплопроводность, аналогичную азоту, поэтому метод измерения довольно избирательный.

Гелий - единственный другой газ, теплопроводность которого сравнима с водородом.

Другие газы, которые могут быть измерены с помощью этого метода:

  • Двуокись углерода
  • Кислород
  • Аргон
  • Метан
  • Диоксид серы
  • Аммиак

ПРЕДУПРЕЖДЕНИЕ: Многие датчики нельзя использовать для измерения газов / воздуха или смесей газ / кислород, способных к воспламенению.

Газовый программируемый газоанализатор Systech Illinois 542 используется промышленными газовыми компаниями, компаниями по термообработке металлов и производителями печей.

Область применения - от производства газа высокой чистоты до печной атмосферы.

.

Теплопроводность - Простая английская Википедия, бесплатная энциклопедия

Теплопроводность - это способность материала проводить тепло. Металлы хороши в теплопроводности. Теплопроводность материала является определяющим свойством, которое помогает в разработке эффективных технологий нагрева / охлаждения. Значение теплопроводности можно определить путем измерения скорости, с которой тепло может проходить через материал.

Термическое сопротивление противоположно теплопроводности.Это означает, что тепло не проводит много. Материалы с высоким удельным сопротивлением называются «термоизоляторами» и используются в одежде, термосах, домашних изоляционных материалах и автомобилях, чтобы согреться, или в холодильниках, морозильниках и термосах, чтобы вещи оставались холодными.

Теплопроводность часто обозначается греческой буквой «каппа», κ {\ displaystyle \ kappa}. Единицы теплопроводности - ватты на метр-кельвин. Ватты - это мера мощности, метры - мера длины, а кельвины - мера температуры.По единицам измерения мы видим, что теплопроводность - это мера того, сколько энергии проходит через расстояние из-за разницы температур.

Некоторые отличные теплоизоляторы: Вакуум, Аэрогель, Полиуретан

Вот некоторые отличные проводники тепла: Серебро, медь, бриллиант

Серебро - один из наиболее теплопроводных материалов (и довольно распространен), поэтому с серебром можно провести несколько интересных экспериментов, которые очень хорошо показывают, как работает теплопроводность.

Один пример: вы опускаете 2 ложки в кипящую воду, одна ложка стальная, а другая серебряная. Когда вы вынимаете ложки из кипящей воды, серебряная ложка горячее, чем стальная. Причина этого в том, что серебро проводит тепло лучше, чем сталь. Серебряная ложка также будет остывать быстрее из-за этого, так как лучше отводит тепло.

Другой пример теплопроводности серебра - нанесение различных материалов на кубики льда. Шайба для утюга просто сядет на лед и постепенно станет холоднее.Медный пенни растает через кубик льда и быстрее остывает. Серебряная монета, ложка или кольцо на кубике льда погрузится в него так, как если бы кубик льда был сделан из густого сиропа, и серебро почти мгновенно станет ледяным. Опять же, это потому, что серебро действительно хорошо поглощает тепло из воздуха и передает его кубику льда. Медь тоже хороша в этом, но не так хорошо, как серебро.

.

Теплопроводность элементов - Angstrom Sciences Справочник по теплопроводности

Теплопроводность элементов - Angstrom Sciences Справочник по теплопроводности

Перейти к навигации

Теплопроводность Имя Символ #
0,0000364 Вт / см · K Радон Rn 86
0.0000569 Вт / см · K Ксенон Xe 54
0,000089 Вт / см · K Хлор класс 17
0,0000949 Вт / см · K Криптон Кр 36
0,0001772 Вт / см · K Аргон Ar 18
0,0002598 Вт / см · K Азот N 7
0,0002674 Вт / см · K Кислород O 8
0.000279 Вт / см · K Фтор F ​​ 9
0,000493 Вт / см · K Неон Ne 10
0,00122 Вт / см · K Бром руб. 35
0,00152 Вт / см · K Гелий He 2
0,001815 Вт / см · K Водород H 1
0,00235 Вт / см · K фосфор P 15
0.00269 Вт / см · K Сера S 16
0,00449 Вт / см · K Йод I 53
0,017 Вт / см · K Астатин в 85
0,0204 Вт / см · K Селен SE 34
0,0235 Вт / см · K Теллур Te 52
0,063 Вт / см · K Нептуний Np 93
0.0674 Вт / см · K Плутоний Pu 94
0,0782 Вт / см · K Марганец Мн 25
0,0787 Вт / см · K Висмут Bi 83
0,0834 Вт / см · K Меркурий Hg 80
0,1 Вт / см · K Америций утра 95
0,1 Вт / см · K Калифорний Cf 98
0.1 Вт / см · K Нобелий 102
0,1 Вт / см · K Кюрий см 96
0,1 Вт / см · K Лоуренсий Lr 103
0,1 Вт / см · K Фермий Fm 100
0,1 Вт / см · K Эйнштейний Es 99
0,1 Вт / см · K Берклий Bk 97
0.1 Вт / см · K Менделевий Md 101
0,106 Вт / см · K Гадолиний Gd 64
0,107 Вт / см · K Диспрозий Dy 66
0,111 Вт / см · K Тербий Тб 65
0,114 Вт / см · K Церий CE 58
0,12 Вт / см · K Актиний Ac 89
0.125 Вт / см · K празеодим Пр 59
0,133 Вт / см · K Самарий см 62
0,135 Вт / см · K Лантан La 57
0,139 Вт / см · K Европий Eu 63
0,143 Вт / см · K Эрбий Er 68
0,15 Вт / см · K Франций Fr 87
0.158 Вт / см · K Скандий SC 21
0,162 Вт / см · K Гольмий Ho 67
0,164 Вт / см · K Лютеций Лю 71
0,165 Вт / см · K Неодим Nd 60
0,168 Вт / см · K Тулий ТМ 69
0,172 Вт / см · K Иттрий Y 39
0.179 Вт / см · K Прометий вечера 61
0,184 Вт / см · K Барий Ba 56
0,186 Вт / см · K Радий Ra 88
0,2 Вт / см · K Полоний Po 84
0,219 Вт / см · K Титан Ti 22
0,227 Вт / см · K Цирконий Zr 40
0.23 Вт / см · K Гафний Hf 72
0,23 Вт / см · K Резерфордий Rf 104
0,243 Вт / см · K Сурьма Сб 51
0,274 Вт / см · K Бор B 5
0,276 Вт / см · K Уран U 92
0,307 Вт / см · K Ванадий В 23
0.349 Вт / см · K Иттербий Yb 70
0,353 Вт / см · K Стронций Sr 38
0,353 Вт / см · K Свинец Пб 82
0,359 Вт / см · K Цезий CS 55
0,406 Вт / см · K Галлий Ga 31
0,461 Вт / см · K Таллий Tl 81
0.47 Вт / см · K Протактиний Па 91
0,479 Вт / см · K Рений Re 75
0,502 Вт / см · K Мышьяк как 33
0,506 Вт / см · K Технеций Tc 43
0,537 Вт / см · K Ниобий Nb 41
0,54 Вт / см · K торий Чт 90
0.575 Вт / см · K Тантал Ta 73
0,58 Вт / см · K Дубний Дб 105
0,582 Вт / см · K Рубидий руб. 37
0,599 Вт / см · K Германий Ge 32
0,666 Вт / см · K Олово Sn 50
0,716 Вт / см · K Платина Pt 78
0.718 Вт / см · K Палладий Pd 46
0,802 Вт / см · K Утюг Fe 26
0,816 Вт / см · K Индий В 49
0,847 Вт / см · K Литий Li 3
0,876 Вт / см · K Осмий Os 76
0,907 Вт / см · K Никель Ni 28
0.937 Вт / см · K Хром Cr 24
0,968 Вт / см · K Кадмий Кд 48
1 Вт / см · K Кобальт Co 27
1,024 Вт / см · K Калий К 19
1,16 Вт / см · K Цинк Zn 30
1,17 Вт / см · K Рутений Ру 44
1.29 Вт / см · K Углерод С 6
1,38 Вт / см · K Молибден Пн 42
1,41 Вт / см · K Натрий Na 11
1,47 Вт / см · K Иридий Ir 77
1,48 Вт / см · K Кремний Si 14
1,5 Вт / см · K Родий Rh 45
1.56 Вт / см · K Магний мг 12
1,74 Вт / см · K Вольфрам Вт 74
2,01 Вт / см · K Кальций Ca 20
2,01 Вт / см · K Бериллий Be 4
2,37 Вт / см · K Алюминий Al 13
3,17 Вт / см · K Золото Au 79
4.01 Вт / см · K Медь Cu 29
4,29 Вт / см · K Серебро Ag 47
.

Вода - теплопроводность

Теплопроводность - это свойство материала, которое описывает способность проводить тепло. Теплопроводность может быть определена как

«количество тепла, передаваемого через единицу толщины материала в направлении, нормальном к поверхности единицы площади - из-за градиента единичной температуры в условиях устойчивого состояния»

Теплопроводность конвертер величин

Теплопроводность воды зависит от температуры и давления, как показано на рисунках и таблицах ниже:

См. также другие свойства Вода при различных температуре и давлении : Точки кипения при высоком давлении, Точки кипения при вакуумном давлении, Плотность и удельный вес, Динамическая и кинематическая вязкость, Энтальпия и энтропия, Теплота испарения, Константа ионизации, pK w , нормальной и тяжелой воды, Точки плавления при высоком давлении, Число Прандтля, Свойства газа -Условия жидкого равновесия, давление насыщения, удельный вес, удельная теплоемкость (теплоемкость), удельный объем, тер коэффициент диффузии и давление пара при равновесии газ-жидкость и теплофизические свойства при стандартных условиях ,
, а также теплопроводность
воздуха, аммиака, бутана, двуокиси углерода, этилена, водорода, метана, азота и пропана.Информацию о теплопроводности строительных материалов см. В соответствующих документах внизу страницы.


Вернуться к началу

Теплопроводность воды при заданных температурах (° C) и 1 бар абс .:

Состояние
воды
Температура Теплопроводность
[° C] [мВт / м K] [ккал (IT) / (hm K)] [BTU (IT) / (h ft ° F)]
Жидкость 0.01 555,75 0,4779 0,3211
10 578,64 0,4975 0,3343
20 598,03 0,5142 0,3455
0,3551
40 628,56 0,5405 0,3632
50 640,60 0.5508 0,3701
60 650,91 0,5597 0,3761
70 659,69 0,5672 0,3812
80 667,02 0,57354 0,57354 90 672,88 0,5786 0,3888
99,6 677,03 0,5821 0,3912
Газ 100 24.57 0,0211 0,0142
125 26,66 0,0229 0,0154
150 28,83 0,0248 0,0167
175 31,09 0,02
200 33,43 0,0287 0,0193
225 35,85 0,0308 0.0207
250 38,34 0,0330 0,0222
275 40,91 0,0352 0,0236
300 43,53 0,0374 0,0252 48,98 0,0421 0,0283
400 54,65 0,0470 0,0316
450 60.52 0,0520 0,0350
500 66,58 0,0573 0,0385
550 72,81 0,0626 0,0421
600 79,17 0,048 0,04
700 92,28 0,0794 0,0533
800 105,81 0,0910 0.0611
900 119,67 0,1029 0,0691

Вернуться к началу
Теплопроводность воды при заданных температурах (° F) и 14,5 psia:

0,12 450 900 900
Состояние воды Температура Теплопроводность
[° F] [BTU (IT) / (h ft ° F)] [BTu (IT) дюйм / (час фут) 2 ° F)] [мВт / м · K] [x 10 -3
кал (IT) / (с · см 2 K)]
Жидкость 32 0.3211 3,853 555,73 1,327
40 0,3273 3,927 566,39 1,353
60 0,3408 4,089 589.80 1,409 0,3520 4,225 609,30 1,455
100 0,3615 4,338 625,62 1.494
120 0,3694 4,433 639,35 1,527
140 0,3761 4,513 650,91 1,555
160 0,3817 4,560
160 0,3817 4,560 1,578
180 0,3862 4,635 668,45 1,597
200 0.3897 4,677 674,49 1,611
211,3 0,3912 4,694 677,03 1,617
Газ 212 0,0142 0,0142 900 0,059
250 0,0152 0,183 26,33 0,063
300 0.0166 0,199 28,73 0,069
350 0,0181 0,217 31,25 0,075
400 0,0196 0,235 33,86 0,081
0,0211 0,254 36,56 0,087
550 0,0244 0,293 42,24 0.101
600 0,0261 0,313 45,20 0,108
650 0,0279 0,334 48,24 0,115
700 51 0,0297 0,356 0,123
750 0,0315 0,378 54,52 0,130
800 0.0334 0,400 57,76 0,138
900 0,0372 0,447 64,41 0,154
1000 0,0412 0,494 71,27 0,170
0,0453 0,543 78,32 0,187
1200 0,0494 0,593 85,53 0.204
1400 0,0580 0,696 100,35 0,240
1600 0,0668 0,802 115,63 0,276

Конвертер единиц теплопроводности

вверху

.Команда

fix для измерения температуры / проводимости - документация LAMMPS

Описание

Используйте алгоритм Мюллера-Плате, описанный в этой статье, для обмена кинетической энергией между двумя частицами. в разных областях окна моделирования каждые N шагов. Этот вызывает температурный градиент в системе. Как описано ниже, это позволяет рассчитать теплопроводность материала. Этот алгоритм иногда называют обратным неравновесным МД (обратным NEMD) подход к вычислению теплопроводности.Это потому, что обычный подход NEMD заключается в наложении температурного градиента на систему и измерить отклик как результирующий тепловой поток. в Метод Мюллера-Плате, тепловой поток накладывается, а температура градиент - это реакция системы.

Подробнее см. Команду compute heat / flux о том, как вычислить теплопроводность другим способом, с помощью Формализм Грина-Кубо.

Блок моделирования разделен на слоев Nbin в edim направление, где слой 1 находится в нижней части этого измерения и уровень Nbin находится на верхнем уровне.Каждые N шагов выполняется Nswap пар атомы выбираются следующим образом. Только атомы в фиксированной группе считаются. Выбираются самые горячие атомы Nswap в слое 1. Точно так же самые холодные атомы Nswap в «среднем» слое (см. Ниже) выбраны. Два набора атомов Nswap объединены в пары, и их скорости обмениваются. Это эффективно меняет их кинетические энергии, если их массы одинаковы. Если массы разные, обмен скоростями относительно движения центра масс 2 атомов выполняется, чтобы сохранить кинетическую энергию.Через некоторое время, это вызывает температурный градиент в системе, который может быть измеряется с помощью таких команд, как следующие, которые записывают температурный профиль (при z = edim) в файл tmp.profile:

 вычислить ке все ке / атом переменная температура атома c_ke / 1.5 вычислить слои все фрагменты / ячейка атомов / 1d z ниже 0,05 единиц уменьшено исправить 3 все ave / chunk 10 100 1000 слоев v_temp файл tmp.profile 

Обратите внимание, что по умолчанию Nswap = 1, хотя это может быть изменено необязательно swap ключевое слово.Устанавливая этот параметр соответствующим образом, в в сочетании со скоростью обмена N позволяет регулировать тепловой поток в широком диапазоне значений, а кинетическая энергия для обмена крупными кусками или более гладко.

«Средний» уровень для смены скорости определяется как Nbin /2 + 1 слой. Таким образом, если Nbin = 20, два уровня обмена - это 1 и 11. Это должно привести к симметричному профилю температуры, поскольку два слои разделены одинаковым расстоянием в обоих направлениях в периодический смысл.Вот почему Nbin ограничивается четным количество.

Как описано ниже, полная кинетическая энергия, передаваемая этими свопы вычисляются исправлением и могут быть выведены. Разделив это количество по времени и площадь поперечного сечения симулятора дает тепловой поток. Отношение теплового потока к наклону профиль температуры пропорционален теплопроводности жидкость в соответствующих единицах. См. Подробности в статье Muller-Plathe.

Примечание

Если ваша система периодическая в направлении теплового потока, тогда поток идет в 2 направлениях.Это означает эффективное тепло поток в одном направлении уменьшается в 2 раза. Вы увидите это в уравнениях теплопроводности (каппа) в системе Muller-Plathe бумага. LAMMPS просто подсчитывает кинетическую энергию, которая не учитывать, является ли ваша система периодической; вы должны использовать подходящее значение, чтобы получить каппу для вашей системы.

Примечание

Если после уравновешивания наблюдаемый градиент температуры не линейно, то вы, вероятно, слишком часто меняете энергию и не в режиме линейного отклика.В этом случае вы не можете точно определить теплопроводность и попытаться увеличить Любой параметр.

Перезагрузка, fix_modify, вывод, запуск / остановка, сворачивание информации

Информация об этом исправлении не записывается в двоичные файлы перезапуска. Ни один из вариантов fix_modify относятся к этому исправлению.

Это исправление вычисляет глобальный скаляр, к которому могут обращаться различные команды вывода. Скаляр - это кумулятивный кинетическая энергия, передаваемая между дном и серединой окно моделирования (в направлении edim ) сохраняется как скаляр количество этим исправлением.Это количество обнуляется при определении исправления. и затем накапливается каждые N шагов. Единицы количество - энергия; подробности см. в команде units. Скалярное значение, вычисленное этим исправлением, является «интенсивным».

Ни один параметр этого исправления не может использоваться с ключевыми словами start / stop of команда запуска. Это исправление не запускается во время минимизации энергии.

Ограничения

Это исправление является частью пакета MISC. Он доступен, только если LAMMPS был построен с этим пакетом.См. Страницу документации пакета сборки для получения дополнительной информации.

Свопы сохраняют как импульс, так и кинетическую энергию, даже если массы переставленные атомы не равны. Таким образом, вам не нужно термостатировать систему. Если вы все же используете термостат, возможно, вы захотите примените его только к размерам без замены (кроме vdim ).

LAMMPS не проверяет, но вы не должны использовать это исправление для замены кинетическая энергия атомов, которые находятся в связанных молекулах, например через исправить встряхнуть или зафиксировать жестко.Это потому что применение ограничений изменит количество переданный импульс. Однако у вас должна быть возможность использовать гибкий молекулы. См. Статью Чжана для обсуждения и результатов. этой идеи.

При моделировании с большими и массивными частицами или молекулами. в фоновом растворителе вы можете захотеть обмениваться только кинетической энергией между частицами растворителя.

По умолчанию

По умолчанию опция swap = 1.


(Muller-Plathe) Muller-Plathe, J Chem Phys, 106, 6082 (1997).

(Zhang) Zhang, Lussetti, de Souza, Muller-Plathe, J Phys Chem B, 109, 15060-15067 (2005).

.

Смотрите также

Сделать заказ

Пожалуйста, введите Ваше имя
Пожалуйста, введите Ваш номер телефона
Пожалуйста, введите Ваше сообщение