Комплексные поставки запорной арматуры
и деталей трубопроводов →

Тел: +7 (3522) 55-48-26

Реле времени обозначение на схеме гост


Электрические реле времени, классификация и условные графические обозначения

Оглавление

Введение
Раздел 1. Классификация реле времени
Раздел 2. Условно-графическое обозначение реле времени и их контактов на схемах
Список используемой литературы

Раздел 2. Условно-графическое обозначение реле времени и их контактов на схемах

Контакты реле времени

На сегодняшний день в России действует ГОСТ 2.755-87 «Обозначения условные графические в электрических схемах. Устройства коммутационные и контактные соединения». И ГОСТ 2.756-76 «Обозначения условные графические в схемах. Воспринимающая часть электромеханических устройств». При проектировании или написании научной статьи принято руководствоваться этими ГОСТами.
Но в практике иногда встречаются электрические схемы или книга старого издания, в которых условно графические обозначения отличаются от ныне принятых. Они соответствуют таким документам, как ГОСТ 7624-62 «Обозначения условные графические для электрических схем» с изменением №1 от 1965 г. и еще более старый ГОСТ 7621 -55 «Обозначения условные графические электрооборудования и проводок на планах». Поэтому ниже привожу таблицы с некоторыми условно графических обозначениями контактов реле времени и их катушек по старым и новым ГОСТам.
В соответствии с ГOCTами изображение контактов, как правило, должно соответствовать обесточенному состоянию воспринимающей системы реле или автомата, т.е. положению, когда реле не включено в схему (даже если на чертеже воспринимающий орган показан включенным под напряжение). По УГО замедление происходит при движении в направлении от дуги к ее центру.

Таблица 1. УГО контактов реле времени.



Конечно, это далеко не все условно графические обозначения функций и типов контактов реле, так например, иногда еще встречаются схемы, где нормально разомкнутый контакт реле обозначается как
- да, именно, также как обозначается и конденсатор постоянной емкости, а нормально замкнутый контакт обозначается как
- да, почти как конденсатор переменной емкости. Эта неразбериха существовала до 1955 года, когда впервые появился ГОСТ на обозначения условные графические в схемах. В ГОСТ 7621 -55 просто разрезали конденсатор пополам, что получилось, смотрите в таблице 1.
Также существует множество других обозначений функций контактов, я постарался описать лишь те, которые наиболее применимы к реле времени.

Страница 7 из 9«‹3456789›» Обновлено: 30 Августа, 2020 17:08 Рейтинг: 5 Просмотров: 216631 Печать Рейтинг 17 84 Отлично

В этом разделе

Войти со своими данными

Реклама

по ГОСТу, контактов реле, промежуточного и реле тока

Содержание статьи:

Для полноты информации об изделии и особенностях его работы используются электрические схемы. Пользователь не может запутаться при сборке благодаря внесению буквенно-графических маркировок в ЕСКД. Обозначение реле на схеме подчиняется ГОСТ 2.702-2011, где подробно описываются элементы устройства и расшифровываются значения.

Маркировка релейной защиты

Электромагнитное реле постоянного тока

Чтобы обозначить релейную защиту, на чертежах применяются маркеры машин, приборов, аппаратов и самого реле. Все устройства изображают в условиях без напряжения во всех электролиниях. По типу назначения релейного прибора применяются три типа схем.

Принципиальные схемы

Принципиальный чертеж выполняется по отдельным линиям – оперативного тока, тока, напряжения, сигнализации. Реле на нем отрисовываются в расчлененном виде – обмотки находятся на одной части рисунка, а контакты – на другой. Маркировка внутреннего соединения, зажимов, источников оперативного тока на принципиальной схеме отсутствует.

Сложные соединения сопровождаются надписями с указанием функционала отдельных узлов.

Монтажная схема

Пример монтажной схемы

Маркировка устройств защиты производится на рабочих схемах, предназначенных для сборки панелей, управления или автоматики. Все приборы, зажимы, соединения или кабели отражают особенности подключения.

Монтажная схема также называется исполнительной.

Структурные схемы

Позволяют выделить общую структуру релейной защиты. Обозначаться будут уже узлы и типы взаимных связей. Для маркировки органов и узлов применяются прямоугольники с надписями или специальные индексы с разъяснением цели применения конкретного элемента. Структурную схему также дополняются условными знаками логических связей.

Условное обозначение

На электрической схеме реле принято обозначать прямоугольником, от больших сторон которого отходят линии соленоидных выводов питания.

Графические маркеры

Условное обозначение реле на схемах

Графический способ изображения элементов реализуется посредством геометрических фигур:

  • контакты – аналогично контактам переключателей;
  • устройства с контактами около катушки – соединение штриховой линии;
  • контакты в различных местах – порядковый номер рядом с прямоугольником;
  • полярное реле – прямоугольник с двумя выводами и точкой около разъема;

    Контактная группа реле

  • фиксирование коммутатора при срабатывании – жирная точка у неподвижного контакта;
  • замкнутые контакты реле после того, как снято напряжение – на обозначении замкнутого или разомкнутого контакта рисуют кружок;
  • магнитоуправляемые контакты (геркон) в корпусе – окружность;
  • количество обмоток – наклонные линии;
  • подвижный контакт – стрелочка;
  • однолинейная токопроводящая поверхность – прямая линия с выводами ответвления;

    Поляризованное реле

  • кольцевая или цилиндрическая токоотводящая поверхность – окружность;
  • перемычки (реле как делитель напряжения) для рассекания сети – линия с символами разъемного соединения;
  • перемычка переключения – П-образная скобка.

Контакты реле могут подписываться.

Буквенное обозначение

УГО реле бывает недостаточно для правильного прочтения схемы. В этом случае используется буквенный способ маркировки. Код реле – английская литера К. Для наглядного понимания, что может обозначать буква на релейной схеме, стоит обратиться к таблице.

Буквы Расшифровка
AK Блок-реле/защитный комплекс
AKZ Комплект реле сопротивления
KA Реле тока
KAT Р. тока с БНТ
KAW Р. тока с торможением
KAZ Токовое реле с функциями фильтра
KB Р. блокировки
KF Р. частоты
KH Указательное
KL Промежуточное
F Плавкий предохранитель
XN Неразборное соединение
XT Разборное соединение
KQC Реле «вкл»
KQT Реле «откл»
KT Р. времени
KSG Тепловое
KV Р. напряжения
K 2.1, K 2.2, K 2.3 Контактные группы
XT Клеммы
E Элементы, к которым подключается реле
NO Нормально разомкнутые контакты
NC Нормально замкнутые контакты
COM Общие (переключающиеся) контакты
mW Мощность потребления
mV Чувствительность
Ω Сопротивление обмотки
V Номинал напряжения
mA Номинальный ток

Буквы можно использовать на графической схеме.

Обозначения в зависимости от типов реле

В зависимости от вида релейные устройства могут обозначаться на схемах по-разному.

Тепловые модели реле

Реле тепловой защиты применяются с целью обеспечения нормального режима работы потребителей. Приборы выключают электродвигатель мгновенно или через некоторое время, предотвращая повреждения изоляционной поверхности или отдельных узлов.

На схемах тепловое реле обозначается как KSG и подключается на нормально-замкнутый контакт. Подключение производится по системе ТР – на выход низковольтного пускателя электродвигателя.

Реле времени

Обозначение реле времени

Реле времени обозначается как KT и работает по принципу постановки на паузу при определенном воздействии. Прибор также может иметь цикличную активность.

Для обозначения контактов, работающих на замыкание согласно ГОСТ 2.755-87 применяются:

  • дуга вниз – задержка после подачи напряжения;
  • дуга вниз – контакт, срабатывающий при возврате;
  • две дуги в противоположном направлении – задержка при подаче и снятии напряжения управления.

Импульсные замыкающие контакты обозначаются так:

  • черточка внизу с диагональной угловой линией и стрелка без нижней части – импульсное замыкание при срабатывании;
  • черточка внизу с диагональной угловой линией и стрелкой без верхней части – импульсное замыкание при возврате;
  • черточка внизу с диагональной угловой линией и нормальной стрелкой – импульсное замыкание в момент срабатывания и возврата.

Напряжение питания, подающееся на реле времени, на схемах маркируется как голубой график. Направление напряжения на приборы обозначается как серый график. Диапазон задержки срабатывания имеет обозначение в виде красных стрелок. Временной интервал отражает буква Т.

Реле тока

Реле тока на схеме

Токовое реле контролирует ток и напряжение. Увеличение первого параметра свидетельствует о неполадках оборудования или линии.

На схемах устройство маркируется как KA (первая буква – общая для реле, пускателя, контактора, вторая – конкретно для токовой модели). При наличии БНТ оно будет обозначаться KAT, торможения – KAW, фильтрации – KAZ. Катушку на чертежах изображают как прямоугольник, размер которого 12х6 мм. Контакты имеют обозначение нормально открытых или нормально закрытых.

Обмотка напряжения маркируется как прямоугольник, разделенный на две части горизонтально. В меньшей указывается буква U, от большей вверх и вниз направлены по горизонтали ровные черточки.

Обмотка тока указывается как прямоугольник, разделенный на два сектора в горизонтальном направлении. В большей по горизонтали вверху и внизу имеются две черточки. На меньшей прописывается буква I со значком больше (максимальный ток).

Особенности обозначения электромагнитных реле на схемах

Конструктивно электромагнитное реле является электромагнитом с одной или несколькими контактными группами. Их символы и формируют УГО прибора. Обмотка электромагнита отрисовывается как прямоугольник с линиями выводов по обеим сторонам. Маркеры контактов К находятся напротив узкой стороны обмотки и соединяются пунктиром (механическая связь).

Контактный вывод можно изобразить с одной стороны, а контакты – около УГО коммутации. Привязку контактов к конкретному реле указывают в виде порядковой нумерации (К 1.1., К 1.2).

Внутри прямоугольника могут указываться параметры или особенности конструкции. К примеру, в символе К 4 имеются две наклонные черточки, т.е. у реле – две обмотки.

Модификации с магнитоуправляемыми контактами в герметичном корпусе для отличия от стандартных приборов обозначают окружностью. Это символ геркона. Принадлежность элемента к определенному устройству прописываются в виде букв контактов (К) и порядковых чисел (5.1, 5.2).

Геркон, управляемый магнитом постоянного типа и не входящий в конструкцию релейной защиты, имеет кодировку автовыключателя – SF.

Промежуточное реле

Промежуточное реле на схеме

Промежуточные релейные устройства применяются для коммутации электроцепи. Они усиливают электрический сигнал, распределяют электроэнергию, сопрягают радиотехнические элементы. Условный знак катушки – прямоугольник с литерой К и порядковым номером на чертеже.

Обозначение контактов промежуточного реле на схеме выполняется при помощи буквы, но с двумя цифрами, которые разделены точкой. Первая свидетельствует о порядковом номере релейного прибора, вторая – о номере группы контактов данного прибора. Контакты, находящиеся около катушки, соединяются штриховкой.

Маркировка электросхемы и выводов производится изготовителем. Она наносится на крышку, закрывающую рабочие органы. Под схемой прописываются контактные параметры – максимальный ток коммутации. Некоторые бренды номеруют выводы со сторон соединения.

На схемах контакты изображаются в состоянии без подачи напряжения.

Виды и обозначения релейных контактов

Обозначения релейных контактов

В зависимости от конструкции реле существует три типа контактов:

  • Нормально-разомкнутые. Размыкаются до подачи тока через катушку реле. Буквенное обозначение – НР или NO.
  • Нормально-замкнутые. Находятся в замкнутом положении до момента протекания тока через релейную катушку. Обозначаются буквами НЗ или NC.
  • Перекидные/переключающиеся/общие. Представляют собой комбинацию из контактов нормально-разомкнутого или нормально-замкнутого типа. Оснащаются общим приводом переключения. Буквенная символика – COM.

На сегодняшний день распространены реле с перекидными контактами.

Досконально изучать особенности маркировки не обязательно. Буквенно-графические символы можно выписать или распечатать, а затем использовать для сборки. Если геометрические фигуры покажутся сложными, всегда можно обратиться к буквенной маркировке.

ГОСТ 2.756-76 ЕСКД. Обозначения условные графические в схемах. Воспринимающая часть электромеханических устройств

ГОСУДАРСТВЕННЫЕ СТАНДАРТЫ

Единая система конструкторской документации

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ В СХЕМАХ

ВОСПРИНИМАЮЩАЯ ЧАСТЬ ЭЛЕКТРОМЕХАНИЧЕСКИХ УСТРОЙСТВ

ГОСТ 2.756-76
(CT СЭВ 712-77)

ИПК ИЗДАТЕЛЬСТВО СТАНДАРТОВ

Москва 1998

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Единая система конструкторской документации

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ В СХЕМАХ.
ВОСПРИНИМАЮЩАЯ ЧАСТЬ ЭЛЕКТРОМЕХАНИЧЕСКИХ УСТРОЙСТВ

Unified system for design documentation.
Graphic designations in diagrams.
The receiving part of electromechanical devices

ГОСТ
2.756-76*

(CT СЭВ 712-77)

Взамен
ГОСТ 2.724-68,
ГОСТ 2.725-68**,
ГОСТ 2.738-68***,
ГОСТ 2.747-68*4

Постановлением Государственного комитета стандартов Совета Министров СССР от 28 июля 1976 г. № 1824 срок введения установлен

с 01.01.78

* Переиздание (октябрь 1997 г.) с Изменением №1, утвержденным в июле 1980 г. (ИУС 11-80)

** В части п. 9 (обозначения обмоток реле, контакторов и магнитных пускателей).

*** В части подпункта 7 табл. 1 (обозначения обмотки электромагнита искателя).

*4 В части подпунктов 22, 23 таблицы (обозначения обмотки реле, контактора, магнитного пускателя, электромагнита, обмотки электромагнита искателя).

*5 Обозначения исполнительных частей (контактов) электромеханических устройств установлены в ГОСТ 2.755-87.

1. Настоящий стандарт устанавливает условные графические обозначения воспринимающих частей электромеханических устройств (электрических реле, у которых связь воспринимающей части с исполнительной осуществляется механически, а также магнитных пускателей, контакторов и электромагнитов) в схемах*5, выполняемых вручную или автоматизированным способом, изделий всех отраслей промышленности.

Стандарт соответствует CT СЭВ 712-77.

(Измененная редакция, Изм. № 1).

2. Обозначения воспринимающих частей электромеханических устройств должны соответствовать приведенным в табл. 1.

3. Размеры условных графических обозначений должны соответствовать приведенным в табл. 2.

Таблица 1

Наименование

Обозначение

1. Катушка электромеханического устройства. Общее обозначение

Примечание. Выводы катушки допускается изображать с одной стороны прямоугольника

2. Катушка электромеханического устройства с одной обмоткой.

Примечание. Наклонную линию допускается не изображать, если нет необходимости подчеркнуть, что катушка с одной обмоткой

3. Катушка электромеханического устройства с двумя обмотками

Примечание. Допускается применять следующее обозначение

4. Катушка электромеханического устройства с п обмотками

Примечания к подпунктам 2-4:

1. Около прямоугольника или в прямоугольнике допускается указывать величины, характеризующие обмотку, например, катушка с двумя обмотками, сопротивление каждой 200 Ом

2. Если катушку электромеханического устройства с несколькими обмотками разносят на схеме, то каждую обмотку изображают следующим образом:

катушка с двумя обмотками

катушка с n обмотками

5. Катушка электромеханического устройства с двумя встречными обмотками

6. Катушка электромеханического устройства с двумя встречными одинаковыми обмотками (бифилярная обмотка)

7. Катушка электромеханического устройства с одним отводом

Примечание. Допускается применять следующее обозначение

8. Катушка электромеханического устройства трехфазного тока

9. Катушка электромеханического устройства с дополнительным графическим полем:

с одним дополнительным графическим полем

с двумя дополнительными графическими полями

Примечания:

1. Линию между двумя дополнительными графическими полями допускается опускать

2. В дополнительном графическом поле указывают уточняющие данные электромеханического устройства, например, электромагнит переменного тока

10. Катушка электромеханического устройства с указанием вида обмотки: обмотка тока

обмотка напряжения

обмотка максимального тока

обмотка минимального напряжения

Примечание к подпунктам 9, 10. При отсутствии дополнительной информации в основном поле допускается в этом поле указывать уточняющие данные, например, катушка электромеханического устройства с обмоткой минимального тока

11. Катушка поляризованного электромеханического устройства

Примечание. Допускается применять следующее обозначение

12. Катушка электромеханического устройства, обладающая остаточным намагничиванием

13. Катушка электромеханического устройства, имеющего механическую блокировку

14. Катушка электромеханического устройства, работающего с ускорением при срабатывании

15. Катушка электромеханического устройства, работающего с ускорением при срабатывании и отпускании

16. Катушка электромеханического устройства, работающего с замедлением при срабатывании

17. Катушка электромеханического устройства, работающего с замедлением при отпускании

18. Катушка электромеханического устройства, работающего с замедлением при срабатывании и отпускании

Примечание к подпунктам 14-18. Около условного графического обозначения допускается указывать временные характеристики электромеханического устройства 17, 18. (Измененная редакция, Изм. № 1).

19. Катушка электромеханического устройства, нечувствительного к переменному току

20. Катушка электромеханического устройства, работающего с механическим резонансом

Примечание. Допускается около обозначения указывать резонансную частоту

21. Воспринимающая часть электротеплового реле

Таблица 2

Наименование

Обозначение

1. Катушка электромеханического устройства

2. Катушка электромеханического устройства с одной обмоткой

3. Катушка электромеханического устройства с двумя встречными обмотками

4. Катушка электромеханического устройства с одним отводом

5. Катушка электромеханического устройства:

с одним дополнительным графическим полем

с двумя дополнительными графическими полями

6. Воспринимающая часть электротеплового реле

Обозначение контактов реле времени на схемах

ОглавлениеВведение
Раздел 1. Классификация реле времени

Раздел 2. Условно-графическое обозначение реле времени и их контактов на схемах Список используемой литературы

Раздел 2. Условно-графическое обозначение реле времени и их контактов на схемах

Контакты реле времени

На сегодняшний день в России действует ГОСТ 2.755-87 «Обозначения условные графические в электрических схемах. Устройства коммутационные и контактные соединения». И ГОСТ 2.756-76 «Обозначения условные графические в схемах. Воспринимающая часть электромеханических устройств». При проектировании или написании научной статьи принято руководствоваться этими ГОСТами.

Но в практике иногда встречаются электрические схемы или книга старого издания, в которых условно графические обозначения отличаются от ныне принятых. Они соответствуют таким документам, как ГОСТ 7624-62 «Обозначения условные графические для электрических схем» с изменением №1 от 1965 г. и еще более старый ГОСТ 7621 -55 «Обозначения условные графические электрооборудования и проводок на планах». Поэтому ниже привожу таблицы с некоторыми условно графических обозначениями контактов реле времени и их катушек по старым и новым ГОСТам.
В соответствии с ГOCTами изображение контактов, как правило, должно соответствовать обесточенному состоянию воспринимающей системы реле или автомата, т.е. положению, когда реле не включено в схему (даже если на чертеже воспринимающий орган показан включенным под напряжение). По УГО замедление происходит при движении в направлении от дуги к ее центру.

Таблица 1. УГО контактов реле времени.

Каждое реле времени характеризуется своими параметрами. Самым важным параметром является алгоритм работы реле, т.е. логика последовательности его работы. Графически алгоритм функционирования реле времени отображается на функциональной диаграмме. Рассмотрим наиболее распространенные алгоритмы:

  • а — задержка включения — после подачи питания на реле выходной сигнал появляется по истечении установленного времени,

  • б — формирование импульса при включении, т.е. выходной сигнал появляется в момент подачи питания на реле и исчезает через установленное время,

  • в — формирование импульса после снятия управляющего сигнала, т.е. после подачи питания на реле выходной сигнал появляется в момент снятия управляющего сигнала и исчезает через установленное время,

  • г — задержка выключения после снятия питающего напряжения, т.е. выходной сигнал появляется в момент подачи питания на реле времени и исчезает через установленное время после снятия напряжения питания,

  • д — циклический режим работы (с паузы) — после подачи питания на реле выходной сигнал появляется по истечении установленного времени паузы (Т1). происходит выдержка времени импульса (Т2) и выходной сигнал исчезает, повторно выдержка времени паузы (Т1), появляется выходной сигнал и происходит выдержка времени импульса (Т2) и т.д. до снятия питания.

Рис. 1. Самые распространенные алгоритмы работы реле времени

Описанные алгоритмы являются наиболее простыми, базовыми, на их основе строятся более сложные алгоритмы. Современные электронные реле могут могут обеспечивать большое количество сложных алгоритмов работы.

Примеры функциональных диаграмм наиболее распространенных реле времени:

1) Реле времени с управлением по питанию:

2) Реле времени с внешним управляющим сигналом:

Обозначение замыкающих контактов реле времени:

Условные графические обозначения замыкающих контактов реле времени: а — с задержкой при срабатывании, б — с задержкой при отпускании, в — с задержкой при срабатывании и отпускании

Условные обозначения размыкающих контактов реле времени:

Условные графические обозначения размыкающих контактов реле времени: а — с задержкой при срабатывании, б — с задержкой при отпускании, в — с задержкой при срабатывании и отпускании

Как невозможно читать книгу без знания букв, так невозможно понять ни один электрический чертеж без знания условных обозначений.

В этой статье рассмотрим условные обозначения в электрических схемах: какие бываю, где найти расшифровку, если в проекте она не указана, как правильно должен быть обозначен и подписан тот или иной элемент на схеме.

Но начнем немного издалека…
Каждый молодой специалист, который приходит в проектирование, начинает либо со складывания чертежей, либо с чтения нормативной документации, либо нарисуй «вот это» по такому примеру. Вообще, нормативная литература изучается по ходу работы, проектирования.

Невозможно прочитать всю нормативную литературу, относящуюся к твоей специальности или, даже, более узкой специализации. Тем более, что ГОСТ, СНиП и другие нормативы периодически обновляются. И каждому проектировщику приходится отслеживать изменения и новые требования нормативных документов, изменения в линейках производителей электрооборудования, постоянно поддерживать свою квалификацию на должном уровне.

Помните, как Льюиса Кэролла в «Алисе в Стране Чудес»?

«Нужно бежать со всех ног, чтобы только оставаться на месте, а чтобы куда-то попасть, надо бежать как минимум вдвое быстрее!»

Это я не к тому, чтобы поплакаться «как тяжела жизнь проектировщика» или похвастаться «смотрите, какая у нас интересная работа». Речь сейчас не об этом. Учитывая такие обстоятельства, проектировщики перенимают практический опыт от более опытных коллег, многие вещи просто знают как делать правильно, но не знают почему. Работают по принципу «Здесь так заведено».

Порой, это достаточно элементарные вещи. Знаешь, как сделать правильно, но, если спросят «Почему так?», ответить сразу не сможешь, сославшись хотя бы на название нормативного документа.

В этой статье я решил структурировать информацию, касающуюся условных обозначений, разложить всё по полочкам, собрать всё в одном месте.

Виды и типы электрических схем

Прежде, чем говорить об условных обозначения на схемах, нужно разобраться, какие виды и типы схем бывают. С 01.07.2009 на территории РФ введен в действие ГОСТ 2.701-2008 «ЕСКД. Схемы. Виды и типы. Общие требования к выполнению».
В соответствии с этим ГОСТ, схемы разделяются на 10 видов:

  1. Схема электрическая
  2. Схема гидравлическая
  3. Схема пневматическая
  4. Схема газовая
  5. Схема кинематическая
  6. Схема вакуумная
  7. Схема оптическая
  8. Схема энергетическая
  9. Схема деления
  10. Схема комбинированная

Виды схем подразделяются на восемь типов:

  1. Схема структурная
  2. Схема функциональная
  3. Схема принципиальная (полная)
  4. Схема соединений (монтажная)
  5. Схема подключения
  6. Схема общая
  7. Схема расположения
  8. Схема объединенная

Меня, как электрика, интересуют схемы вида «Схема электрическая». Вообще, описание и требования к схемам приведены в ГОСТ 2.701-2008 на примере электрических схем, но с 01 января 2012 действует ГОСТ 2.702-2011 «ЕСКД. Правила выполнения электрических схем». Большей частью текст этого ГОСТ дублирует текст ГОСТ 2.701-2008, ссылается на него и другие ГОСТ.

ГОСТ 2.702-2011 подробно описывает требования к каждому виду электрической схемы. При выполнении электрических схем следует руководствоваться именно этим ГОСТ.

ГОСТ 2.702-2011 дает следующее определение понятия электрической схемы: «Схема электрическая — документ, содержащий в виде условных изображений или обозначений составные части изделия, действующие при помощи электрической энергии, и их взаимосвязи». Далее ГОСТ ссылается на документы, регламентирующие правила выполнения условных графических изображения, буквенных обозначений и обозначений проводов и контактных соединений электрических элементов. Рассмотрим каждый отдельно.

Графические обозначения в электрических схемах

В части графических обозначений в электрических схемах ГОСТ 2.702-2011 ссылается на три других ГОСТ:

  • ГОСТ 2.709-89 «ЕСКД. Обозначения условные проводов и контактных соединений электрических элементов, оборудования и участков цепей в электрических схемах».
  • ГОСТ 2.721-74 «ЕСКД. Обозначения условные графические в схемах. Обозначения общего применения»
  • ГОСТ 2.755-87 «ЕСКД. Обозначения условные графические в электрических схемах. Устройства коммутационные и контактные соединения».

Условные графические обозначения (УГО) автоматов, рубильников, контакторов, тепловых реле и прочего коммутационного оборудования, которое используется в однолинейных схемах электрических щитов, определены в ГОСТ 2.755-87.

Однако, обозначение УЗО и дифавтоматов в ГОСТ отсутствует. Думаю, в скором времени он будет перевыпущен и обозначение УЗО будет добавлено. А пока, каждый проектировщик изображает УЗО по собственному вкусу, тем более, что ГОСТ 2.702-2011 это предусматривает. Достаточно привести обозначение УГО и его расшифровку в пояснениях к схеме.

Дополнительно к ГОСТ 2.755-87 для полноты схемы понадобится использование изображений из ГОСТ 2.721-74 (в основном для вторичных цепей).

Все обозначения коммутационных аппаратов построены на четырех базовых изображениях:

с использованием девяти функциональных признаков:

Основные условные графические обозначения, используемые в однолинейных схемах электрических щитов:

Наименование Изображение
Автоматический выключатель (автомат)
Выключатель нагрузки (рубильник)
Контакт контактора
Тепловое реле
УЗО
Дифференциальный автомат
Предохранитель
Автоматический выключатель для защиты двигателя (автомат со встроенным тепловым реле)
Выключатель нагрузки с предохранителем (рубильник с предохранителем)
Трансформатор тока
Трансформатор напряжения
Счетчик электрической энергии
Частотный преобразователь
Замыкающий контакт нажимного кнопочного выключателя с размыканием и возвратом элемента управления автоматически
Замыкающий контакт нажимного кнопочного выключателя с размыканием и возвратом элемента управления посредством вторичного нажатия кнопки
Замыкающий контакт нажимного кнопочного выключателя с размыканием и возвратом элемента управления посредством вытягивания кнопки
Замыкающий контакт нажимного кнопочного выключателя с размыканием и возвратом элемента управления посредством отдельного привода (например, нажатия кнопки-сброс)
Контакт замыкающий с замедлением, действующим при срабатывании
Контакт замыкающий с замедлением, действующим при возврате
Контакт замыкающий с замедлением, действующим при срабатывании и возврате
Контакт размыкающий с замедлением, действующим при срабатывании  
 Контакт размыкающий с замедлением, действующим при возврате  
 Контакт замыкающий с замедлением, действующим при срабатывании и возврате
Катушка контактора, общее обозначение катушки реле
Катушка импульсного реле
Катушка фотореле
Катушка реле времени
Мотор-привод
Лампа осветительная, световая индикация (лампочка)
Нагревательный элемент
Разъемное соединение (розетка):

гнездоштырь

Разрядник
Ограничитель перенапряжения (ОПН), варистор
Разборное соединение (клемма)
Амперметр
Вольтметр
Ваттметр
Частотометр

Обозначения проводов, шин в электрических щитах определяется ГОСТ 2.721-74.

Буквенные обозначения в электрических схемах

Буквенные обозначения определены ГОСТ 2.710-81 «ЕСКД. Обозначения буквенно-цифровые в электрических схемах».

Обозначения дифавтоматов и УЗО в этом ГОСТ отсутствует. На различных сайтах и форумах в интернете долго обсуждали как же правильно обозначать УЗО и дифавтомат. ГОСТ 2.710-81 в п.2.2.12. допускает использование многобуквенных кодов (а не только одно- и двухбуквенных), поэтому до введения нормативного обозначения я для себя принял трехбуквенное обозначение УЗО и дифавтомата. К двухбуквенному обозначению рубильника я добавил букву D и получил обозначение УЗО. Аналогично поступил с дифавтоматом.

Думаю, в скором времени он будет перевыпущен и обозначение УЗО будет добавлено.

Обозначения основных элементов, используемых в однолинейных схемах электрических щитов:

Наименование Обозначение
Автоматический выключатель в силовых цепях QF
Автоматический выключатель в цепях управления SF
Автоматический выключатель с дифференциальной защитой (дифавтомат) QFD
Выключатель нагрузки (рубильник) QS
Устройство защитного отключения (УЗО) QSD
Контактор KM
Тепловое реле F, KK
Реле времени KT
Реле напряжения KV
Фотореле KL
Импульсное реле KI
Разрядник, ОПН FV
Плавкий предохранитель FU
Трансформатор тока TA
Трансформатор напряжения TV
Частотный преобразователь UZ
Амперметр PA
Вольтметр PV
Ваттметр PW
Частотометр PF
Счетчик активной энергии PI
Счетчик реактивной энергии PK
Фотоэлемент BL
Нагревательный элемент EK
Лампа осветительная EL
Прибор световой индикации (лампочка) HL
Штепсельный разъем (розетка) XS
Выключатель или переключатель в цепях управления SA
Выключатель кнопочный в цепях управления SB
Клеммы XT

Изображение электрооборудования на планах

Хотя ГОСТ 2.701-2008 и ГОСТ 2.702-2011 предусматривают вид электрической схемы «схема расположения», при проектировании зданий и сооружений следует руководствоваться ГОСТ 21.210-2014 «СПДС. Изображения условные графические электрооборудования и проводок на планах». Данный ГОСТ устанавливает условные обозначения электропроводок, прокладок шин, шинопроводов, кабельных линий, электрического оборудования (трансформаторов, электрических щитов, розеток, выключателей, светильников) на планах прокладки электрических сетей.

Эти условные обозначения применяются при выполнении чертежей электроснабжения, силового электрооборудования, электрического освещения и других чертежей. Также данные обозначения используются для изображении потребителей в однолинейных принципиальных схемах электрических щитов.

Условные графические изображения электрооборудования, электротехнических устройств и электроприемников

Условные графические обозначения линий проводок и токопроводов

К сожалению, AutoCAD в базовой поставке не содержит все необходимые типы линий.

Проектировщики решают эту проблему по-разному:

  • большинство выполняет отрисовку проводки обычной линией, а потом дополняет обозначениями кружков, квадратиков и пр.;
  • продвинутые пользователи AutoCAD создают собственные типы линий.

Я — сторонник второго способа, т.к. он гораздо удобнее. Если вы используете специальный тип линии, то при её перемещении все «дополнительные» обозначения также перемещаются, ведь они часть линии.

Создать собственный тип линии в AutoCAD достаточно просто. Вы потратите некоторое время на освоение этого навыка, зато сэкономите потом массу времени при проектировании.

Изображение вертикальной прокладки удобнее всего сделать при помощи блоков AutoCAD, а лучше при помощи динамических блоков.

Условные графические изображения шин и шинопроводов

Отрисовку шин и шинопроводов в AutoCAD удобно выполнять при помощи полилинии и/или динамических блоков.

Условные графические изображения коробок, шкафов, щитов и пультов

Наименование Изображение
Коробка ответвительная
Коробка вводная
Коробка протяжная, ящик протяжной
Коробка, ящик с зажимами
Шкаф распределительный
Щиток групповой рабочего освещения
Щиток групповой аварийного освещения
Щиток лабораторный
Ящик с аппаратурой
Ящик управления
Шкаф, панель, пульт, щиток одностороннего обслуживания, пост местного управления
Шкаф, панель двухстороннего обслуживания
Шкаф, щит, пульт из нескольких панелей одностороннего обслуживания
Шкаф, щит, пульт из нескольких панелей двухстороннего обслуживания
Щит открытый
Ящик трансформаторный понижающий (ЯТП)

Отрисовку в AutoCAD удобно выполнять при помощи блоков и динамических блоков.

Условные графические обозначения выключателей, переключателей

ГОСТ 21.210-2014 не предусматривает условных изображения для светорегуляторов (диммеров) и отдельного изображения для кнопочных выключателей, поэтому я ввёл для них собственные обозначения в соответствии с п.4.7.

Отрисовку в AutoCAD удобно выполнять при помощи динамических блоков. Я себе сделал один динамический блок для всех типов выключателей.

Условные графические обозначения штепсельных розеток

Отрисовку в AutoCAD удобно выполнять при помощи динамических блоков. Я себе сделал один динамический блок для всех типов розеток.

Условные графические обозначения светильников и прожекторов

Радует, что в обновленной версии ГОСТ добавлены изображения светодиодных светильников и светильников с компактными люминесцентными лампами.

Отрисовку светильников в AutoCAD удобно выполнять при помощи динамических блоков.

Условные графические обозначения аппаратов контроля и управления

Отрисовку в AutoCAD удобно выполнять при помощи динамических блоков.

Подпишитесь и получайте уведомления о новых статьях на e-mail

графические и буквенные по ГОСТ

Как невозможно читать книгу без знания букв, так невозможно понять ни один электрический чертеж без знания условных обозначений.

В этой статье рассмотрим условные обозначения в электрических схемах: какие бываю, где найти расшифровку, если в проекте она не указана, как правильно должен быть обозначен и подписан тот или иной элемент на схеме.

Введение


Но начнем немного издалека...
Каждый молодой специалист, который приходит в проектирование, начинает либо со складывания чертежей, либо с чтения нормативной документации, либо нарисуй «вот это» по такому примеру. Вообще, нормативная литература изучается по ходу работы, проектирования.

Невозможно прочитать всю нормативную литературу, относящуюся к твоей специальности или, даже, более узкой специализации. Тем более, что ГОСТ, СНиП и другие нормативы периодически обновляются. И каждому проектировщику приходится отслеживать изменения и новые требования нормативных документов, изменения в линейках производителей электрооборудования, постоянно поддерживать свою квалификацию на должном уровне.

Помните, как Льюиса Кэролла в «Алисе в Стране Чудес»?

«Нужно бежать со всех ног, чтобы только оставаться на месте, а чтобы куда-то попасть, надо бежать как минимум вдвое быстрее!»

Это я не к тому, чтобы поплакаться «как тяжела жизнь проектировщика» или похвастаться «смотрите, какая у нас интересная работа». Речь сейчас не об этом. Учитывая такие обстоятельства, проектировщики перенимают практический опыт от более опытных коллег, многие вещи просто знают как делать правильно, но не знают почему. Работают по принципу «Здесь так заведено».

Порой, это достаточно элементарные вещи. Знаешь, как сделать правильно, но, если спросят «Почему так?», ответить сразу не сможешь, сославшись хотя бы на название нормативного документа.

В этой статье я решил структурировать информацию, касающуюся условных обозначений, разложить всё по полочкам, собрать всё в одном месте.

Виды и типы электрических схем

Прежде, чем говорить об условных обозначения на схемах, нужно разобраться, какие виды и типы схем бывают. С 01.07.2009 на территории РФ введен в действие ГОСТ 2.701-2008 «ЕСКД. Схемы. Виды и типы. Общие требования к выполнению».
В соответствии с этим ГОСТ, схемы разделяются на 10 видов:

  1. Схема электрическая
  2. Схема гидравлическая
  3. Схема пневматическая
  4. Схема газовая
  5. Схема кинематическая
  6. Схема вакуумная
  7. Схема оптическая
  8. Схема энергетическая
  9. Схема деления
  10. Схема комбинированная

Виды схем подразделяются на восемь типов:

  1. Схема структурная
  2. Схема функциональная
  3. Схема принципиальная (полная)
  4. Схема соединений (монтажная)
  5. Схема подключения
  6. Схема общая
  7. Схема расположения
  8. Схема объединенная

Меня, как электрика, интересуют схемы вида «Схема электрическая». Вообще, описание и требования к схемам приведены в ГОСТ 2.701-2008 на примере электрических схем, но с 01 января 2012 действует ГОСТ 2.702-2011 «ЕСКД. Правила выполнения электрических схем». Большей частью текст этого ГОСТ дублирует текст ГОСТ 2.701-2008, ссылается на него и другие ГОСТ.

ГОСТ 2.702-2011 подробно описывает требования к каждому виду электрической схемы. При выполнении электрических схем следует руководствоваться именно этим ГОСТ.

ГОСТ 2.702-2011 дает следующее определение понятия электрической схемы: «Схема электрическая — документ, содержащий в виде условных изображений или обозначений составные части изделия, действующие при помощи электрической энергии, и их взаимосвязи». Далее ГОСТ ссылается на документы, регламентирующие правила выполнения условных графических изображения, буквенных обозначений и обозначений проводов и контактных соединений электрических элементов. Рассмотрим каждый отдельно.

Графические обозначения в электрических схемах

В части графических обозначений в электрических схемах ГОСТ 2.702-2011 ссылается на три других ГОСТ:

  • ГОСТ 2.709-89 «ЕСКД. Обозначения условные проводов и контактных соединений электрических элементов, оборудования и участков цепей в электрических схемах».
  • ГОСТ 2.721-74 «ЕСКД. Обозначения условные графические в схемах. Обозначения общего применения»
  • ГОСТ 2.755-87 «ЕСКД. Обозначения условные графические в электрических схемах. Устройства коммутационные и контактные соединения».

Условные графические обозначения (УГО) автоматов, рубильников, контакторов, тепловых реле и прочего коммутационного оборудования, которое используется в однолинейных схемах электрических щитов, определены в ГОСТ 2.755-87.

Однако, обозначение УЗО и дифавтоматов в ГОСТ отсутствует. Думаю, в скором времени он будет перевыпущен и обозначение УЗО будет добавлено. А пока, каждый проектировщик изображает УЗО по собственному вкусу, тем более, что ГОСТ 2.702-2011 это предусматривает. Достаточно привести обозначение УГО и его расшифровку в пояснениях к схеме.

Дополнительно к ГОСТ 2.755-87 для полноты схемы понадобится использование изображений из ГОСТ 2.721-74 (в основном для вторичных цепей).

Все обозначения коммутационных аппаратов построены на четырех базовых изображениях:

с использованием девяти функциональных признаков:

Основные условные графические обозначения, используемые в однолинейных схемах электрических щитов:

Наименование Изображение
Автоматический выключатель (автомат)
Выключатель нагрузки (рубильник)
Контакт контактора
Тепловое реле
УЗО
Дифференциальный автомат
Предохранитель
Автоматический выключатель для защиты двигателя (автомат со встроенным тепловым реле)
Выключатель нагрузки с предохранителем (рубильник с предохранителем)
Трансформатор тока
Трансформатор напряжения
Счетчик электрической энергии
Частотный преобразователь
Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления автоматически
Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления посредством вторичного нажатия кнопки
Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления посредством вытягивания кнопки
Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления посредством отдельного привода (например, нажатия кнопки-сброс)
Контакт замыкающий с замедлением, действующим при срабатывании
Контакт замыкающий с замедлением, действующим при возврате
Контакт замыкающий с замедлением, действующим при срабатывании и возврате
Контакт размыкающий с замедлением, действующим при срабатывании  
 Контакт размыкающий с замедлением, действующим при возврате  
 Контакт замыкающий с замедлением, действующим при срабатывании и возврате
Катушка контактора, общее обозначение катушки реле
Катушка импульсного реле
Катушка фотореле
Катушка реле времени
Мотор-привод
Лампа осветительная, световая индикация (лампочка)
Нагревательный элемент
Разъемное соединение (розетка):
гнездо
штырь
Разрядник
Ограничитель перенапряжения (ОПН), варистор
Разборное соединение (клемма)
Амперметр
Вольтметр
Ваттметр
Частотометр

Обозначения проводов, шин в электрических щитах определяется ГОСТ 2.721-74.

Буквенные обозначения в электрических схемах

Буквенные обозначения определены ГОСТ 2.710-81 «ЕСКД. Обозначения буквенно-цифровые в электрических схемах».

Обозначения дифавтоматов и УЗО в этом ГОСТ отсутствует. На различных сайтах и форумах в интернете долго обсуждали как же правильно обозначать УЗО и дифавтомат. ГОСТ 2.710-81 в п.2.2.12. допускает использование многобуквенных кодов (а не только одно- и двухбуквенных), поэтому до введения нормативного обозначения я для себя принял трехбуквенное обозначение УЗО и дифавтомата. К двухбуквенному обозначению рубильника я добавил букву D и получил обозначение УЗО. Аналогично поступил с дифавтоматом.

Думаю, в скором времени он будет перевыпущен и обозначение УЗО будет добавлено.

Обозначения основных элементов, используемых в однолинейных схемах электрических щитов:

Наименование Обозначение
Автоматический выключатель в силовых цепях QF
Автоматический выключатель в цепях управления SF
Автоматический выключатель с дифференциальной защитой (дифавтомат) QFD
Выключатель нагрузки (рубильник) QS
Устройство защитного отключения (УЗО) QSD
Контактор KM
Тепловое реле F, KK
Реле времени KT
Реле напряжения KV
Фотореле KL
Импульсное реле KI
Разрядник, ОПН FV
Плавкий предохранитель FU
Трансформатор тока TA
Трансформатор напряжения TV
Частотный преобразователь UZ
Амперметр PA
Вольтметр PV
Ваттметр PW
Частотометр PF
Счетчик активной энергии PI
Счетчик реактивной энергии PK
Фотоэлемент BL
Нагревательный элемент EK
Лампа осветительная EL
Прибор световой индикации (лампочка) HL
Штепсельный разъем (розетка) XS
Выключатель или переключатель в цепях управления SA
Выключатель кнопочный в цепях управления SB
Клеммы XT

Изображение электрооборудования на планах

Хотя ГОСТ 2.701-2008 и ГОСТ 2.702-2011 предусматривают вид электрической схемы «схема расположения», при проектировании зданий и сооружений следует руководствоваться ГОСТ 21.210-2014 «СПДС. Изображения условные графические электрооборудования и проводок на планах». Данный ГОСТ устанавливает условные обозначения электропроводок, прокладок шин, шинопроводов, кабельных линий, электрического оборудования (трансформаторов, электрических щитов, розеток, выключателей, светильников) на планах прокладки электрических сетей.

Эти условные обозначения применяются при выполнении чертежей электроснабжения, силового электрооборудования, электрического освещения и других чертежей. Также данные обозначения используются для изображении потребителей в однолинейных принципиальных схемах электрических щитов.

Условные графические изображения электрооборудования, электротехнических устройств и электроприемников

Условные графические обозначения линий проводок и токопроводов

К сожалению, AutoCAD в базовой поставке не содержит все необходимые типы линий.

Проектировщики решают эту проблему по-разному:

  • большинство выполняет отрисовку проводки обычной линией, а потом дополняет обозначениями кружков, квадратиков и пр.;
  • продвинутые пользователи AutoCAD создают собственные типы линий.

Я — сторонник второго способа, т.к. он гораздо удобнее. Если вы используете специальный тип линии, то при её перемещении все «дополнительные» обозначения также перемещаются, ведь они часть линии.

Создать собственный тип линии в AutoCAD достаточно просто. Вы потратите некоторое время на освоение этого навыка, зато сэкономите потом массу времени при проектировании.

Изображение вертикальной прокладки удобнее всего сделать при помощи блоков AutoCAD, а лучше при помощи динамических блоков.

Условные графические изображения шин и шинопроводов

Отрисовку шин и шинопроводов в AutoCAD удобно выполнять при помощи полилинии и/или динамических блоков.

Условные графические изображения коробок, шкафов, щитов и пультов

Наименование Изображение
Коробка ответвительная
Коробка вводная
Коробка протяжная, ящик протяжной
Коробка, ящик с зажимами
Шкаф распределительный
Щиток групповой рабочего освещения
Щиток групповой аварийного освещения
Щиток лабораторный
Ящик с аппаратурой
Ящик управления
Шкаф, панель, пульт, щиток одностороннего обслуживания, пост местного управления
Шкаф, панель двухстороннего обслуживания
Шкаф, щит, пульт из нескольких панелей одностороннего обслуживания
Шкаф, щит, пульт из нескольких панелей двухстороннего обслуживания
Щит открытый
Ящик трансформаторный понижающий (ЯТП)

Отрисовку в AutoCAD удобно выполнять при помощи блоков и динамических блоков.

Условные графические обозначения выключателей, переключателей

ГОСТ 21.210-2014 не предусматривает условных изображения для светорегуляторов (диммеров) и отдельного изображения для кнопочных выключателей, поэтому я ввёл для них собственные обозначения в соответствии с п.4.7.

Отрисовку в AutoCAD удобно выполнять при помощи динамических блоков. Я себе сделал один динамический блок для всех типов выключателей.

Условные графические обозначения штепсельных розеток

Отрисовку в AutoCAD удобно выполнять при помощи динамических блоков. Я себе сделал один динамический блок для всех типов розеток.

Условные графические обозначения светильников и прожекторов

Радует, что в обновленной версии ГОСТ добавлены изображения светодиодных светильников и светильников с компактными люминесцентными лампами.

Отрисовку светильников в AutoCAD удобно выполнять при помощи динамических блоков.

Условные графические обозначения аппаратов контроля и управления

Отрисовку в AutoCAD удобно выполнять при помощи динамических блоков.


Подпишитесь и получайте уведомления о новых статьях на e-mail

Читайте также:

Условные обозначения в электрических схемах по ГОСТ

Любые электрические цепи могут быть представлены в виде чертежей (принципиальных и монтажных схем), оформление которых должно соответствовать стандартам ЕСКД. Эти нормы распространяются как на схемы электропроводки или силовых цепей, так и электронные приборы. Соответственно, чтобы «читать» такие документы, необходимо понимать условные обозначения в электрических схемах.

Нормативные документы

Учитывая большое количество электроэлементов, для их буквенно-цифровых (далее БО) и условно графических обозначений (УГО) был разработан ряд нормативных документов исключающих разночтение. Ниже представлена таблица, в которой представлены основные стандарты.

Таблица 1. Нормативы графического обозначения отдельных элементов в монтажных и принципиальных электрических схемах.

Номер ГОСТа Краткое описание
2.710 81 В данном документе собраны требования ГОСТа к БО различных типов электроэлементов, включая электроприборы.
2.747 68 Требования к размерам отображения элементов в графическом виде.
21.614 88 Принятые нормы  для планов электрооборудования и проводки.
2.755 87 Отображение на схемах коммутационных устройств и контактных соединений
2.756 76 Нормы для воспринимающих частей электромеханического оборудования.
2.709 89 Настоящий стандарт регулирует нормы, в соответствии с которыми на схемах обозначаются контактные соединения и провода.
21.404 85 Схематические обозначения для оборудования, используемого в системах автоматизации

Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения и в нормативные документы, правда это процесс более инертен. Приведем простой пример, УЗО и дифавтоматы широко эксплуатируются в России уже более десятка лет, но единого стандарта по нормам ГОСТ 2.755-87 для этих устройств до сих пор нет, в отличие от автоматических выключателей. Вполне возможно, в ближайшее время это вопрос будет урегулирован. Чтобы быть в курсе подобных нововведений, профессионалы отслеживают изменения в нормативных документах, любителям это делать не обязательно, достаточно знать расшифровку основных обозначений.

Виды электрических схем

В соответствии с нормами ЕСКД под схемами подразумеваются графические документы, на которых при помощи принятых обозначений отображаются основные элементы или узлы конструкции, а также объединяющие их связи. Согласно принятой классификации различают десять видов схем, из которых в электротехнике, чаще всего, используется три:

  • Функциональная, на ней представлены узловые элементы (изображаются как прямоугольники), а также соединяющие их линии связи. Характерная особенность такой схемы – минимальная детализация. Для описания основных функций узлов, отображающие их прямоугольники, подписываются стандартными буквенными обозначениями. Это могут быть различные части изделия, отличающиеся функциональным назначением, например, автоматический диммер с фотореле в качестве датчика или обычный телевизор. Пример такой схемы представлен ниже. Пример функциональной схемы телевизионного приемника
  • Принципиальная. Данный вид графического документа подробно отображает как используемые в конструкции элементы, так и их связи и контакты. Электрические параметры некоторых элементов могут быть отображены, непосредственно в документе, или представлены отдельно в виде таблицы. Пример принципиальной схемы фрезерного станка

Если на схеме отображается только силовая часть установки, то она называется однолинейной, если приведены все элементы, то – полной.

Пример однолинейной схемы
  • Монтажные электрические схемы. В данных документах применяются позиционные обозначения элементов, то есть указывается их место расположения на плате, способ и очередность монтажа. Монтажная схема  стационарного сигнализатора горючих газов

Если на чертеже отображается проводка квартиры, то места расположения осветительных приборов, розеток и другого оборудования указываются на плане. Иногда можно услышать, как такой документ называют схемой электроснабжения, это неверно, поскольку последняя отображает способ подключения потребителей к подстанции или другому источнику питания.

Разобравшись с электрическими схемами, можем переходить к обозначениям указанных на них элементов.

Графические обозначения

Для каждого типа графического документа предусмотрены свои обозначения, регулируемые соответствующими нормативными документами. Приведем в качестве примера основные графические обозначения для разных видов электрических схем.

Примеры УГО в функциональных схемах

Ниже представлен рисунок с изображением основных узлов систем автоматизации.

Примеры условных обозначений электроприборов и средств автоматизации в соответствии с ГОСТом 21.404-85

Описание обозначений:

  • А – Основные (1) и допускаемые (2) изображения приборов, которые устанавливаются за пределами электрощита или распределительной коробки.
  • В – Тоже самое, что и пункт А, за исключением того, что элементы располагаются на пульте или электрощите.
  • С – Отображение исполнительных механизмов (ИМ).
  • D – Влияние ИМ на регулирующий орган (далее РО) при отключении питания:
  1. Происходит открытие РО
  2. Закрытие РО
  3. Положение РО остается неизменным.
  • Е — ИМ, на который дополнительно установлен ручной привод. Данный символ может использоваться для любых положений РО, указанных в пункте D.
  • F- Принятые отображения линий связи:
  1. Общее.
  2. Отсутствует соединение при пересечении.
  3. Наличие соединения при пересечении.

УГО в однолинейных и полных электросхемах

Для данных схем существует несколько групп условных обозначений, приведем наиболее распространенные из них. Для получения полной информации необходимо обратиться к нормативным документам, номера государственных стандартов будут приведены для каждой группы.

Источники питания.

Для их обозначения приняты символы, приведенные на рисунке ниже.

УГО источников питания на принципиальных схемах (ГОСТ 2.742-68 и ГОСТ 2.750.68)

Описание обозначений:

  • A – источник с постоянным напряжением, его полярность обозначается символами «+» и «-».
  • В – значок электричества, отображающий переменное напряжение.
  • С – символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников.
  • D – Отображение аккумуляторного или гальванического источника питания.
  • E- Символ батареи, состоящей из нескольких элементов питания.

Линии связи

Базовые элементы электрических соединителей представлены ниже.

Обозначение линий связи на принципиальных схемах (ГОСТ 2.721-74 и ГОСТ 2.751.73)

Описание обозначений:

  • А – Общее отображение, принятое для различных видов электрических связей.
  • В – Токоведущая или заземляющая шина.
  • С – Обозначение экранирования, может быть электростатическим (помечается символом «Е») или электромагнитным («М»).
  • D — Символ заземления.
  • E – Электрическая связь с корпусом прибора.
  • F – На сложных схемах, из нескольких составных частей, таким образом обозначается обрыв связи, в таких случаях «Х» это информация о том, где будет продолжена линия (как правило, указывается номер элемента).
  • G – Пересечение с отсутствием соединения.
  • H – Соединение в месте пересечения.
  • I – Ответвления.

Обозначения электромеханических приборов и контактных соединений

Примеры обозначения магнитных пускателей, реле, а также контактов коммуникационных устройств, можно посмотреть ниже.

УГО, принятые для электромеханических устройств и контакторов (ГОСТы 2.756-76, 2.755-74, 2.755-87)

Описание обозначений:

  • А – символ катушки электромеханического прибора (реле, магнитный пускатель и т.д.).
  • В – УГО воспринимающей части электротепловой защиты.
  • С – отображение катушки устройства с механической блокировкой.
  • D – контакты коммутационных приборов:
  1. Замыкающие.
  2. Размыкающие.
  3. Переключающие.
  • Е – Символ для обозначения ручных выключателей (кнопок).
  • F – Групповой выключатель (рубильник).

УГО электромашин

Приведем несколько примеров, отображения электрических машин (далее ЭМ) в соответствии с действующим стандартом.

Обозначение электродвигателей и генераторов на принципиальных схемах (ГОСТ 2.722-68)

Описание обозначений:

  • A – трехфазные ЭМ:
  1. Асинхронные (ротор короткозамкнутый).
  2. Тоже, что и пункт 1, только в двухскоростном исполнении.
  3. Асинхронные ЭМ с фазным исполнением ротора.
  4. Синхронные двигатели и генераторы.
  • B – Коллекторные, с питанием от постоянного тока:
  1. ЭМ с возбуждением на постоянном магните.
  2. ЭМ с катушкой возбуждения.
Обозначение электродвигателей на схемах

УГО трансформаторов и дросселей

С примерами графических обозначений данных устройств можно ознакомиться на представленном ниже рисунке.

Правильные обозначения трансформаторов, катушек индуктивности и дросселей (ГОСТ 2.723-78)

Описание обозначений:

  • А – Данным графическим символом могут быть обозначены катушки индуктивности или обмотки трансформаторов.
  • В – Дроссель, у которого имеется ферримагнитный сердечник (магнитопровод).
  • С – Отображение двухкатушечного трансформатора.
  • D – Устройство с тремя катушками.
  • Е – Символ автотрансформатора.
  • F – Графическое отображение ТТ (трансформатора тока).

Обозначение измерительных приборов и радиодеталей

Краткий обзор УГО данных электронных компонентов показан ниже. Тем, кто хочет более широко ознакомиться с этой информацией рекомендуем просмотреть ГОСТы 2.729 68 и 2.730 73.

Примеры условных графических обозначений электронных компонентов и измерительных приборов

Описание обозначений:

  1. Счетчик электроэнергии.
  2. Изображение амперметра.
  3. Прибор для измерения напряжения сети.
  4. Термодатчик.
  5. Резистор с постоянным номиналом.
  6. Переменный резистор.
  7. Конденсатор (общее обозначение).
  8. Электролитическая емкость.
  9. Обозначение диода.
  10. Светодиод.
  11. Изображение диодной оптопары.
  12. УГО транзистора (в данном случае npn).
  13. Обозначение предохранителя.

УГО осветительных приборов

Рассмотрим, как на принципиальной схеме отображаются электрические лампы.

Пример того, как указываются лампочки на схемах (ГОСТ 2.732-68)

Описание обозначений:

  • А – Общее изображение ламп накаливания (ЛН).
  • В — ЛН в качестве сигнализатора.
  • С – Типовое обозначение газоразрядных ламп.
  • D – Газоразрядный источник света повышенного давления (на рисунке приведен пример исполнения с двумя электродами)

Обозначение элементов в монтажной схеме электропроводки

Завершая тему графических обозначений, приведем примеры отображения розеток и выключателей.

Пример изображения на монтажных схемах розеток скрытой установки

Как изображаются розетки других типов, несложной найти в нормативных документах, которые доступны в сети.

Обозначение выключатели скрытой установкиОбозначение розеток и выключателей

Видео по теме:

Буквенные обозначения

В электрических схемах помимо графических обозначений также используются буквенные, поскольку без последних чтение чертежей будет довольно проблематичным. Буквенно-цифровая маркировка так же, как и УГО регулируется нормативными документами, для электро это ГОСТ 7624 55. Ниже представлена таблица с БО для основных компонентов электросхем.

Буквенные обозначения основных элементов

К сожалению, размеры данной статьи не позволяют привести все правильные графические и буквенные обозначения, но мы указали нормативные документы, из которых можно получить всю недостающую информацию. Следует учитывать, что действующие стандарты могут меняться в зависимости от модернизации технической базы, поэтому, рекомендуем отслеживать выход новых дополнений к нормативным актам.

Реле с выдержкой времени | Электромеханические реле

  • Сетевые сайты:
    • Последний
    • Новости
    • Технические статьи
    • Последний
    • Проектов
    • Образование
    • Последний
    • Новости
    • Технические статьи
    • Обзор рынка
    • Образование
    • Последний
    • Новости
    • Мнение
    • Интервью
    • Особенности продукта
    • Исследования
    • Форумы
  • Авторизоваться
  • Присоединиться
    • Авторизоваться
    • Присоединиться к AAC
    • Или войдите с помощью

      • Facebook
      • Google
      • LinkedIn
      • GitHub

0:00 / 0:00

  • Подкаст
  • Самый последний
  • Подписывайся
    • Google
    • Spotify
    • Яблоко
    • iHeartRadio
.

Призрачная частота: действительно ли это работает?

Призрачная частота или призрачный тон - это сверхнизкочастотный тон, который должен вызывать паранормальную активность и даже видеть призраков.

Тон классифицируется как инфразвук, и при частоте 18,98 Гц его невозможно услышать, так как он выходит за пределы диапазона, воспринимаемого человеческим ухом. Было высказано предположение, что существует связь между тоном и сообщениями о странных ощущениях и привидениях.

Вам может быть интересно, как вы можете сами слушать тон.Что ж, есть несколько популярных видеороликов на YouTube, которые утверждают, что содержат призрачный тон, но при воспроизведении видео вы услышите тихий шум. Это не фантомная частота, это белый шум или помехи в записи. Звук, который можно услышать, явно гораздо выше, чем призрачный тон, а «высота» - это просто другое слово для «частоты» при описании звука. Это означает, что эти видео - не лучшее место для прослушивания тона, однако есть веб-сайт тон-генератора, который позволяет воспроизводить чистый тон ровно на 18.98 Гц, но проблема в том, что большинство динамиков не могут воспроизводить этот тон. Динамики ноутбука не очень хорошо воспроизводят звуки ниже 300 Гц, а динамики iPhone еще хуже, но это не имеет значения, так как вы все равно не сможете их услышать.

Попробуйте сами: это видео на YouTube охватывает весь диапазон частот человеческого уха, начиная чуть выше призрачного тона на 20 Гц и повышаясь вплоть до пронзительного кольца 20 кГц. Послушайте и посмотрите, в какой момент вы начнете слышать тон в динамиках вашего устройства.

После просмотра этого видео вы, вероятно, поняли, что не слышите фантомный тон, но это не имеет значения. На самом деле вам не нужно слышать тон, чтобы он работал, но вам нужно знать, воспроизводится он через ваши динамики или нет.

Без использования дорогостоящего записывающего оборудования невозможно узнать, воспроизводится ли звук, который вы не слышите, но лучший способ убедиться, что вы подвергаете себя воздействию частоты, - это использовать сабвуфер с большим усилителем, типа, который вы используете как часть системы домашнего кинотеатра.

Обычные громкоговорители оптимизированы для воспроизведения звуковых волн на пике частотного диапазона человеческого уха, тоны, которые намного выше или ниже этого диапазона, обычно намного слабее. Однако сабвуферы разработаны специально для воспроизведения инфразвука, известного в киноиндустрии как LFE или низкочастотные эффекты. Звуки LFE усиливаются намного сильнее, чтобы компенсировать низкие частоты.

Вы по-прежнему не сможете услышать 18,98 Гц, но если вы поместите руку перед сабвуфером, вы почти наверняка сможете это почувствовать, и это именно то, что требуется для этого эксперимента.Попробуйте это со звуком ниже ...

Advertising & dash; Содержание продолжается ниже.

Итак, если вы громко проигрываете этот звук через большой сабвуфер и ничего не слышите, то это прекрасно, поскольку тон не влияет на вас через вашу слуховую систему, говорят, что вибрация волн влияет на все ваше тело и зрительная система.

Теория была придумана Вик Тэнди, экспериментальным сотрудником и преподавателем по совместительству в школе международных исследований и права Университета Ковентри.Однажды поздно ночью он работал в одиночестве в лаборатории в Уорикшире, которая имеет репутацию преследуемой призраками. Он сообщил, что чувствовал беспокойство и утверждал, что краем глаза видит темные предметы, но когда он повернулся к сероватой капле, там ничего не было.

На следующий день исследователь заметил то, что некоторые могли описать как полтергейст. Он работал над своим фехтовальным мечом, сделанным из легкого гибкого металла. Он держал ручку фольги в тисках на своем столе, когда заметил, что лезвие начало вибрировать, хотя ничто не касалось его.

Это привело его к открытию, что лезвие управлялось невидимыми звуковыми волнами, распространяющимися по воздуху в лаборатории, и оказалось, что эти низкочастотные волны генерировались вытяжным вентилятором.

Тэнди пришел к выводу, что эта частота 18,98 Гц, которая очень близка к резонансной частоте глаза 18 Гц, была причиной его странного призрачного видения. Он считал, что эффект был вызван инфразвуковыми волнами, резонирующими с его глазными яблоками.

Оказывается, лаборатория была ровно вдвое короче длины волны звука, а стол находился в центре комнаты, что создавало стоячую волну, которая вызывала вибрацию фольги ограждения.

Психолог Ричард Вайзман из Университета Хартфордшира считает, что эти волны и вызываемые ими странные ощущения, особенно пятна периферического зрения, могут объяснить появление многих призраков.

Итак, призрачный тон на самом деле не возбуждает духов и не увеличивает паранормальную активность. Тон на самом деле обманывает ваши чувства, заставляя их видеть, слышать и ощущать необычные вещи, которые обычно ассоциируются с привидениями.

Ваш дом посещает инфразвук?

На самом деле довольно сложно обнаружить инфразвук в вашем доме, его нельзя услышать и он слишком низкий, чтобы уловить его с помощью стандартных микрофонов, таких как встроенные в мобильные телефоны.

Микрофоны имеют внутри небольшую диафрагму, которая вибрирует, когда на нее попадают звуковые волны. Эта вибрация создает электрический сигнал, который можно записать. Но инфразвук колеблется с такой медленной скоростью, что он недостаточно мощный, чтобы произвести этот электрический заряд.

Существует специальное и дорогое оборудование для инфразвукового мониторинга, в котором используются микрофоны высокого разрешения, например Earthworks QTC-1, которое обойдется вам примерно в 1000 долларов. Вам также понадобится предусилитель и специализированное записывающее оборудование.

Однако, если вы хотите записывать инфразвук с ограниченным бюджетом, вы можете попробовать подвесить мембрану, например кусок гибкого пластика, и прикрепить к ней акселерометр. Как и микрофон, акселерометр будет генерировать электрический ток, основанный на движении мембраны, которая должна изгибаться, когда на нее попадают инфразвуковые волны. Но вам нужно немного знать об электронике, чтобы записывать или интерпретировать генерируемый сигнал, и вам может потребоваться специально модифицированная звуковая карта в вашем компьютере или осциллографе.

.

ER Diagram: Entity Relationship Diagram Model

  • Home
  • Testing

      • Back
      • Agile Testing
      • BugZilla
      • Cucumber
      • Database Testing
      • J0003 Тестирование базы данных Назад
      • JUnit
      • LoadRunner
      • Ручное тестирование
      • Мобильное тестирование
      • Mantis
      • Почтальон
      • QTP
      • Назад
      • Центр качества (ALM)
      • SAP Testing
      • Управление тестированием
      • TestLink
  • SAP

      • Назад
      • ABA P
      • APO
      • Начинающий
      • Basis
      • BODS
      • BI
      • BPC
      • CO
      • Назад
      • CRM
      • Crystal Reports
      • QM4O
      • Заработная плата
      • Назад
      • PI / PO
      • PP
      • SD
      • SAPUI5
      • Безопасность
      • Менеджер решений
      • Successfactors
      • SAP Tutorials
      4
    • Web
    • Apache
    • AngularJS
    • ASP.Net
    • C
    • C #
    • C ++
    • CodeIgniter
    • СУБД
    • JavaScript
    • Назад
    • Java
    • JSP
    • Kotlin
    • Linux
    • Linux js
    • Perl
    • Назад
    • PHP
    • PL / SQL
    • PostgreSQL
    • Python
    • ReactJS
    • Ruby & Rails
    • Scala
    • SQL
    • 000 0003 SQL 000
    • SQL
    • 000
    • UML
    • VB.Net
    • VBScript
    • Веб-службы
    • WPF
  • Обязательно учите!

      • Назад
      • Бухгалтерский учет
      • Алгоритмы
      • Android
      • Блокчейн
      • Бизнес-аналитик
      • Создание веб-сайта
      • Облачные вычисления
      • COBOL
      • Встроенные системы
      • 9000 Проектирование встраиваемых систем
      • 900 Ethical 9003
      • Учебные пособия по Excel
      • Программирование на Go
      • IoT
      • ITIL
      • Jenkins
      • MIS
      • Сеть
      • Операционная система
      • Назад
      • Prep
      • PM Prep
      • Управление проектом Salesforce
      • SEO
      • Разработка программного обеспечения
      • VBA
      900 04
  • Большие данные

      • Назад
      • AWS
      • BigData
      • Cassandra
      • Cognos
      • Хранилище данных
      • DevOps Back
      • DevOps Back
      • HBase
        • MongoDB
        • NiFi
    .

    Что такое реле Mho? Описание и рабочие характеристики

    Реле mho - это высокоскоростное реле, также известное как реле допуска. В этом реле рабочий крутящий момент создается вольт-амперным элементом, а регулирующий элемент создается за счет элемента напряжения. Это означает, что реле MHO является направленным реле, управляемым напряжением.

    Реле mho, использующее структуру индукционной чашки, показано на рисунке ниже. Рабочий крутящий момент создается за счет взаимодействия потоков полюсов 2, 3 и 4, а управляющий крутящий момент создается за счет полюсов 1, 2 и 4.

    Если эффект регулирования пружины обозначен как –K 3 , уравнение крутящего момента принимает вид

    Где Θ и τ определены как положительные, когда я отстаю от V. В точке баланса чистый крутящий момент равен нулю, и, следовательно, уравнение принимает вид

    Если пренебречь действием пружины, т.е. k 3 = 0.

    Рабочие характеристики реле Mho

    Рабочие характеристики реле MHO показаны на рисунке ниже. Диаметр круга практически не зависит от V и I, за исключением очень низких значений напряжения и тока, когда учитывается эффект пружины, что приводит к уменьшению диаметра.Диаметр круга выражается уравнением: Z R = K 1 / K 2 = омическая уставка реле

    Реле срабатывает, когда сопротивление, видимое реле, находится внутри круга. Рабочая характеристика показала, что круг проходит через начало координат, что делает реле естественно направленным. Реле из-за своей естественной направленности требует только одной пары контактов, что обеспечивает быстрое отключение для устранения неисправности и снижает нагрузку в ВА на трансформатор тока.

    Угол импеданса защищаемой линии обычно составляет 60º и 70º, что показано линией OC на рисунке. Сопротивление дуги R представлено длиной AB, которая горизонтальна по отношению к OC от конца хорды Z. Сделав τ равным или немного меньшим запаздыванием, чем circle, окружность помещается вокруг дефектной области так, чтобы реле нечувствительно к перепадам мощности и поэтому особенно применимо для защиты длинных или сильно загруженных линий.

    Для данного реле τ является постоянным, а вектор полной проводимости Y будет лежать на прямой линии.Следовательно, характеристика реле MHO на диаграмме полной проводимости является прямой линией и показана на рисунке ниже.

    Mho реле подходит для сверхвысоконагруженных линий передачи сверхвысокого / сверхвысокого напряжения, так как его пороговая характеристика в Z-плоскости представляет собой круг, проходящий через начало координат, а его диаметр составляет Z R. Из-за этого пороговая характеристика довольно компактна. неисправная зона компактна и, следовательно, меньше шансов сработать при качании мощности, а также является направленной.

    .

    4 Простые схемы детектора движения с использованием PIR

    Сигнализация датчика движения PIR - это устройство, которое обнаруживает инфракрасное излучение от движущегося человеческого тела и запускает звуковой сигнал.

    В посте рассматриваются 4 простые схемы детектора движения, использующие операционный усилитель и транзистор. Мы также обсуждаем детали распиновки стандартного пассивного инфракрасного (PIR) датчика RE200B.

    Мы узнаем:

    1. Как использовать датчик PIR для обнаружения инфракрасного излучения человеческого тела.
    2. Как использовать модуль PIR в качестве цепи охранной сигнализации
    3. Как использовать PIR для включения освещения при обнаружении присутствия человека.
    4. Как применить PIR для обнаружения объекта в промышленных приложениях

    В первой схеме используется операционный усилитель, а во второй схеме используется единственный транзистор и реле для обнаружения ИК-излучения от движущегося человеческого тела и активации реле активировало сигнал тревоги.

    Что такое PIR

    PIR - это аббревиатура от Passive Infra Red.Термин «пассивный» указывает на то, что датчик не принимает активного участия в процессе, то есть он сам не излучает упомянутые инфракрасные сигналы, а скорее пассивно обнаруживает инфракрасное излучение, исходящее от находящихся поблизости теплокровных животных.

    Обнаруженное излучение преобразуется в электрический заряд, пропорциональный обнаруженному уровню излучения. Затем этот заряд дополнительно усиливается встроенным полевым транзистором и подается на выходной контакт устройства, который становится применимым к внешней цепи для дальнейшего усиления и срабатывания ступеней сигнализации.

    Распиновка датчика PIR

    На изображении показана типичная схема расположения выводов датчика PIR. Распиновка довольно проста для понимания, и их можно легко сконфигурировать в рабочую схему с помощью следующих пунктов:

    Как показано на следующей схеме, PIN # 3 датчика должен быть подключен к земле или к минусу. рельс питания.

    Контакт № 1, который соответствует клемме «сток» устройства, должен быть подключен к положительному источнику питания, который в идеале должен быть 5 В постоянного тока.

    И контакт № 2, который соответствует «истоку» датчика, должен быть подключен к земле через резистор 47 кОм или 100 кОм. Этот вывод также становится выходным выводом из устройства, и обнаруженный инфракрасный сигнал передается на усилитель с вывода № 2 датчика.

    1) Схема PIR-датчика движения человека с использованием операционного усилителя

    В предыдущем разделе мы изучили техническое описание и распиновку стандартного ИК-датчика. Теперь давайте продолжим и изучим простое применение того же самого:

    Первый Схема PIR для обнаружения движущихся людей показана выше.Здесь можно увидеть практическую реализацию объясненных деталей распиновки.

    В присутствии инфракрасного излучения человека датчик обнаруживает излучение и мгновенно преобразует его в мельчайшие электрические импульсы, достаточные для того, чтобы транзистор стал проводящим, заставив его коллектор опуститься.

    IC 741 был настроен как компаратор, где его контакт № 3 назначен как опорный вход, а контакт № 2 как вход считывания.

    В момент, когда на коллекторе транзистора устанавливается низкий уровень, потенциал на выводе №2 микросхемы 741 IC становится ниже, чем потенциал на выводе №3.Это мгновенно повышает уровень на выходе ИС, вызывая срабатывание каскада драйвера реле, состоящего из другого транзистора BC547 и реле.

    Реле активирует и включает подключенное устройство сигнализации.

    Конденсатор 100 мкФ / 25 В гарантирует, что реле остается включенным даже после отключения ИК-датчика, возможно, из-за выхода источника излучения.

    Обсуждаемое выше устройство PIR на самом деле является основным датчиком, который может быть чрезвычайно чувствительным и трудным для оптимизации.Чтобы стабилизировать его чувствительность, датчик должен быть соответствующим образом заключен в крышку линзы Френеля, это дополнительно увеличит радиальный диапазон обнаружения.

    Если вы не уверены в использовании открытого ИК-устройства, вы можете просто купить готовый ИК-модуль с линзой и другими улучшениями, как описано ниже.

    2) Датчик движения PIR и цепь охранной сигнализации

    Следующая схема датчика движения PIR может быть легко построена с использованием следующей базовой настройки и применена в качестве цепи охранной сигнализации .

    Как показано на рисунке, PIR требует только одного резистора 1 кОм, транзистора и реле для внешней настройки. Сирену можно построить дома или купить уже готовой.

    Питание 12 В может быть от любой обычной схемы SMP 12 В 1 А.

    Видео демонстрация

    3) Еще одна простая схема сигнализации на основе PIR

    Третья идея ниже объясняет простую схему сигнализации датчика движения PIR , которую можно использовать для включения света или сигнала тревоги только в присутствии человека или злоумышленника.

    Как это работает

    Вот простая схема, которая активирует реле тревоги, когда датчик PIR обнаруживает живое существо (человека). Здесь PIR означает пассивный инфракрасный датчик. Он не производит никаких инфракрасных излучений для обнаружения присутствия живых существ, но, с другой стороны, он обнаруживает инфракрасное излучение, испускаемое ими.

    В этой схеме используется микросхема HC-SR501, которая является сердцем схемы. Первоначально, когда движущийся объект обнаруживается датчиком, он выдает небольшое напряжение сигнала (обычно 3.3 вольт), который подается на базу транзистора BC547 через резистор регулирования тока, и, следовательно, его выход становится высоким, и он включает реле.

    Более подробную схему можно визуализировать ниже:

    Подключение реле

    Это реле можно настроить для использования с электрической лампочкой или лампочкой, ночником или чем-либо еще, работающим от 220 В переменного тока.

    Эта схема в основном используется в садах, поэтому ночью, когда мы идем гулять в сад, схема автоматически включает свет и продолжает гореть, пока мы не окажемся рядом с датчиком, и он отключается, когда мы отойти от этого места и тем самым снизить затраты на электроэнергию.

    Вот вид датчика сзади HC-SR501…

    HC-SR501 Распиновка

    ИК-датчик, вид спереди:

    Датчик состоит из двух предварительно настроенных резисторов, которые могут использоваться для управления временем задержки и диапазоном срабатывания.

    Потенциометр задержки можно отрегулировать, чтобы определить время, в течение которого свет остается включенным.

    Датчик при покупке поставляется с режимом по умолчанию «H», что означает, что схема включает свет, когда кто-то перемещается в зоне, и он остается включенным в течение заданного времени и по истечении заданного времени, если датчик все еще может обнаруживать движение, он не выключает свет при отсутствии движущейся цели, он выключает свет.

    Технические характеристики датчика HC-SR501

    1. Диапазон рабочего напряжения: от 4,5 до 12 В постоянного тока.
    2. Потребление тока: <60 мкА
    3. Выходное напряжение: 3,3 В TTL
    4. Расстояние обнаружения: от 3 до 7 метров (можно регулировать)
    5. Время задержки: от 5 до 200 секунд (можно регулировать)

    Один из недостатков Датчик PIR заключается в том, что его мощность увеличивается, даже когда крыса, собака или какое-либо другое животное движется перед ними, и он включает свет без необходимости.

    В холодных странах дальность срабатывания датчика увеличивается. Из-за низкой температуры инфракрасное излучение, испускаемое людьми, распространяется на большие расстояния и, следовательно, вызывает ненужное переключение света.

    При установке на заднем дворе существует вероятность включения света при проезде автомобиля, потому что излучение горячего двигателя автомобиля вводит датчик в заблуждение.

    ПЕРЕЧЕНЬ ДЕТАЛЕЙ:
    • D1, D2 - 1N4007,
    • C1 - 1000 мкФ, 25 В,
    • Q1 - BC547,
    • R1 - 10K,
    • R2 - 1K,
    • L1 - светодиод (зеленый)
    • RY1 - Реле 12В
    • T1 - Трансформатор 0-12В.

    После завершения сборки схемы, заключите ее в подходящий кожух и используйте отдельный кожух для датчика и подключите датчик к цепи с помощью длинных проводов, чтобы вы могли разместить датчик в любом месте в саду. и цепь будет внутри, так что цепь будет защищена от погодных условий.

    И не забудьте использовать отдельную печатную плату для реле.

    Также не забудьте использовать подходящее реле с правильными значениями тока и напряжения. Вы можете использовать клеммную колодку, которая подключается к переключающим контактам реле, и расположить ее, как показано на рисунке, чтобы вы могли легко заменить электрическое устройство, подключенное к контактам реле.

    Использование этих датчиков значительно экономит электроэнергию. Это также может снизить ваши счета за электричество!

    «ПОЖАЛУЙСТА, СОХРАНИТЕ ЭНЕРГИЮ НА СЛЕДУЮЩИЙ ЧАС!»

    Если вышеуказанная конструкция извещателя движущегося человека PIR предназначена для использования с сигнализацией

    .

    Смотрите также

  • Сделать заказ

    Пожалуйста, введите Ваше имя
    Пожалуйста, введите Ваш номер телефона
    Пожалуйста, введите Ваше сообщение