Комплексные поставки запорной арматуры
и деталей трубопроводов →

Тел: +7 (3522) 55-48-26

Размерность коэффициент теплопроводности


Коэффициент теплопроводности. Выбираем «свою» теплоизоляцию

Для чего нужен коэффициент теплопроводности

Когда вы видите, что коэффициент тепловодности одного материала при 10 °С равен 0,034 Вт/мК, а другого 0,036 Вт/мК, при тех же условиях. Что это означает?

Благодаря коэффициенту теплопроводности вы можете сравнить, какой материал передает больше теплоты, а какой меньше. Чем меньше теплопроводность материала, тем лучшими теплоизоляционными свойствами он обладает.

Для примера сравните коэффициент теплопроводности материалов ALMALEN при 10 °С с другими вспененными полиэтиленами. Он имеет наименьшую теплопроводность в своем классе: от 0,032 Вт/мК до 0,034 Вт/мК.

А если пойти дальше, то коэффициент теплопроводности даст понимание, как изменяется количество передаваемого тепла через один и тот же материал в зависимости от температуры на поверхности изолируемого объекта. Количество передаваемого материалом тепла за промежуток времени называется тепловым потоком.

Определение теплового потока дано в ГОСТ 7076-99 «Материалы и изделия строительные. Метод определения теплопроводности и термического сопротивления при стационарном тепловом режиме».

Коэффициент теплопроводности, формула и примеры

Определение и формула коэффициента теплопроводности

Коэффициентом теплопроводности является физическая величина, которая характеризует способность вещества проводить тепло.

Обозначают коэффициент теплопроводности по-разному. Встречаются обозначения: K, и некоторые другие.

Коэффициент теплопроводности газа

В соответствии с кинетической теорией для газа коэффициент теплопроводности равен:

   

где — средняя скорость теплового движения молекул, — средняя длин свободного пробега молекулы, — плотность газа, — удельная теплоемкость газа в изохорном процессе.

Коэффициент теплопроводности металлов

Металлы являются хорошими проводниками тепла. Теплопроводность в металлах реализуется при помощи (в основном) посредством того, что энергию переносят свободные электроны. Коэффициент электронной теплопроводности металлов вычисляют при помощи формулы:

   

где — постоянная Больцмана, — концентрация электронов в металле, — длина свободного пробега, которая соответствует границе энергии Ферми () для распределения электронов по температурам при T=0K, — масса электрона, — средняя скорость свободного пробега для тех же условий, что и .

Для идеального электронного газа выражение (2) преобразуется к виду:

   

где — средняя длина свободного пробега, — средняя скорость теплового движения электронов.

Надо отметить, что теплопроводность, которая осуществляется кристаллической решеткой металлов существенно меньше, чем электронная. Ее можно рассчитать для кристаллов, рассматривая перемещение фотонов по кристаллу, при помощи формулы:

   

где с — теплоемкость единицы объема, — скорость звука, — длина свободного пробега фотона

Коэффициент теплопроводности и уравнение Фурье

Коэффициент теплопроводности входит в основное уравнение, которое описывает явление переноса тепла или уравнение Фурье. Явление теплопроводности появляется , если имеется градиент температуры. В одномерном стационарном случае уравнение Фурье можно записать как:

   

где помимо коэффициента теплопроводности () имеются: — количество теплоты, которое переносится через площадку в направлении, которое совпадает с направлением нормали к , в направлении уменьшения температуры, — градиент температуры. В нашем случае

Единицы измерения

Основной единицей измерения коэффициента теплопроводности в системе СИ является:

=Вт/м•К

Примеры решения задач

что это такое + таблица значений


Строительное дело предусматривает использование любых подходящих материалов. Главные критерии – безопасность для жизни и здоровья, тепловая проводимость, надёжность. Далее следуют, цена, свойства эстетичности, универсальность применения и т.д.

Рассмотрим одну из важнейших характеристик стройматериалов – коэффициент теплопроводности, так как именно от этого свойства во многом зависит, к примеру, уровень комфорта в доме.

Содержание статьи:

Что такое КТП строительного материала?

Теоретически, да и практически тоже, строительными материалами, как правило, создаются две поверхности – наружная и внутренняя. С точки зрения физики, теплая область всегда стремится к холодной области.

Применительно к стройматериалу, тепло будет стремиться от одной поверхности (более теплой) к другой поверхности (менее теплой). Вот, собственно, способность материала относительно такого перехода и называется – коэффициентом теплопроводности или в аббревиатуре – КТП.

Схема, поясняющая эффект теплопроводности: 1 – тепловая энергия; 2 – коэффициент теплопроводности; 3 – температура первой поверхности; 4 – температура второй поверхности; 5 – толщина стройматериала

Характеристика КТП обычно строится на основе испытаний, когда берётся экспериментальный экземпляр размерами 100х100 см и к нему применяется тепловое воздействие с учётом разницы температур двух поверхностей в 1 градус. Время воздействия 1 час.

Соответственно, измеряется теплопроводность в Ваттах на метр на градус (Вт/м°C). Коэффициент обозначается греческим символом λ.

По умолчанию, теплопроводность различных материалов для строительства со значением меньше 0,175 Вт/м°C, приравнивает эти материалы к разряду изоляционных.

Современным производством освоены технологии изготовления стройматериалов, уровень КТП которых составляет меньше 0,05 Вт/м°C. Благодаря таким изделиям, удается достичь выраженного экономического эффекта в плане потребления энергетических ресурсов.

Влияние факторов на уровень теплопроводности

Каждый отдельно взятый стройматериал имеет определенное строение и обладает своеобразным физическим состоянием.

Основой этого являются:

  • размерность кристаллов структуры;
  • фазовое состояние вещества;
  • степень кристаллизации;
  • анизотропия теплопроводности кристаллов;
  • объем пористости и структуры;
  • направление теплового потока.

Все это – факторы влияния. Определенное влияние на уровень КТП также оказывает химический состав и примеси. Количество примесей, как показала практика, оказывает особенно выразительное влияние на уровень теплопроводности кристаллических компонентов.

Изоляционные стройматериалы – класс продуктов под строительство, созданных с учётом свойств КТП, приближенных к оптимальным свойствам. Однако достичь идеальной теплопроводности при сохранении других качеств, крайне сложно

В свою очередь влияние на КТП оказывают условия эксплуатации стройматериала – температура, давление, уровень влажности и др.

Стройматериалы с минимальным КТП

Согласно исследованиям, минимальным значением теплопроводности (около 0,023 Вт/м°C) обладает сухой воздух.

С точки зрения применения сухого воздуха в структуре строительного материала, необходима конструкция, где сухой воздух пребывает внутри замкнутых многочисленных пространств небольшого объёма. Конструктивно такая конфигурация представлена в образе многочисленных пор внутри структуры.

Отсюда логичный вывод: малым уровнем КТП должен обладать стройматериал, внутренняя структура которого представляет собой пористое образование.

Причём, в зависимости от максимально допустимой пористости материала, значение теплопроводности приближается к значению КТП сухого воздуха.

Созданию строительного материала с минимальной теплопроводностью способствует пористая структура. Чем больше содержится пор разного объема в структуре материала, тем лучший КТП допустимо получить

В современном производстве применяются несколько технологий для получения пористости строительного материала.

В частности, используются технологии:

  • пенообразования;
  • газообразования;
  • водозатворения;
  • вспучивания;
  • внедрения добавок;
  • создания волоконных каркасов.

Следует отметить: коэффициент теплопроводности напрямую связан с такими свойствами, как плотность, теплоемкость, температурная проводимость.

Значение теплопроводности может быть рассчитано по формуле:

λ = Q / S *(T1-T2)*t,

Где:

  • Q – количество тепла;
  • S – толщина материала;
  • T1, T2 – температура с двух сторон материала;
  • t – время.

Средняя величина плотности и теплопроводности обратно пропорциональна величине пористости. Поэтому, исходя из плотности структуры стройматериала, зависимость от нее теплопроводности можно рассчитать так:

λ = 1,16 √ 0,0196+0,22d2 – 0,16,

Где: d – значение плотности. Это формула В.П. Некрасова, демонстрирующая влияние плотности конкретного материала на значение его КТП.

Влияние влаги на теплопроводность стройматериала

Опять же судя по примерам использования стройматериалов на практике, выясняется негативное влияние влаги на КТП стройматериала. Замечено – чем большему увлажнению подвергается стройматериал, тем более высоким становится значение КТП.

Различными способами стремятся защитить от воздействия влаги материал, используемый в строительстве. Эта мера вполне оправдана, учитывая повышение коэффициента для мокрого стройматериала

Обосновать такой момент несложно. Воздействие влаги на структуру строительного материала сопровождается увлажнением воздуха в порах и частичным замещением воздушной среды.

Учитывая, что параметр коэффициента теплопроводности для воды составляет 0,58 Вт/м°C, становится понятным существенное повышение КТП материала.

Следует также отметить более негативный эффект, когда вода, попадающая в пористую структуру, дополнительно замораживается – превращается в лёд.

Соответственно, несложно просчитать ещё большее увеличение теплопроводности, принимая во внимание параметры КТП льда, равного значению 2,3 Вт/м°C. Прирост примерно в четыре раза к параметру теплопроводности воды.

Одной из причин отказа от зимнего строительства в пользу стройки летом следует считать именно фактор возможного подмораживания некоторых видов стройматериалов и как следствие – повышения теплопроводности

Отсюда становятся очевидными строительные требования относительно защиты изоляционных стройматериалов от попадания влаги. Ведь уровень теплопроводности растёт в прямой пропорциональности от количественной влажности.

Не менее значимым видится и другой момент – обратный, когда структура строительного материала подвергается существенному нагреву. Чрезмерно высокая температура также провоцирует рост теплопроводности.

Происходит такое по причине повышения кинематической энергии молекул, составляющих структурную основу стройматериала.

Правда, существует класс материалов, структура которых, напротив, приобретает лучшие свойства теплопроводности в режиме сильного нагрева. Одним из таких материалов является металл.

Если под сильным нагревом большая часть широко распространенных стройматериалов изменяет теплопроводность в сторону увеличения, сильный нагрев металла приводит к обратному эффекту – КТП металла понижается

Методы определения коэффициента

Используются разные методики в этом направлении, но по факту все технологии измерения объединены двумя группами методов:

  1. Режим стационарных измерений.
  2. Режим нестационарных измерений.

Стационарная методика подразумевает работу с параметрами, неизменными с течением времени или изменяющимися в незначительной степени. Эта технология, судя по практическим применениям, позволяет рассчитывать на более точные результаты КТП.

Действия, направленные на измерения теплопроводности, стационарный способ допускает проводить в широком температурном диапазоне – 20 – 700 °C. Но вместе с тем, стационарная технология считается трудоёмкой и сложной методикой, требующей большого количества времени на исполнение.

Пример аппарата, предназначенного под выполнение измерений коэффициента теплопроводности. Это одна из современных цифровых конструкций, обеспечивающая получение быстрого и точного результата

Другая технология измерений – нестационарная, видится более упрощенной, требующей для исполнения работ от 10 до 30 минут. Однако в этом случае существенно ограничен диапазон температур. Тем не менее, методика нашла широкое применение в условиях производственного сектора.

Таблица теплопроводности стройматериалов

Подвергать измерениям многие существующие и широко используемые стройматериалы не имеет смысла.

Все эти продукты, как правило, испытаны неоднократно, на основании чего составлена таблица теплопроводности строительных материалов, куда входят практически все нужные на стройке материалы.

Один из вариантов такой таблицы представлен ниже, где КТП – коэффициент теплопроводности:

Материал (стройматериал)Плотность, м3КТП сухая, Вт/мºC% влажн._1% влажн._2КТП при влажн._1, Вт/мºCКТП при влажн._2, Вт/мºC
Битум кровельный14000,27000,270,27
Битум кровельный10000,17000,170,17
Шифер кровельный18000,35230,470,52
Шифер кровельный16000,23230,350,41
Битум кровельный12000,22000,220,22
Лист асбоцементный18000,35230,470,52
Лист асбестоцементный16000,23230,350,41
Асфальтобетон21001,05001,051,05
Толь строительная6000,17000,170,17
Бетон (на гравийной подушке)16000,46460,460,55
Бетон (на шлаковой подушке)18000,46460,560,67
Бетон (на щебенке)24001,51231,741,86
Бетон (на песчаной подушке)10000,289130,350,41
Бетон (пористая структура)10000,2910150,410,47
Бетон (сплошная структура)25001,89231,922,04
Пемзобетон16000,52460,620,68
Битум строительный14000,27000,270,27
Битум строительный12000,22000,220,22
Минеральная вата облегченная500,048250,0520,06
Минеральная вата тяжелая1250,056250,0640,07
Минеральная вата750,052250,060,064
Лист вермикулитовый2000,065130,080,095
Лист вермикулитовый1500,060130,0740,098
Газо-пено-золо бетон8000,1715220,350,41
Газо-пено-золо бетон10000,2315220,440,50
Газо-пено-золо бетон12000,2915220,520,58
Газо-пено-бетон (пенно-силикат)3000,088120,110,13
Газо-пено-бетон (пенно-силикат)4000,118120,140,15
Газо-пено-бетон (пенно-силикат)6000,148120,220,26
Газо-пено-бетон (пенно-силикат)8000,2110150,330,37
Газо-пено-бетон (пенно-силикат)10000,2910150,410,47
Строительный гипс плита12000,35460,410,46
Гравий керамзитовый6002,14230,210,23
Гравий керамзитовый8000,18230,210,23
Гранит (базальт)28003,49003,493,49
Гравий керамзитовый4000,12230,130,14
Гравий керамзитовый3000,108230,120,13
Гравий керамзитовый2000,099230,110,12
Гравий шунгизитовый8000,16240,200,23
Гравий шунгизитовый6000,13240,160,20
Гравий шунгизитовый4000,11240,130,14
Дерево сосна поперечные волокна5000,0915200,140,18
Фанера клееная6000,1210130,150,18
Дерево сосна вдоль волокон5000,1815200,290,35
Дерево дуба поперек волокон7000,2310150,180,23
Металл дюралюминий260022100221221
Железобетон25001,69231,922,04
Туфобетон16000,527100,70,81
Известняк20000,93231,161,28
Раствор извести с песком17000,52240,700,87
Песок под строительные работы16000,035120,470,58
Туфобетон18000,647100,870,99
Облицовочный картон10000,185100,210,23
Многослойный строительный картон6500,136120,150,18
Вспененный каучук60-950,0345150,040,054
Керамзитобетон14000,475100,560,65
Керамзитобетон16000,585100,670,78
Керамзитобетон18000,865100,800,92
Кирпич (пустотный)14000,41120,520,58
Кирпич (керамический)16000,47120,580,64
Пакля строительная1500,057120,060,07
Кирпич (силикатный)15000,64240,70,81
Кирпич (сплошной)18000,88120,70,81
Кирпич (шлаковый)17000,521,530,640,76
Кирпич (глиняный)16000,47240,580,7
Кирпич (трепельный)12000,35240,470,52
Металл медь850040700407407
Сухая штукатурка (лист)10500,15460,340,36
Плиты минеральной ваты3500,091250,090,11
Плиты минеральной ваты3000,070250,0870,09
Плиты минеральной ваты2000,070250,0760,08
Плиты минеральной ваты1000,056250,060,07
Линолеум ПВХ18000,38000,380,38
Пенобетон10000,298120,380,43
Пенобетон8000,218120,330,37
Пенобетон6000,148120,220,26
Пенобетон4000,116120,140,15
Пенобетон на известняке10000,3112180,480,55
Пенобетон на цементе12000,3715220,600,66
Пенополистирол (ПСБ-С25)15 – 250,029 – 0,0332100,035 – 0,0520,040 – 0,059
Пенополистирол (ПСБ-С35)25 – 350,036 – 0,0412200,0340,039
Лист пенополиуретановый800,041250,050,05
Панель пенополиуретановая600,035250,410,41
Облегченное пеностекло2000,07120,080,09
Утяжеленное пеностекло4000,11120,120,14
Пергамин6000,17000,170,17
Перлит4000,111120,120,13
Плита перлитоцементная2000,041230,0520,06
Мрамор28002,91002,912,91
Туф20000,76350,931,05
Бетон на зольном гравии14000,47580,520,58
Плита ДВП (ДСП)2000,0610120,070,08
Плита ДВП (ДСП)4000,0810120,110,13
Плита ДВП (ДСП)6000,1110120,130,16
Плита ДВП (ДСП)8000,1310120,190,23
Плита ДВП (ДСП)10000,1510120,230,29
Полистиролбетон на портландцементе6000,14480,170,20
Вермикулитобетон8000,218130,230,26
Вермикулитобетон6000,148130,160,17
Вермикулитобетон4000,098130,110,13
Вермикулитобетон3000,088130,090,11
Рубероид6000,17000,170,17
Плита фибролит8000,1610150,240,30
Металл сталь785058005858
Стекло25000,76000,760,76
Стекловата500,048250,0520,06
Стекловолокно500,056250,060,064
Плита фибролит6000,1210150,180,23
Плита фибролит4000,0810150,130,16
Плита фибролит3000,0710150,090,14
Клееная фанера6000,1210130,150,18
Плита камышитовая3000,0710150,090,14
Раствор цементо-песчаный18000,58240,760,93
Металл чугун720050005050
Раствор цементно-шлаковый14000,41240,520,64
Раствор сложного песка17000,52240,700,87
Сухая штукатурка8000,15460,190,21
Плита камышитовая2000,0610150,070,09
Цементная штукатурка10500,15460,340,36
Плита торфяная3000,06415200,070,08
Плита торфяная2000,05215200,060,064

Рекомендуем также прочесть и другие наши статьи, где мы рассказываем о том как правильно выбирать утеплитель:

Выводы и полезное видео по теме

Видеоролик тематически направленный, где достаточно подробно разъясняется – что такое КТП и «с чем его едят». Ознакомившись с материалом, представленным в ролике, появляются высокие шансы стать профессиональным строителем.

Очевидный момент – потенциальному строителю обязательно необходимо знать о теплопроводности и ее зависимости от различных факторов. Эти знания помогут строить не просто качественно, но с высокой степенью надежности и долговечности объекта. Использование коэффициента по существу – это реальная экономия денег, допустим, на оплате за те же коммунальные услуги.

Если у вас появились вопросы или есть ценная информация  по теме статьи, пожалуйста, оставляйте свои комментарии в расположенном ниже блоке.

Что такое теплопроводность строительных материалов таблица

Общее понятие о теплопроводности и ее природа

Если отвечать простыми словами на вопрос о том, что такое теплопроводность в физике, то следует сказать, что передача тепла между двумя телами или различными областями одного и того же тела является процессом обмена внутренней энергией между частицами, составляющими тело (молекулы, атомы, электроны и ионы). Сама внутренняя энергия состоит из двух важных частей: из кинетической и из потенциальной энергии.

Что такое теплопроводность в физике с точки зрения природы этой величины? На микроскопическом уровне способность материалов проводить тепло зависит от их микроструктуры. Например, для жидкостей и газов указанный физический процесс происходит за счет хаотичных столкновений между молекулами, в твердых телах основная доля переносимого тепла приходится на обмен энергией между свободными электронами (в металлических системах) или фононами (неметаллические вещества), которые представляют собой механические колебания кристаллической решетки.

Способы передачи тепловой энергии

Рассматривая вопрос о том, что такое теплопроводность материалов, следует упомянуть о возможных способах передачи тепла. Тепловая энергия может передаваться между различными телами с помощью следующих процессов:

  • проводимость — этот процесс идет без переноса материи;
  • конвекция — перенос тепла непосредственно связан и с движением самой материи;
  • излучение — передача тепла осуществляется за счет электромагнитного излучения, то есть с помощью фотонов.

Чтобы тепло было передано с помощью процессов проводимости или конвекции, необходим непосредственный контакт между различными телами с тем отличием, что в процессе проводимости не существует макроскопического движения материи, а в процессе конвекции это движение присутствует. Отметим, что микроскопическое движение имеет место во всех процессах теплопередачи.

Для обычных температур в несколько десятков градусов Цельсия можно сказать, что на долю конвекции и проводимости приходится основная часть передаваемого тепла, а количество энергии, переданной в процессе излучения, является незначительным. Однако излучение начинает играть главную роль в процессе теплопередачи при температурах в несколько сотен и тысяч Кельвин, поскольку количество энергии Q, передаваемой этим способом, растет пропорционально 4-й степени абсолютной температуры, то есть ∼ T4. Например, наше солнце теряет большую часть энергии именно за счет излучения.

Коэффициент теплопроводности для твердых тел

Коэффициент термической проводимости для твердых тел k имеет следующий физический смыл: он указывает на количество теплоты, которое проходит за единицу времени через единицу площади поверхности в каком-либо теле единичной толщины и бесконечной длины и ширины при разнице температур на его концах, равной одному градусу. В международной системе единиц СИ коэффициент k измеряется в Дж/(с*м*К).

Данный коэффициент в твердых веществах зависит от температуры, поэтому его принято определять при температуре 300 K с целью сравнения способности проводить тепло различными материалами.

Коэффициент теплопроводности для металлов и неметаллических твердых материалов

Все металлы без исключения являются хорошими проводниками тепла, за перенос которого в них отвечает электронный газ. В свою очередь ионные и ковалентные материалы, а также материалы, имеющие волокнистую структуру, являются хорошими теплоизоляторами, то есть плохо проводят тепло. Для полноты раскрытия вопроса о том, что такое теплопроводность, следует заметить, что этот процесс требует обязательного наличия вещества, если он осуществляется за счет конвекции или проводимости, поэтому в вакууме тепло может передаваться только за счет электромагнитного излучения.

В списке ниже приведены значения коэффициентов теплопроводности для некоторых металлов и неметаллов в Дж/(с*м*К):

  • сталь — 47-58 в зависимости от марки стали;
  • алюминий — 209,3;
  • бронза — 116-186;
  • цинк — 106-140 в зависимости от чистоты;
  • медь — 372,1-385,2;
  • латунь — 81-116;
  • золото — 308,2;
  • серебро — 406,1-418,7;
  • каучук — 0,04-0,30;
  • стекловолокно — 0,03-0,07;
  • кирпич — 0,80;
  • дерево — 0,13;
  • стекло — 0,6-1,0.

Таким образом, теплопроводность металлов на 2-3 порядка превышает значения теплопроводности для изоляторов, которые являются ярким примером ответа на вопрос о том, что такое низкая теплопроводность.

Значение теплопроводности играет важную роль во многих индустриальных процессах. В одних процессах стремятся увеличить ее, используя хорошие теплопроводники и увеличивая площадь контакта, в других же стараются уменьшить теплопроводность, уменьшая площадь контакта и применяя теплоизолирующие материалы.

Конвекция в жидкостях и газах

Передача тепла в текучих средах осуществляется за счет процесса конвекции. Этот процесс предполагает перемещение молекул вещества между зонами с различной температурой, то есть при конвекции происходит перемешивание жидкости или газа. Когда текучая материя отдает тепло, ее молекулы теряют часть кинетической энергии, и материя становится более плотной. Наоборот, когда текучая материя нагревается, ее молекулы увеличивают свою кинетическую энергию, их движение становится более интенсивным, соответственно, объем материи увеличивается, а плотность уменьшается. Именно поэтому холодные слои материи стремятся опуститься вниз под действием силы тяжести, а горячие слои пытаются подняться вверх. Этот процесс приводит к перемешиванию материи, способствуя передачи тепла между ее слоями.

Факторы, влияющие на теплопроводность

Коэффициент теплопроводности материала зависит от нескольких факторов:

  • При повышении данного показателя взаимодействие частиц материала становится прочнее. Соответственно, они будут передавать температуру быстрее. А это значит, что с повышением плотности материала улучшается передача тепла.
  • Пористость вещества. Пористые материалы являются неоднородными по своей структуре. Внутри них находится большое количество воздуха. А это значит, что молекулам и другим частицами будет сложно перемещать тепловую энергию. Соответственно, коэффициент теплопроводности повышается.
  • Влажность также оказывает влияние на теплопроводность. Мокрые поверхности материала пропускают большее количество тепла. В некоторых таблицах даже указывается расчетный коэффициент теплопроводности материала в трех состояниях: сухом, среднем (обычном) и влажном.

Выбирая материал для утепления помещений, важно учитывать также условия, в которых он будет эксплуатироваться.

Температура материала


Влияние температуры на способность проводить тепло различается для металлов и неметаллов. В металлах проводимость главным образом связана со свободными электронами. Согласно закону Видемана—Франца теплопроводность металла пропорциональна произведению абсолютной температуры, выраженной в Кельвинах, на его электропроводность. В чистых металлах с увеличением температуры уменьшается электропроводность, поэтому теплопроводность остается приблизительно постоянной величиной. В случае сплавов электропроводность мало изменяется с ростом температуры, поэтому теплопроводность сплавов растет пропорционально температуре.

С другой стороны, передача тепла в неметаллах главным образом связана с колебаниями решетки и обмене решеточными фононами. За исключением кристаллов высокого качества и низких температур, путь пробега фононов в решетке значительно не уменьшается при высоких температурах, поэтому и теплопроводность остается постоянной величиной во всем температурном диапазоне, то есть является незначительной. При температурах ниже температуры Дебая способность неметаллов проводить тепло, наряду с их теплоемкостью, значительно уменьшается.

Фазовые переходы и структура

Когда материал испытывает фазовый переход первого рода, например, из твердого состояния в жидкое или из жидкого в газ, то его теплопроводность может измениться. Ярким примером такого изменения является разница этой физической величины для льда (2,18 Вт/(м*К) и воды (0,90 Вт/(м*К).

Изменения кристаллической структуры материалов также влияют на теплопроводность, что объясняется анизотропными свойствами различных аллотропных модификаций вещества одного и того же состава. Анизотропия влияет на различную интенсивность рассеивания решеточных фононов, основных переносчиков тепла в неметаллах, и в различных направлениях в кристалле. Здесь ярким примером является сапфир, проводимость которого изменяется от 32 до 35 Вт/(м*К) в зависимости от направления.

Электрическая проводимость

Теплопроводность в металлах изменяется вместе с электропроводностью согласно закону Видемана—Франца. Это связано с тем, что валентные электроны, свободно перемещаясь по кристаллической решетке металла, переносят не только электрическую, но и тепловую энергию. Для других материалов корреляция между этими типами проводимости не является ярко выраженной, ввиду незначительного вклада электронной составляющей в теплопроводность (в неметаллах основную роль в механизме передачи тепла играют решеточные фононы).

Процесс конвекции

Воздух и другие газы являются, как правило, хорошими теплоизоляторами при отсутствии процесса конвекции. На этом принципе основана работа многих теплоизолирующих материалов, содержащих большое количество небольших пустот и пор. Такая структура не позволяет конвекции распространяться на большие расстояния. Примерами таких материалов, полученных человеком, являются полистирен и силицидный аэрогель. В природе на том же принципе работают такие теплоизоляторы, как шкура животных и оперение птиц.

Легкие газы, например, водород и гель, имеют высокие значения теплопроводности, а тяжелые газы, например, аргон, ксенон и радон, являются плохими проводниками тепла. Например, аргон, инертный газ, который тяжелее воздуха, часто используется в качестве теплоизолирующего газового наполнителя в двойных окнах и в электрических лампочках. Исключением является гексафторид серы (элегаз), который является тяжелым газом и обладает относительно высокой теплопроводностью, ввиду его большой теплоемкости.

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше  (а лучше — хоть немного больше) рекомендованной для вашего региона.

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Наименование материала /Коэффициент теплопроводности Вт/(м·°C)

В сухом состоянии При нормальной влажности При повышенной влажности
Войлок шерстяной 0,036-0,041 0,038-0,044 0,044-0,050
Каменная минеральная вата 25-50 кг/м3 0,036 0,042 0,,045
Каменная минеральная вата 40-60 кг/м3 0,035 0,041 0,044
Каменная минеральная вата 80-125 кг/м3 0,036 0,042 0,045
Каменная минеральная вата 140-175 кг/м3 0,037 0,043 0,0456
Каменная минеральная вата 180 кг/м3 0,038 0,045 0,048
Стекловата 15 кг/м3 0,046 0,049 0,055
Стекловата 17 кг/м3 0,044 0,047 0,053
Стекловата 20 кг/м3 0,04 0,043 0,048
Стекловата 30 кг/м3 0,04 0,042 0,046
Стекловата 35 кг/м3 0,039 0,041 0,046
Стекловата 45 кг/м3 0,039 0,041 0,045
Стекловата 60 кг/м3 0,038 0,040 0,045
Стекловата 75 кг/м3 0,04 0,042 0,047
Стекловата 85 кг/м3 0,044 0,046 0,050
Пенополистирол (пенопласт, ППС) 0,036-0,041 0,038-0,044 0,044-0,050
Экструдированный пенополистирол (ЭППС, XPS) 0,029 0,030 0,031
Пенобетон, газобетон на цементном растворе, 600 кг/м3 0,14 0,22 0,26
Пенобетон, газобетон на цементном растворе, 400 кг/м3 0,11 0,14 0,15
Пенобетон, газобетон на известковом растворе, 600 кг/м3 0,15 0,28 0,34
Пенобетон, газобетон на известковом растворе, 400 кг/м3 0,13 0,22 0,28
Пеностекло, крошка, 100 — 150 кг/м3 0,043-0,06
Пеностекло, крошка, 151 — 200 кг/м3 0,06-0,063
Пеностекло, крошка, 201 — 250 кг/м3 0,066-0,073
Пеностекло, крошка, 251 — 400 кг/м3 0,085-0,1
Пеноблок 100 — 120 кг/м3 0,043-0,045
Пеноблок 121- 170 кг/м3 0,05-0,062
Пеноблок 171 — 220 кг/м3 0,057-0,063
Пеноблок 221 — 270 кг/м3 0,073
Эковата 0,037-0,042
Пенополиуретан (ППУ) 40 кг/м3 0,029 0,031 0,05
Пенополиуретан (ППУ) 60 кг/м3 0,035 0,036 0,041
Пенополиуретан (ППУ) 80 кг/м3 0,041 0,042 0,04
Пенополиэтилен сшитый 0,031-0,038
Вакуум
Воздух +27°C. 1 атм 0,026
Ксенон 0,0057
Аргон 0,0177
Аэрогель (Aspen aerogels) 0,014-0,021
Шлаковата 0,05
Вермикулит 0,064-0,074
Вспененный каучук 0,033
Пробка листы 220 кг/м3 0,035
Пробка листы 260 кг/м3 0,05
Базальтовые маты, холсты 0,03-0,04
Пакля 0,05
Перлит, 200 кг/м3 0,05
Перлит вспученный, 100 кг/м3 0,06
Плиты льняные изоляционные, 250 кг/м3 0,054
Полистиролбетон, 150-500 кг/м3 0,052-0,145
Пробка гранулированная, 45 кг/м3 0,038
Пробка минеральная на битумной основе, 270-350 кг/м3 0,076-0,096
Пробковое покрытие для пола, 540 кг/м3 0,078
Пробка техническая, 50 кг/м3 0,037

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП , СП , СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.

Применение показателя теплопроводности на практике

В строительстве все материалы условно подразделяются на теплоизоляционные и конструкционные. Конструкционное сырье отличается наибольшими показателями теплопроводности, но именно его применяют для постройки стен, перекрытий, прочих ограждений. Согласно таблице теплопроводности строительных материалов, при возведении стен из железобетона, для низкого теплообмена с окружающей средой толщина конструкции должна быть около 6 метров. В таком случае строение получится огромным, громоздким и потребует немалых затрат.

Наглядный пример — при какой толщине различных материалов их коэффициент теплопроводности будет одинаковым

Поэтому при возведении постройки следует отдельное внимание уделять дополнительным теплоизолирующим материалам. Слой теплоизоляции может не понадобиться только для построек из дерева или пенобетона, но даже при использовании подобного низкопроводного сырья толщина конструкции должна быть не менее 50 см.

Нужно знать! У теплоизоляционных материалов значения показателя теплопроводности минимальны.

Когда учитывается коэффициент теплопроводности

Параметры теплопроводности в обязательном порядке учитывают во время выбора материалов для ограждающих конструкций – стен, перекрытий и пр. В помещениях, где стены выполнены из материалов с высокой теплопроводностью в холодное время года будет довольно прохладно. Не поможет и отделка помещения. Для того, чтобы этого избежать стены необходимо делать довольно толстыми. Это непременно повлечет повышение затрат на материалы и оплату труда.

Схема утепления деревянного дома

Именно поэтому в конструкции стен предусмотрено использование материалов с низкой теплопроводностью (минеральная вата, пенопласт и пр.).

Коэффициент теплопроводности строительных материалов: как применяется на практике и таблица

Практические значение коэффициента – это правильно проведенный расчет толщины несущих конструкций с учетом используемых утеплителей. Необходимо отметить, что возводимое здание – это несколько ограждающих конструкций, через которые происходит утечка тепла. И у каждой их них свой процент теплопотерь.

  • через стены уходит до 30% тепловой энергии общего расхода.
  • Через полы – 10%.
  • Через окна и двери – 20%.
  • Через крышу – 30%.


Теплопотери дома

То есть, получается так, что если неправильно рассчитать теплопроводность всех ограждений, то проживающим в таком доме людям придется довольствоваться лишь 10% тепловой энергии, которое выделяет отопительная система. 90% – это, как говорят, выброшенные на ветер деньги.

“Идеальный дом должен быть построен из теплоизоляционных материалов, в котором все 100% тепла будут оставаться внутри. Но по таблице теплопроводности материалов и утеплителей вы не найдете тот идеальный стройматериал, из которого можно было бы возвести такое сооружение. Потому что пористая структура – это низкие несущие способности конструкции. Исключением может быть древесина, но и она не идеал.”


Стена из бревен – одна из самых утепленных

Поэтому при строительстве домов стараются использовать разные строительные материалы, дополняющие друг друга по теплопроводности. При этом очень важно соотносить толщину каждого элемента в общей строительной конструкции. В этом плане идеальным домом можно считать каркасный. У него деревянная основа, уже можно говорить о теплом доме, и утеплители, которые закладываются между элементами каркасной постройки. Конечно, с учетом средней температуры региона придется точно рассчитать толщину стен и других ограждающих элементов. Но, как показывает практика, вносимые изменения не столь значительны, чтобы можно было бы говорить о больших капитальных вложениях.


Устройство каркасного дома в плане его утепления

Рассмотрим несколько часто используемых строительных материалов и проведем сравнение их теплопроводность по толщине.

Теплопроводность кирпича: таблица по разновидностям

ФотоВид кирпичаТеплопроводность, Вт/м*К

Керамический полнотелый 0,5-0,8
Керамический щелевой 0,34-0,43
Поризованный 0,22
Силикатный полнотелый 0,7-0,8
Силикатный щелевой 0,4
Клинкерный 0,8-0,9


Тепловая проводимость кирпичной кладки при разнице температуры в 10°С

Теплопроводность дерева: таблица по породам

Порода дереваБерезаДуб поперек волоконДуб вдоль волоконЕльКедрКленЛиственница

Теплопроводность, Вт/м С 0,15 0,2 0,4 0,11 0,095 0,19 0,13

Порода дереваЛипаПихтаПробковое деревоСосна поперек волоконСосна вдоль волоконТополь

Теплопроводность, Вт/м С 0,15 0,15 0,045 0,15 0,4 0,17

Коэффициент теплопроводности пробкового дерева самый низкий из всех пород древесины. Именно пробка часто используется в качестве теплоизоляционного материала при проведении утеплительных мероприятий.


У древесины теплопроводность ниже, чем у бетона и кирпича

Таблица проводимости тепла бетонов

Бетон в различных его вариациях является самым распространённым строительным материалом на сегодня, хотя и не является самым «тёплым». В строительстве различают конструкционные и теплоизоляционные бетоны. Из первых возводят фундаменты и ответственные узлы зданий с последующим утеплением, из вторых строят стены. В зависимости от региона к таковым либо применяется дополнительное утепление, либо нет.


Сравнительная таблица теплоизоляционных бетонов и теплопроводности различных стеновых материалов

Наиболее «тёплым» и прочным считает газобетон. Хотя это не совсем так. Если сравнивать структуру пеноблоков и газобетона, можно увидеть существенные различия. У первых поры замкнутые, когда же у газосиликатов большинство их открытые, как бы «рваные». Именно поэтому в ветреную погоду неутеплённый дом из газоблоков очень холодный. Эта же причина делает подобный лёгкий бетон более подверженным к воздействиям влаги.

Теплопроводность металлов: таблица

Данный показатель у металлов изменяется с изменением температуры, в которой они применяются. И здесь соотношение такое – чем выше температура, тем ниже коэффициент. В таблице покажем металлы, которые используются в строительной сфере.

Вид металлаСтальЧугунАлюминийМедь

Теплопроводность, Вт/м С 47 62 236 328

Теперь, что касается соотношения с температурой.

  • У алюминия при температуре -100°С теплопроводность составляет 245 Вт/м*К. А при температуре 0°С – 238. При +100°С – 230, при +700°С – 0,9.
  • У меди: при -100°С –405, при 0°С – 385, при +100°С – 380, а при +700°С – 350.


Тепловая проводимость у меди выше, чем у стали почти в семь раз

Таблица теплопроводности других материалов

В основном нас будет интересовать таблица теплопроводности изоляционных материалов. Необходимо отметить, что если у металлов данный параметр зависит от температуры, то у утеплителей от их плотности. Поэтому в таблице будут расставлены показатели с учетом плотности материалом.

Теплоизоляционный материалПлотность, кг/м³Теплопроводность, Вт/м*К

Минеральная вата (базальтовая) 50 0,048
100 0,056
200 0,07
Стекловата 155 0,041
200 0,044
Пенополистирол 40 0,038
100 0,041
150 0,05
Пенополистирол экструдированный 33 0,031
Пенополиуретан 32 0,023
40 0,029
60 0,035
80 0,041

И таблица теплоизоляционных свойств строительных материалов. Основные из них уже рассмотрены, обозначим те, которые в таблицы не вошли, и которые относятся к категории часто используемых.

Строительный материалПлотность, кг/м³Теплопроводность, Вт/м*К

Бетон 2400 1,51
Железобетон 2500 1,69
Керамзитобетон 500 0,14
Керамзитобетон 1800 0,66
Пенобетон 300 0,08
Пеностекло 400 0,11

Какой коэффициент теплопроводности у воздушной прослойки

В строительстве зачастую используют воздушные ветронепродуваемые прослойки, которые только увеличивают проводимость тепла всего здания. Также подобные продухи необходимы для вывода влаги наружу. Особое внимание проектированию подобных прослоек уделяется в пенобетонных зданиях различного назначения. У подобных прослоек также есть свой коэффициент теплопроводности в зависимости от их толщины.


Таблица проводимости тепла воздушных прослоек

Недостатки высокой теплопроводности меди и ее сплавов

Медь имеет гораздо большую стоимость, чем алюминий или латунь. Но между тем этот материал имеет ряд недостатков, которые связаны с его положительными сторонами. Высокая теплопроводность этого металла вынуждает к созданию специальных условий для его обработки. То есть медные заготовки необходимо нагревать более точно, нежели сталь. Кроме этого часто, перед началом обработки предварительный или сопутствующий нагрев. Нельзя забывать о том, что трубы, изготовленные из меди, подразумевают то, что будет проведена тщательная теплоизоляция. Особенно это актуально для тех случаев, когда из этих труб собрана система подачи отопления. Это значительно удорожает стоимость выполнения монтажных работ. Определенные сложности возникают и при использовании газовой сварки. Для выполнения работе требуется более мощный инструмент. Иногда, для обработки меди толщиной в 8 – 10 мм может потребоваться использование двух, а то и трех горелок. При этом одной из них выполняют сварку медной трубы, а остальные заняты ее подогревом. Ко всему прочему работа с медью требует большего количества расходных материалов.

Работа с медью требует использования и специализированного инструмента. Например, при резке деталей, выполненных из бронзы или латуни толщиной в 150 мм потребуется резак, который может работать с сталью с большим количеством хром. Если его использовать для обработки меди, то предельная толщина не будет превышать 50 мм.

Можно ли повысить теплопроводность меди

Не так давно, группа западных ученых провела ряд исследований по повышению теплопроводности меди и ее сплавов. Для работы они применяли пленки, выполненные из меди, с нанесенным на ее поверхность тонким слоем графена. Для его нанесения использовали технологию его осаждения из газа. При проведении исследований применялось множество приборов, которые были призваны подтвердить объективность полученных результатов. Результаты исследований показали то, что графен обладает одним из самых высоких показателей теплопроводности. После того, как его нанесли на медную подложку, теплопроводность несколько упала. Но, при проведении этого процесса происходит нагревание меди и в ней происходит увеличение зерен, и в результате повышается проходимость электронов.

Графен с медной фольгой

При нагревании меди, но без нанесения этого материала, зерна сохранили свой размер. Одно из назначений меди это отведение лишнего тепла из электронных и электрических схем. Использование графенового напыления эта задача будет решаться значительно эффективнее.

Источники

  • https://FB.ru/article/394480/chto-takoe-teploprovodnost-v-fizike
  • https://ptk-granit.ru/what-to-choose/what-is-the-thermal-conductivity-of-building-materials-table-thermal-conductivity-and-other-characteristics-of-building-materials-in-figures/
  • https://obrabotkametalla.info/stal/koefficient-teploprovodnosti-i-teploperedachi-stali
  • https://kachestvolife.club/otoplenie/koefficienty-teploprovodnosti-stroitel-nyh-materialov-v-tablicah
  • https://instanko.ru/drugoe/teploprovodnost-metallov.html
  • https://homius.ru/tablitsa-teploprovodnosti-stroitelnyih-materialov.html

Коэффициент теплопроводности материалов таблица, формулы

Термин «теплопроводность» применяется к свойствам материалов пропускать тепловую энергию от горячих участков к холодным. Теплопроводность основана на движении частиц внутри веществ и материалов. Способность передавать энергию тепла в количественном измерении – это коэффициент теплопроводности. Круговорот тепловой энергопередачи, или тепловой обмен, может проходить в любых веществах с неравнозначным размещением разных температурных участков, но коэффициент теплопроводности зависим от давления и температуры в самом материале, а также от его состояния – газообразного, жидкого или твердого. Эквивалентная теплопроводимость строительных материалов и утеплителей

 

Физически теплопроводность материалов равняется количеству тепла, которое перетекает через однородный предмет установленных габаритов и площади за определенный временной отрезок при установленной температурной разнице (1 К). В системе СИ единичный показатель, который имеет коэффициент теплопроводности, принято измерять в Вт/(м•К).

Как рассчитать теплопроводность по закону Фурье

В заданном тепловом режиме плотность потока при передаче тепла прямо пропорциональна вектору максимального увеличения температуры, параметры которой изменяются от одного участка к другим, и по модулю с одинаковой скоростью увеличения температуры по направлению вектора:

q = − ϰ х grad х (T), где:

  • q – направление плотности предмета, передающего тепло, или объем теплового потока, который протекает по участку за заданную временную единицу через определенную площадь, перпендикулярный всем осям;
  • ϰ – удельный коэффициент теплопроводности материала;
  • T – температура материала.
Перенос тепла в неравновесной термодинамической системе

 

Знак «-» в формуле перед «ϰ» указывает, что тепло движется в противоположном направлении от вектора grad х (T)/ – в направлении уменьшения температуры предмета. Эта формула отражает закон Фурье. В интегральном выражении коэффициент теплопередачи согласно закону Фурье будет выглядеть как формула:

  • P = − ϰ х S х ΔT / l, выражается в (Вт/(м•К) х (м2•К) / м = Вт/(м•К) х (м•К) = Вт), где:
  • P ­– общая мощность потерь теплоотдачи;
  • S – сечение предмета;
  • ΔT – разница температуры по стыкам сторон предмета;
  • l – расстояние между стыками сторон предмета – длина фигуры.
Связь коэффициента теплопроводимости с электропроводностью материалов

 

Электропроводность и коэффициент теплопередачи

Собственно, коэффициент теплопроводности металлов «ϰ» связан с их удельной электропроводимостью «σ» согласно закону Видемана-Франца, в соответствии с которым коэффициент теплопроводности металлов зависит от удельной электропроводимости прямо пропорционально температуре:

Κ / σ = π2 / 3 х (К / e)2 х T, где:

  • К – постоянный коэффициент Больцмана, устанавливающий закономерность между тепловой энергией тела и его температурой;
  • e – заряд электрона;
  • T – термодинамическая температура предмета.

Коэффициент теплопроводности газовой среды

В газовой среде коэффициент теплопроводности воздуха может рассчитываться по приблизительной формуле:

ϰ ~ 1/3 х p х cv х Λλ х v, где:

  • pv – плотность газовой среды;
  • cv – удельная емкость тепловой энергии при одном и том же объеме тела;
  • Λλ – расстояние свободного перемещения молекул в газовой среде;
  • v – скорость передачи тепла.
Что такое теплопроводимость

 

Или:

ϰ = I x К / 3 x π3/3 x d2 √ RT / μ, где:

  • i – результат суммирования уровней свободы прямого движения и вращения молекул в газовой среде (для 2-атомных газов i=5, для 1-атомных i=3;
  • К – коэффициент Больцмана;
  • μ – отношение массы газа к количеству молей газа;
  • T – термодинамическая температура;
  • d – ⌀ молекул газа;
  • R – универсальный коэффициент для газовой среды.

Согласно формуле минимальная теплопроводность материалов существует у тяжелых инертных газов, максимально эффективная теплопроводность строительных материалов – у легких.

Теплопроводимость в газовой разреженной среде

Газовая среда и теплопроводность

 

Результат по выкладкам выше, по которым делают расчет теплопроводности для газовой среды, от давления не зависит. Но в очень разреженной газовой среде расстояние свободного перемещения молекул зависит не от столкновений частиц, а от препятствий в виде стен резервуара. При этом ограничение перемещения молекул в соответствующих единицах измерения называют высоковакуумной средой, при которой степень теплообмена уменьшается в зависимости от плотности материала и прямо пропорциональна значению давления в резервуаре:

ϰ ~ 1/3 х p х cv х l х v, где:

i – объем резервуара;

Р – уровень давления в резервуаре.

Согласно этой формуле теплопроводность в вакуумной среде стремится к нулевой отметке при глубоком вакууме. Это объясняется тем, что в вакууме частицы, которые передают тепловую энергию, имеют низкую плотность на единицу площади. Но тепловая энергия в вакуумной среде перетекает посредством излучения. В качестве примера можно привести обычный термос, в котором для уменьшения потерь тепловой энергии стенки должны быть двойными и посеребренными, без воздуха между ними. Что такое тепловое излучение

 

При применении закона Фурье не принимают во внимание инерционность перетекания тепловой энергии, а это значит, что имеется в виду мгновенная передача тепла из любой точки на любое расстояние. Поэтому формулу нельзя использовать для расчетов передачи тепла при протекании процессов, имеющих высокую частоту повторения. Это ультразвуковое излучение, передача тепловой энергии волнами ударного или импульсного типа и т.д. Существует решение по закону Фурье с релаксационным членом:

τ х ∂q / ∂t = − (q + ϰ х ∇T) .

Если ре­лак­са­ция τ мгновенная, то формула превращается в закон Фурье.

Ориентировочная таблица теплопроводности материалов:

Основа Значение теплопроводности, Вт/(м•К)
Жесткий графен 4840 +/ 440 – 5300 +/ 480
Алмаз 1001-2600
Графит 278,4-2435
Бора арсенид 200-2000
SiC 490
Ag 430
Cu 401
BeO 370
Au 320
Al 202-236
AlN 200
BN 180
Si 150
Cu3Zn2 97-111
Cr 107
Fe 92
Pt 70
Sn 67
ZnO 54
 Черная сталь 47-58
Pb 35,3
Нержавейка Теплопроводность стали – 15
SiO2 8
Высококачественные термостойкие пасты 5-12
Гранит

(состоит из SiO2 68-73 %; Al2O3 12,0-15,5 %; Na2O 3,0-6,0 %; CaO 1,5-4,0 %; FeO 0,5-3,0 %; Fe2O3 0,5-2,5 %; К2О 0,5-3,0 %; MgO 0,1-1,5 %; TiO2 0,1-0,6 %)

2,4
Бетонный раствор без заполнителей 1,75
Бетонный раствор со щебнем или с гравием 1,51
Базальт

(состоит из SiO2 – 47-52%, TiO2 – 1-2,5%, Al2O3 – 14-18%, Fe2O3 – 2-5%, FeO – 6-10%, MnO – 0,1-0,2%, MgO – 5-7%, CaO – 6-12%, Na2O – 1,5-3%, K2O – 0,1-1,5%, P2O5 – 0,2-0,5 %)

1,3
Стекло

(состоит из SiO2, B2O3, P2O5, TeO2, GeO2, AlF3 и т.д.)

1-1,15
Термостойкая паста КПТ-8 0,7
Бетонный раствор с наполнителем из песка, без щебня или гравия 0,7
Вода чистая 0,6
Силикатный

или красный кирпич

0,2-0,7
Масла

на основе силикона

0,16
Пенобетон 0,05-0,3
Газобетон 0,1-0,3
Дерево Теплопроводность дерева – 0,15
Масла

на основе нефти

0,125
Снег 0,10-0,15
ПП с группой горючести Г1 0,039-0,051
ЭППУ с группой горючести Г3, Г4 0,03-0,033
Стеклянная вата 0,032-0,041
Вата каменная 0,035-0,04
Воздушная атмосфера (300 К, 100 кПа) 0,022
Гель

на основе воздуха

0,017
Аргон (Ar) 0,017
Вакуумная среда 0

Приведенная таблица теплопроводности учитывает теплопередачу посредством теплового излучения и теплообмена частиц. Так как вакуум не передает тепло, то оно перетекает при помощи солнечного излучения или другого типа генерации тепла.  В газовой или жидкой среде слои с разной температурой смешиваются искусственно или естественным способом.

Таблица теплопроводимости стройматериалов

 

Проводя расчет теплопроводности стены, необходимо принимать во внимание, что теплопередача сквозь стеновые поверхности меняется от того, что температура в здании и на улице всегда разная, и зависит от площади всех поверхностей дома и от теплопроводности стройматериалов.

Чтобы количественно оценить теплопроводность, ввели такое значение, как коэффициент теплопроводности материалов. Он показывает, как тот или иной материал способен передавать тепло. Чем выше это значение, например, коэффициент теплопроводности стали, тем эффективнее сталь будет проводить тепло.

  • При утеплении дома из древесины рекомендуется выбирать стройматериалы с низким коэффициентом.
  • Если стена кирпичная, то при значении коэффициента 0,67 Вт/(м2•К) и толщине стены 1 м при ее площади 1 м2 при разнице наружной и внутридомовой температуры 10С кирпич будет пропускать 0,67 Вт энергии. При разнице температур 100С кирпич будет пропускать 6,7 Вт и т.д.

Стандартное значение коэффициента теплопроводимости теплоизоляции и других строительных материалов верно для толщины стены 1 м. Чтобы провести расчет теплопроводности поверхности другой толщины, следует коэффициент поделить на выбранное значение толщины стены (метры). Ориентировочные показатели коэффициентов теплопроводимости

 

В СНиП и при проведении расчетов фигурирует термин «тепловое сопротивление материала», он означает обратную теплопроводность. То есть при теплопроводности листа пенопласта 10 см и его теплопроводности 0,35 Вт/(м2•К) тепловое сопротивление листа – 1 / 0,35 Вт/(м2•К) = 2,85 (м2•К)/Вт.

Ниже – таблица теплопроводности для востребованных строительных материалов и теплоизоляторов:

Стройматериалы Коэффициент теплопроводимости, Вт/(м2•К)
Плиты из алебастра 0,47
Al 230
Шифер асбоцементный 0,35
Асбест (волокно, ткань) 0,15
Асбоцемент 1,76
Асбоцементные изделия 0,35
Асфальт 0,73
Асфальт для напольного покрытия 0,84
Бакелит 0,24
Бетон с заполнителем щебнем 1,3
Бетон с заполнителем песком 0,7
Пористый бетон – пено- и газобетон 1,4
Сплошной бетон 1,75
Термоизоляционный бетон 0,18
Битумная масса 0,47
Бумажные материалы 0,14
Рыхлая минвата 0,046
Тяжелая минвата 0,05
Вата – теплоизолятор на основе хлопка 0,05
Вермикулит в плитах или листах 0,1
Войлок 0,046
Гипс 0,35
Глиноземы 2,33
Гравийный заполнитель 0,93
Гранитный или базальтовый заполнитель 3,5
Влажный грунт, 10% 1,75
Влажный грунт, 20% 2,1
Песчаники 1,16
Сухая почва 0,4
Уплотненный грунт 1,05
Гудроновая масса 0,3
Доска строительная 0,15
Фанерные листы 0,15
Твердые породы дерева 0,2
ДСП 0,2
Дюралюминиевые изделия 160
Железобетонные изделия 1,72
Зола 0,15
Известняковые блоки 1,71
Раствор на песке и извести 0,87
Смола вспененная 0,037
Природный камень 1,4
Картонные листы из нескольких слоев 0,14
Каучук пористый 0,035
Каучук 0,042
Каучук с фтором 0,053
Керамзитобетонные блоки 0,22
Красный кирпич 0,13
Пустотелый кирпич 0,44
Полнотелый кирпич 0,81
Сплошной кирпич 0,67
Шлакокирпич 0,58
Плиты на основе кремнезема 0,07
Латунные изделия 110
Лед при температуре 00С 2,21
Лед при температуре -200С 2,44
Лиственное дерево при влажности 15% 0,15
Медные изделия 380
Мипора 0,086
Опилки для засыпки 0,096
Сухие опилки 0,064
ПВХ 0,19
Пенобетон 0,3
Пенопласт марки ПС-1 0,036
Пенопласт марки ПС-4 0,04
Пенопласт марки ПХВ-1 0,05
Пенопласт марки ФРП 0,044
ППУ марки ПС-Б 0,04
ППУ марки ПС-БС 0,04
Лист из пенополиуретана 0,034
Панель из пенополиуретана 0,024
Облегченное пеностекло 0,06
Тяжелое вспененное стекло 0,08
Пергаминовые изделия 0,16
Перлитовые изделия 0,051
Плиты на цементе и перлите 0,085
Влажный песок 0% 0,33
Влажный песок 0% 0,97
Влажный песок 20% 1,33
Обожженный камень 1,52
Керамическая плитка 1,03
Плитка марки ПМТБ-2 0,035
Полистирол 0,081
Поролон 0,04
Раствор на основе цемента без песка 0,47
Плита из натуральной пробки 0,042
Легкие листы из натуральной пробки 0,034
Тяжелые листы из натуральной пробки 0,05
Резиновые изделия 0,15
Рубероид 0,17
Сланец 2,100
Снег 1,5
Хвойная древесина влажностью 15% 0,15
Хвойная смолистая древесина влажностью 15% 0,23
Стальные изделия 52
Стеклянные изделия 1,15
Утеплитель стекловата 0,05
Стекловолоконные утеплители 0,034
Стеклотекстолитовые изделия 0,31
Стружка 0,13
Тефлоновое покрытие 0,26
Толь 0,24
Плита на основе цементного раствора 1,93
Цементно-песчаный раствор 1,24
Чугунные изделия 57
Шлак в гранулах 0,14
Шлак зольный 0,3
Шлакобетонные блоки 0,65
Сухие штукатурные смеси 0,22
Штукатурный раствор на основе цемента 0,95
Эбонитовые изделия 0,15
Влажность и теплопроводимость – зависимость

 

Кроме того, необходимо учитывать теплопроводность утеплителей из-за их струйных тепловых потоков. В плотной среде возможно «переливание» квазичастиц из одного нагретого стройматериала в другой, более холодный или более теплый, через поры субмикронных размеров, что помогает распространять звук и тепло, даже если в этих порах  будет абсолютный вакуум.

Коэффициент теплопроводности — Студопедия

Коэффициент теплопроводности λ есть физический параметр вещества, характеризующий его способность проводить теплоту. Размерность коэффициента теплопроводности определяется из уравнения (1-8):

= Вт/ (м∙град) .

Числовое значение коэффициента теплопроводности определяет количество теплоты, проходящей через единицу изотермической поверхности в единицу времени, при условии, что температурный градиент равен единице (grad t = 1). Коэффициент теплопроводно­сти зависит от давления и температуры. Для большинства веществ коэффициенты теплопроводности определяются опытным путем и для технических расчетов берутся из справочных таблиц.

Как показывают опыты, для многих материалов зависимость коэффициента теплопроводности от температуры в не слишком широком температурном интервале может быть при­нята линейной:

λ = λ 0(1 + bt),

где λ0— коэффициент теплопроводности при температуре 0 °С; t — температура в градусах Цельсия; b — температурный коэффициент, определяемый опытным путем.

Лучшими проводниками теплоты являются металлы, у которых значение λ изменяется от 3 до 418 Вт/м∙град. Коэффициенты теплопроводно­сти чистых металлов, за исключением алюминия, с возрастанием температуры убывают. Теплоту в металлах переносят главным обра­зом свободные электроны. Самым теплопроводным металлом яв­ляется чистое серебро (λ = 418 Вт/м∙град).


Коэффициенты теплопроводности теплоизоляционных и строи­тельных материалов, имеющих пористую структуру, при повышении температуры возрастают по линейному закону и изменяются в пре­делах от 0,02 до 3,0 Вт/м∙град. Существенное влияние на значения коэф­фициентов теплопроводности пористых материалов оказывают га­зы, заполняющие поры и обладающие весьма малыми коэффициен­тами теплопроводности по сравнению с λ твердых компонентов. Уве­личение λ пористых материалов при повышении температуры объ­ясняется значительным возрастанием лучистого теплообмена между поверхностями твердого «скелета» пор через разделяющие их воздушные ячейки. Роль конвекции в росте λ возрастает с увеличением размеров воздушных включений в материале. Поэтому, эффективный коэффициент теплопроводности пористых тел имеет сложную при­роду и является условной величиной. Эта условная величина имеет смысл коэффициента теплопроводности некоторого однородного тела, через которое при одинаковой форме, размерах и температуре на границах проходит то же количество тепла, что и через данное по­ристое тело.


Большое влияние на значение λ оказывает влажность вещества. Опыты показывают, что с увеличением влажности материала коэффициент λ значительно возрастает. Кроме того, чем выше объемная плотность материала, тем меньше он имеет пор и тем выше его коэффициент теплопроводности.

Коэффициенты теплопроводности большинства капельных жид­костей с повышением температуры убывают. Они лежат в пределах от 0,08 до 0,65 Вт/м∙град. Вода является исключением: с увеличе­нием температуры от 0 °С до 127°С коэффициент теплопроводности повышается, а при дальнейшем возрастании температуры - умень­шается. При повышении давления λ капельных жидкостей несколько возрастает.

Коэффициенты теплопроводности газов при повышении темпера­туры возрастают. Опыты показывают, что λ газов изменяется от 0,05 до 0,6 Вт/м∙град. От давления коэффициенты теплопроводности газов практически не зависят.

Для теплофизических расчетов значения коэффициентов теплопроводности при раз­личных температурах берутся из справочных таб­лиц.

Теплопроводность выбранных материалов и газов

Теплопроводность - это свойство материала, которое описывает способность проводить тепло. Теплопроводность может быть определена как

"количество тепла, передаваемого через единицу толщины материала в направлении, нормальном к поверхности единицы площади, за счет градиента единичной температуры в условиях устойчивого состояния"

Теплопроводность единицами являются [Вт / (м · К)] в системе СИ и [БТЕ / (час фут ° F)] в британской системе мер.

См. Также изменения теплопроводности в зависимости от температуры и давления , для: воздуха, аммиака, двуокиси углерода и воды

Теплопроводность для обычных материалов и продуктов:

900 900 78 0,1 - 0,22 0,606
Теплопроводность
- k -
Вт / (м · К)

Материал / вещество Температура
25 o C
(77 o F)
125 o C
(257 o F)
225 o C
(437 o F)
Ацетали 0.23
Ацетон 0,16
Ацетилен (газ) 0,018
Акрил 0,2
Воздух, атмосфера (газ) 0,0262 0,0333 0,0398
Воздух, высота над уровнем моря 10000 м 0,020
Агат 10,9
Спирт 0.17
Глинозем 36 26
Алюминий
Алюминий Латунь 121
Оксид алюминия 30
Аммиак (газ) 0,0249 0,0369 0,0528
Сурьма 18,5
Яблоко (85.6% влаги) 0,39
Аргон (газ) 0,016
Асбестоцементная плита 1) 0,744
Асбестоцементные листы 1) 0,166
Асбестоцемент 1) 2,07
Асбест в рыхлой упаковке 1) 0.15
Асбестовая плита 1) 0,14
Асфальт 0,75
Бальза 0,048
Битум 0,14
Слои битума / войлока 0,5
Говядина постная (влажность 78,9%) 0.43 - 0,48
Бензол 0,16
Бериллий
Висмут 8,1
Битум 0,17
Доменный газ (газ) 0,02
Шкала котла 1,2 - 3,5
Бор 25
Латунь
Бризовый блок 0.10 - 0,20
Кирпич плотный 1,31
Кирпич огневой 0,47
Кирпич изоляционный 0,15
Кирпич обыкновенный (Строительный кирпич ) 0,6 -1,0
Кирпичная кладка плотная 1,6
Бром (газ) 0,004
Бронза
Руда коричневого железа 0.58
Масло (влажность 15%) 0,20
Кадмий
Силикат кальция 0,05
Углерод 1,7
Двуокись углерода (газ) 0,0146
Окись углерода 0,0232
Чугун
Целлюлоза, хлопок, древесная масса и регенерированные 0.23

Ацетат целлюлозы, формованный, лист

0,17 - 0,33
Нитрат целлюлозы, целлулоид 0,12 - 0,21
Цемент, Портленд 0,29
Цемент, строительный раствор 1,73
Керамические материалы
Мел 0.09
Древесный уголь 0,084
Хлорированный полиэфир 0,13
Хлор (газ) 0,0081
Хром никелевая сталь 16,3
Хром
Оксид хрома 0,42
Глина, от сухой до влажной 0.15 - 1,8
Глина насыщенная 0,6 - 2,5
Уголь 0,2
Кобальт
Треск (влажность 83% содержание) 0,54
Кокс 0,184
Бетон, легкий 0,1 - 0,3
Бетон, средний 0.4 - 0,7
Бетон, плотный 1,0 - 1,8
Бетон, камень 1,7
Константан 23,3
Медь
Кориан (керамический наполнитель) 1,06
Пробковая плита 0,043
Пробка, повторно гранулированная 0.044
Пробка 0,07
Хлопок 0,04
Вата 0,029
Углеродистая сталь
Утеплитель из шерсти 0,029
Купроникель 30% 30
Алмаз 1000
Диатомовая земля (Sil-o-cel) 0.06
Диатомит 0,12
Дуралий
Земля, сухая 1,5
Эбонит 0,17
11,6
Моторное масло 0,15
Этан (газ) 0.018
Эфир 0,14
Этилен (газ) 0,017
Эпоксидный 0,35
Этиленгликоль 0,25
Перья 0,034
Войлок 0,04
Стекловолокно 0.04
Волокнистая изоляционная плита 0,048
Древесноволокнистая плита 0,2
Огнеупорный кирпич 500 o C 1,4
Фтор (газ) 0,0254
Пеностекло 0,045
Дихлордифторметан R-12 (газ) 0.007
Дихлордифторметан R-12 (жидкость) 0,09
Бензин 0,15
Стекло 1.05
Стекло, жемчуг, жемчуг 0,18
Стекло, жемчуг, насыщенное 0,76
Стекло, окно 0.96
Стекло-вата Изоляция 0,04
Глицерин 0,28
Золото
Гранит 1,7 - 4,0
Графит 168
Гравий 0,7
Земля или почва, очень влажная зона 1.4
Земля или почва, влажная зона 1,0
Земля или почва, сухая зона 0,5
Земля или почва, очень сухая зона 0,33
Гипсокартон 0,17
Волос 0,05
ДВП высокой плотности 0.15
Лиственных пород (дуб, клен ..) 0,16
Hastelloy C 12
Гелий (газ) 0,142
Мед ( 12,6% влажности) 0,5
Соляная кислота (газ) 0,013
Водород (газ) 0,168
Сероводород (газ) 0.013
Лед (0 o C, 32 o F) 2,18
Инконель 15
Чугун 47-58
Изоляционные материалы 0,035 - 0,16
Йод 0,44
Иридий 147
Железо
Оксид железа 0 .58
Капок изоляция 0,034
Керосин 0,15
Криптон (газ) 0,0088
Свинец
, сухой 0,14
Известняк 1,26 - 1,33
Литий
Магнезиальная изоляция (85%) 0.07
Магнезит 4,15
Магний
Магниевый сплав 70-145
Мрамор 2,08 - 2,94
Ртуть, жидкость
Метан (газ) 0,030
Метанол 0.21
Слюда 0,71
Молоко 0,53
Изоляционные материалы из минеральной ваты, шерстяные одеяла .. 0,04
Молибден
Монель
Неон (газ) 0,046
Неопрен 0.05
Никель
Оксид азота (газ) 0,0238
Азот (газ) 0,024
Закись азота (газ) 0,0151
Нейлон 6, Нейлон 6/6 0,25
Масло машинное смазочное SAE 50 0,15
Оливковое масло 0.17
Кислород (газ) 0,024
Палладий 70,9
Бумага 0,05
Парафиновый воск 0,25
Торф 0,08
Перлит, атмосферное давление 0,031
Перлит, вакуум 0.00137
Фенольные литые смолы 0,15
Фенолформальдегидные формовочные массы 0,13 - 0,25
Фосфорбронза 110 Pinchbe20 159
Шаг 0,13
Карьерный уголь 0.24
Гипс светлый 0,2
Гипс, металлическая планка 0,47
Гипс песочный 0,71
Гипс, деревянная планка 0,28
Пластилин 0,65 - 0,8
Пластмассы вспененные (изоляционные материалы) 0.03
Платина
Плутоний
Фанера 0,13
Поликарбонат 0,19
Полиэстер
Полиэтилен низкой плотности, PEL 0,33
Полиэтилен высокой плотности, PEH 0.42 - 0,51
Полиизопреновый каучук 0,13
Полиизопреновый каучук 0,16
Полиметилметакрилат 0,17 - 0,25
Полипропилен
Полистирол вспененный 0,03
Полистирол 0.043
Пенополиуретан 0,03
Фарфор 1,5
Калий 1
Картофель, сырое мясо 0,55
Пропан (газ) 0,015
Политетрафторэтилен (ПТФЭ) 0,25
Поливинилхлорид, ПВХ 0.19
Стекло Pyrex 1,005
Кварц минеральный 3
Радон (газ) 0,0033
Красный металл
Рений
Родий
Порода, твердая 2-7
Порода, вулканическая порода (туф) 0.5 - 2,5
Изоляция из каменной ваты 0,045
Канифоль 0,32
Резина, ячеистая 0,045
Резина натуральная 0,13
Рубидий
Лосось (влажность 73%) 0,50
Песок сухой 0.15 - 0,25
Песок влажный 0,25 - 2
Песок насыщенный 2-4
Песчаник 1,7
Опилки 0,08
Селен
Овечья шерсть 0,039
Аэрогель кремнезема 0.02
Силиконовая литая смола 0,15 - 0,32
Карбид кремния 120
Кремниевое масло 0,1
Серебро
Шлаковая вата 0,042
Сланец 2,01
Снег (температура <0 o C) 0.05 - 0,25
Натрий
Хвойные породы (пихта, сосна ..) 0,12
Почва, глина 1,1
Почва, с органическими материя 0,15 - 2
Грунт, насыщенный 0,6 - 4

Припой 50-50

50

Сажа

0.07

Насыщенный пар

0,0184
Пар низкого давления 0,0188
Стеатит 2
Сталь углеродистая
Сталь, нержавеющая
Изоляция из соломенных плит, сжатая 0,09
Пенополистирол 0.033
Диоксид серы (газ) 0,0086
Сера кристаллическая 0,2
Сахара 0,087 - 0,22
Тантал
Смола 0,19
Теллур 4,9
Торий
Древесина, ольха 0.17
Лес, ясень 0,16
Лес, береза ​​ 0,14
Лес, лиственница 0,12
Лес, клен 0,16
Древесина дубовая 0,17
Древесина осина 0,14
Древесина оспа 0.19
Древесина, бук красный 0,14
Древесина, сосна красная 0,15
Древесина, сосна белая 0,15
Древесина ореха 0,15
Олово
Титан
Вольфрам
Уран
Пенополиуретан 0.021
Вакуум 0
Гранулы вермикулита 0,065
Виниловый эфир 0,25
Вода, пар (пар) 0,0267 0,0359
Пшеничная мука 0.45
Белый металл 35-70
Древесина поперек волокон, белая сосна 0,12
Древесина поперек волокон, бальза 0,055
Древесина поперек волокон, сосна желтая, древесина 0,147
Дерево, дуб 0,17
Шерсть, войлок 0.07
Древесная вата, плита 0,1 - 0,15
Ксенон (газ) 0,0051
Цинк

1) Асбест плохо для здоровья человека, когда крошечные абразивные волокна попадают в легкие, где они могут повредить легочную ткань. Это, по-видимому, усугубляется курением сигарет, в результате чего возникают мезотелиома и рак легких.

Пример - кондуктивная теплопередача через алюминиевый бак по сравнению с баком из нержавеющей стали

Кондуктивная теплопередача через стенку ванны может быть рассчитана как

q = (k / s) A dT (1)

или, альтернативно,

q / A = (к / с) dT

где

q = теплопередача (Вт, БТЕ / ч)

A = площадь поверхности ( м 2 , фут 2 )

q / A = теплопередача на единицу площади (Вт / м 2 , БТЕ / (ч фут 2 ))

k = теплопроводность (Вт / мК, БТЕ / (час фут ° F) )

dT = t 1 - t 2 = разница температур ( o C, o F)

s = толщина стены (м, фут)
9000 8

Калькулятор теплопроводности

k = теплопроводность (Вт / мК, БТЕ / (час фут ° F) )

с = толщина стенки (м, фут)

A = площадь поверхности (м 2 , фут 2 )

dT = t 1 - t 2 = разница температур ( o C, o F)

Примечание! - общая теплопередача через поверхность определяется « общим коэффициентом теплопередачи », который в дополнение к кондуктивной теплопередаче зависит от

Кондуктивная теплопередача через алюминиевую стенку горшка толщиной 2 мм - разность температур 80 o C

Теплопроводность для алюминия составляет 215 Вт / (м · К) (из таблицы выше).Кондуктивная теплопередача на единицу площади может быть рассчитана как

q / A = [(215 Вт / (м · K)) / (2 10 -3 м)] (80 o C)

= 8600000 (Вт / м 2 )

= 8600 (кВт / м 2 )

Проводящая теплопередача через стенку емкости из нержавеющей стали толщиной 2 мм - разница температур 80 o C

Теплопроводность нержавеющей стали составляет 17 Вт / (м · К) (из таблицы выше).Кондуктивная теплопередача на единицу площади может быть рассчитана как

q / A = [(17 Вт / (м · K)) / (2 10 -3 м) ] (80 o C)

= 680000 (Вт / м 2 )

= 680 (кВт / м 2 )

.

Удельное сопротивление и проводимость - температурные коэффициенты для обычных материалов

Удельное сопротивление равно

  • электрическое сопротивление единичного куба материала, измеренное между противоположными гранями куба

Калькулятор сопротивления электрического проводника

Этот калькулятор можно использовать для рассчитать электрическое сопротивление проводника.

Коэффициент удельного сопротивления (Ом · м) (значение по умолчанию для меди)

Площадь поперечного сечения проводника (мм 2 ) - Калибр провода AWG

Алюминий 2 .65 x 10 -8 3,8 x 10 -3 3,77 x 10 7
Алюминиевый сплав 3003, прокат 3,7 x 10 -8
Алюминиевый сплав 2014, отожженный 3,4 x 10 -8
Алюминиевый сплав 360 7,5 x 10 -8
Алюминиевая бронза 12 x 10 -8
Животный жир 14 x 10 -2
Животный жир 0.35
Сурьма 41,8 x 10 -8
Барий (0 o C) 30,2 x 10 -8
Бериллий 4,0 x 10 -8
Бериллиевая медь 25 7 x 10 -8
Висмут 115 x 10 -8
Латунь - 58% Cu 5.9 x 10 -8 1,5 x 10 -3
Латунь - 63% Cu 7,1 x 10 -8 1,5 x 10 -3
Кадмий 7,4 x 10 -8
Цезий (0 o C) 18,8 x 10 -8
Кальций (0 o C) 3,11 x 10 -8
Углерод (графит) 1) 3-60 x 10 -5 -4.8 x 10 -4
Чугун 100 x 10 -8
Церий (0 o C) 73 x 10 -8
Хромель (сплав хрома и алюминия) 0,58 x 10 -3
Хром 13 x 10 -8
Кобальт 9 x 10 -8
Константан 49 x 10 -8 3 x 10 -5 0.20 x 10 7
Медь 1,724 x 10 -8 4,29 x 10 -3 5,95 x 10 7
Купроникель 55-45 (константан) 43 x 10 -8
Диспрозий (0 o C) 89 x 10 -8
Эрбий (0 o C) 81 x 10 -8
Эврика 0.1 x 10 -3
Европий (0 o C) 89 x 10 -8
Гадолий 126 x 10 -8
Галлий (1,1K) 13,6 x 10 -8
Германий 1) 1 - 500 x 10 -3 -50 x 10 -3
Стекло 1 - 10000 x 10 9 10 -12
Золото 2.24 x 10 -8
Графит 800 x 10 -8 -2,0 x 10 -4
Гафний (0,35 K) 30,4 x 10 - 8
Hastelloy C 125 x 10 -8
Гольмий (0 o C) 90 x 10 -8
Индий ( 3.35K) 8 x 10 -8
Инконель 103 x 10 -8
Иридий 5,3 x 10 -8
Железо 9,71 x 10 -8 6,41 x 10 -3 1,03 x 10 7
Лантан (4,71K) 54 x 10 -8
Свинец 20.6 x 10 -8 0,45 x 10 7
Литий 9,28 x 10 -8
Лютеций 54 x 10 -8
Магний 4,45 x 10 -8
Магниевый сплав AZ31B 9 x 10 -8
Марганец 185 x 10 -8 1.0 x 10 -5
Меркурий 98,4 x 10 -8 8,9 x 10 -3 0,10 x 10 7
Слюда (мерцание) 1 x 10 13
Мягкая сталь 15 x 10 -8 6,6 x 10 -3
Молибден 5,2 x 10 -8
Монель 58 x 10 -8
Неодим 61 x 10 -8
Нихром (сплав никеля и хрома) 100 - 150 х 10 -8 0.40 x 10 -3
Никель 6,85 x 10 -8 6,41 x 10 -3
Никелин 50 x 10 -8 2,3 x 10 -4
Ниобий (колумбий) 13 x 10 -8
Осмий 9 x 10 -8
Палладий 10.5 x 10 -8
Фосфор 1 x 10 12
Платина 10,5 x 10 -8 3,93 x 10 -3 0,943 x 10 7
Плутоний 141,4 x 10 -8
Полоний 40 x 10 -8
Калий 7.01 x 10 -8
Празеодим 65 x 10 -8
Прометий 50 x 10 -8
Протактиний (1,4 K) 17,7 x 10 -8
Кварц (плавленый) 7,5 x 10 17
Рений (1,7 K) 17.2 x 10 -8
Родий 4,6 x 10 -8
Твердая резина 1 - 100 x 10 13
Рубидий 11,5 x 10 -8
Рутений (0,49K) 11,5 x 10 -8
Самарий 91,4 x 10 -8
Скандий 50.5 x 10 -8
Селен 12,0 x 10 -8
Кремний 1) 0,1-60 -70 x 10 -3
Серебро 1,59 x 10 -8 6,1 x 10 -3 6,29 x 10 7
Натрий 4,2 x 10 -8
Грунт, типичный грунт 10 -2 - 10 -4
Припой 15 x 10 -8
Нержавеющая сталь 10 6
Стронций 12.3 x 10 -8
Сера 1 x 10 17
Тантал 12,4 x 10 -8
Тербий 113 x 10 -8
Таллий (2,37K) 15 x 10 -8
Торий 18 x 10 -8
Тулий 67 x 10 -8
Олово 11.0 x 10 -8 4,2 x 10 -3
Титан 43 x 10 -8
Вольфрам 5,65 x 10 -8 4,5 x 10 -3 1,79 x 10 7
Уран 30 x 10 -8
Ванадий 25 x 10 -8
Вода дистиллированная 10 -4
Вода пресная 10 -2
Вода соленая 4
Иттербий 27.7 x 10 -8
Иттрий 55 x 10 -8
Цинк 5,92 x 10 -8 3,7 x 10 -3
Цирконий (0,55K) 38,8 x 10 -8

1) Примечание! - удельное сопротивление сильно зависит от наличия примесей в материале.

2 ) Примечание! - удельное сопротивление сильно зависит от температуры материала.Приведенная выше таблица основана на эталоне 20 o C.

Электрическое сопротивление в проводе

Электрическое сопротивление провода больше для более длинного провода и меньше для провода с большей площадью поперечного сечения. Сопротивление зависит от материала, из которого оно изготовлено, и может быть выражено как:

R = ρ L / A (1)

, где

R = сопротивление (Ом, ). Ω )

ρ = коэффициент удельного сопротивления (Ом · м, Ом · м)

L = длина провода (м)

A = площадь поперечного сечения провода (м 2 )

Коэффициент сопротивления, который учитывает природу материала, - это удельное сопротивление.Поскольку он зависит от температуры, его можно использовать для расчета сопротивления провода заданной геометрии при различных температурах.

Обратное сопротивление называется проводимостью и может быть выражено как:

σ = 1 / ρ (2)

, где

σ = проводимость (1 / Ом · м)

Пример - сопротивление алюминиевого провода

Сопротивление алюминиевого кабеля длиной 10 м и площадью поперечного сечения 3 мм 2 можно рассчитать как

R = (2.65 10 -8 Ом м) (10 м) / ((3 мм 2 ) (10 -6 м 2 / мм 2 ))

= 0,09 Ом

Сопротивление

Электрическое сопротивление компонента схемы или устройства определяется как отношение приложенного напряжения к протекающему через него электрическому току:

R = U / I (3)

где

R = сопротивление (Ом)

U = напряжение (В)

I = ток (A)

Закон Ома

Если сопротивление постоянно превышает диапазон напряжения, затем закон Ома,

I = U / R (4)

можно использовать для прогнозирования поведения материала.

Зависимость удельного сопротивления от температуры

Изменение удельного сопротивления относительно температуры можно рассчитать как

= ρ α dt (5)

где

dρ = изменение удельного сопротивления ( Ом м 2 / м)

α = температурный коэффициент (1/ o C)

dt = изменение температуры ( o C)

Пример - изменение удельного сопротивления

Алюминий с удельным сопротивлением 2.65 x 10 -8 Ом · м 2 / м нагревается от 20 o C до 100 o C . Температурный коэффициент для алюминия составляет 3,8 x 10 -3 1/ o C . Изменение удельного сопротивления можно рассчитать как

dρ = (2,65 10 -8 Ом м 2 / м) (3,8 10 -3 1/ o C) ((100 o C) - (20 o C))

= 0.8 10 -8 Ом м 2 / м

Окончательное удельное сопротивление можно рассчитать как

ρ = (2,65 10 -8 Ом м 2 / м) + (0,8 10 -8 Ом м 2 / м)

= 3,45 10 -8 Ом м 2 / м

Калькулятор коэффициента удельного сопротивления в зависимости от температуры

использоваться для расчета удельного сопротивления материала проводника в зависимости оттемпература.

ρ - Коэффициент удельного сопротивления (10 -8 Ом м 2 / м)

α - Температурный коэффициент (10 -3 1/ o C)

dt - изменение температуры ( o C)

Сопротивление и температура

Для большинства материалов электрическое сопротивление увеличивается с температурой.Изменение сопротивления можно выразить как

dR / R s = α dT (6)

, где

dR = изменение сопротивления (Ом)

с = стандартное сопротивление согласно справочным таблицам (Ом)

α = температурный коэффициент сопротивления ( o C -1 )

dT = изменение температура от эталонной температуры ( o C, K)

(5) может быть изменена на:

dR = α dT R s (6b)

«Температурный коэффициент сопротивления» - α - материала - это увеличение сопротивления резистора 1 Ом из этого материала при повышении температуры 9 0013 1 o С .

Пример - сопротивление медного провода в жаркую погоду

Медный провод с сопротивлением 0,5 кОм при нормальной рабочей температуре 20 o C в жаркую солнечную погоду нагревается до 80 o C . Температурный коэффициент для меди составляет 4,29 x 10 -3 (1/ o C) , а изменение сопротивления можно рассчитать как

dR = ( 4,29 x 10 -3 1/ o C) ((80 o C) - (20 o C) ) (0.5 кОм)

= 0,13 (кОм)

Результирующее сопротивление медного провода в жаркую погоду будет

R = (0,5 кОм) + (0,13 кОм)

= 0,63 ( кОм)

= 630 (Ом)

Пример - сопротивление углеродного резистора при изменении температуры

Угольный резистор с сопротивлением 1 кОм при температуре 20 o C нагревается до 120 или С .Температурный коэффициент для углерода отрицательный. -4,8 x 10 -4 (1/ o C) - сопротивление снижается с повышением температуры.

Изменение сопротивления можно рассчитать как

dR = ( -4,8 x 10 -4 1/ o C) ((120 o C) - (20 o C) ) (1 кОм)

= - 0,048 (кОм)

Результирующее сопротивление для резистора будет

R = (1 кОм) - (0.048 кОм)

= 0,952 (кОм)

= 952 (Ом)

Калькулятор сопротивления в зависимости от температуры

Этот счетчик может использоваться для расчета сопротивления в проводнике в зависимости от температуры.

R с - сопротивление (10 3 (Ом)

α - температурный коэффициент (10 -3 1/ o C)

dt - Изменение температуры ( o C)

Температурные поправочные коэффициенты для сопротивления проводника

900
Температура проводника
(° C)
Коэффициент Преобразовать в 20 ° C Обратно в преобразовать из 20 ° C
5 1.064 0,940
6 1,059 0,944
7 1,055 0,948
8 1,050 0,952
9 1,046 0,956
10 1,042 0,960
11 1,037 0,964
12 1,033 0.968
13 1,029 0,972
14 1,025 0,976
15 1,020 0,980
16 1,016 0,984
17 1,012 0,988
18 1,008 0,992
19 1,004 0,996
20 1.000 1.000
21 0,996 1.004
22 0,992 1.008
23 0,988 1.012
24 0,984 1.016
25 0,980 1,020
26 0,977 1,024
27 0,973 1.028
28 0,969 1,032
29 0,965 1,036
30 0,962 1,040
31 0,958 1,044
32 0,954 1,048
33 0,951 1,052
.Онлайн-преобразователь теплопроводности

Преобразование значений теплопроводности

Теплопроводность указывает на способность материалов проводить тепло.

Калькулятор ниже может использоваться для преобразования между общепринятыми единицами измерения теплопроводности:

Связанные темы

Связанные документы

Поиск тегов

  • ru: преобразование калькулятора теплопроводности

Поиск в Engineering ToolBox

- поиск - это самый эффективный способ навигации по Engineering ToolBox!

Перевести эту страницу на

О Engineering ToolBox!

Мы не собираем информацию от наших пользователей.В нашем архиве хранятся только письма и ответы. Файлы cookie используются в браузере только для улучшения взаимодействия с пользователем.

Некоторые из наших калькуляторов и приложений позволяют сохранять данные приложений на локальном компьютере. Эти приложения - из-за ограничений браузера - будут отправлять данные между вашим браузером и нашим сервером. Мы не сохраняем эти данные.

Google использует файлы cookie для показа нашей рекламы и обработки статистики посетителей. Пожалуйста, прочтите Условия использования Google для получения дополнительной информации о том, как вы можете контролировать показ рекламы и собираемую информацию.

AddThis использует файлы cookie для обработки ссылок на социальные сети. Пожалуйста, прочтите AddThis Privacy для получения дополнительной информации.

Цитирование

Эту страницу можно цитировать как

  • Engineering ToolBox, (2005). Онлайн-конвертер теплопроводности . [онлайн] Доступно по адресу: https://www.engineeringtoolbox.com/thermal-conductivity-calculator-d_857.html [день доступа, мес. год].

Изменить дату доступа.

. .

закрыть

.

Коэффициент теплового расширения - Простая английская Википедия, бесплатная энциклопедия

В основном твердые тела [1] расширяются при нагревании и сжимаются при охлаждении. [2] Эта реакция на изменение температуры выражается как коэффициент теплового расширения .

Коэффициент теплового расширения используется:

Эти характеристики тесно связаны. Коэффициент объемного теплового расширения может быть измерен для всех веществ в конденсированных средах (жидкостей и твердых тел).Линейное тепловое расширение можно измерить только в твердом состоянии и широко используется в инженерных приложениях.

Коэффициенты теплового расширения для некоторых распространенных материалов [изменить | изменить источник]

 Расширение и сжатие материала необходимо учитывать при проектировании больших конструкций, при использовании ленты или цепи для измерения расстояний для геодезических изысканий, при проектировании форм для разливки горячего материала и в других инженерных приложениях, когда ожидаются большие изменения размеров из-за температуры. .Диапазон для α составляет от 10  -7  для твердых веществ до 10  -3  для органических жидкостей. α меняется в зависимости от температуры, а некоторые материалы имеют очень большие колебания. Некоторые значения для обычных материалов, указанные в миллионных долях на градус Цельсия: (ПРИМЕЧАНИЕ: это также может быть в градусах Кельвина, поскольку изменения температуры имеют соотношение 1: 1) 

Для приложений, использующих свойство теплового расширения, см. Биметаллический и ртутный термометр.

Термическое расширение также используется в механических приложениях для прилегания деталей друг к другу, например.г. втулка может быть установлена ​​на вал, сделав ее внутренний диаметр немного меньше диаметра вала, затем нагревая ее до тех пор, пока она не войдет на вал, и позволяя ей остыть после того, как она была надета на вал, таким образом достигая термоусадочная посадка '

Существуют сплавы с очень маленьким КТР, используемые в приложениях, требующих очень малых изменений физических размеров в диапазоне температур. Одним из них является инвар 36 с коэффициентом в диапазоне 0,6х10 -6 .Эти сплавы используются в аэрокосмической промышленности, где могут возникать большие колебания температуры.

  1. ↑ Некоторые вещества имеют отрицательный коэффициент расширения и расширяются при охлаждении (например, замерзшая вода
  2. ↑ Причина в том, что во время теплопередачи изменяется энергия, запасенная в межмолекулярных связях между атомами. Когда запасенная энергия увеличивается, увеличивается и длина молекулярной связи.
.

Смотрите также

Сделать заказ

Пожалуйста, введите Ваше имя
Пожалуйста, введите Ваш номер телефона
Пожалуйста, введите Ваше сообщение