Комплексные поставки запорной арматуры
и деталей трубопроводов →

Тел: +7 (3522) 55-48-26

Пропорции состав керамзитоблока


состав и изготовление своими руками

Стремительное развитие передовых технологий привело к появлению уникальных строительных материалов, в числе которых керамзитобетон. Эта разновидность бетона соответствует всем стандартам ГОСТ 6133–99 и является незаменимым решением для возведения всевозможных построек. Пропорции керамзитобетона для блоков подразумевают внесение керамзита, а не щебени.

Описание и характеристика

Материал характеризуется небольшим весом и прекрасными эксплуатационными характеристиками, которые свойственны бетонным конструкциям. Из-за низкой теплопроводности его можно использовать для обустройства стеновых конструкций и перекрытий.

Характеристики керамзитобетонных блоков выглядят следующим образом:

  1. Прочность — 35−150 кг на сантиметр кубический.
  2. Плотность — 700−1500 кг на метр кубический.
  3. Теплопроводность — 0,15−0,45 Вт/мГрад.
  4. Морозостойкость — 50−200 циклов.
  5. Усадка — 0% мм/м.
  6. Поглощение влаги — 50%.

При изготовлении керамзитобетона своими руками пропорции выбираются с учетом требуемой консистенции и особенностей постройки. Чтобы создать блоки с разной плотностью, необходимо рассчитать правильное соотношение пластификатора, который придает составу эластичные свойства, а также других составляющих, определяющих ряд ключевых характеристик керамзитобетона.

Внешне керамзитобетон характеризуется ячеистой структурой с разным размером пор (он определяется режимом обжига основного заполнителя). В зависимости от пористости можно выделить три разновидности материала: крупнопористый, поризованный, а также плотный.

Что касается эксплуатационных свойств и преимуществ, то они напрямую зависят от однородности структуры бетонной смеси. Нормативные прочностные показатели определяются правильно выбранным соотношением керамзитового гравия с мелкой и крупной фракцией. Если материал будет использоваться в качестве основы для возведения конструкций, его нужно дополнительно оснастить арматурой, что повысит прочность.

В большинстве случаев керамзитобетон задействуется для формирования ограждающих и теплоизоляционных слоев в многослойных строительных формах. Характеристики и эксплуатационная пригодность конечного состава зависят от выбранных пропорций и соблюдения правильного соотношения составляющих. Важно понимать, что рецептура керамзитобетона для напольных перекрытий и строительных блоков существенно различается.

При выполнении укладки стяжки следует учитывать тип поверхности, так как он определяет состав смеси. Оптимальная пропорция для изготовления стяжки высотой 30 мм на 1 м² выглядит следующим образом: 40 кг смеси пескобетона марки М300 и 35 кг керамзитового гравия.

Достоинства и минусы стяжки

Керамзитобетонные стяжки гарантируют высокую надежность напольного основания, а также его устойчивость к воздействию влаги, воздуха и отрицательных температур. Среди ключевых преимуществ конструкции следует выделить такие моменты:

  1. Минимальные затраты, которые определяются лишь площадью и толщиной покрытия.
  2. Простота изготовления и доступная технология монтажа.
  3. Большой срок службы и возможность корректирования плоскости при проявлении дефектов, перепадов и неровностей.
  4. Идеальная совместимость со всеми существующими разновидностями напольных покрытий.
  5. Превосходная устойчивость к воздействиям влаги и огня, отличное шумопоглощение.
  6. Устойчивость к биологическим и химическим воздействиям.
  7. Возможность регулировки плотности сырья с помощью изменения пропорций.
  8. Соответствие всем нормам экологической безопасности.

Но, кроме плюсов, у керамзитобетонной стяжки есть и минусы. В первую очередь это значительный подъем высоты пола, а также необходимость шлифовки поверхности пола после высыхания состава.

Технология производства

Технология производства керамзитобетонных блоков отличается особой простотой и доступностью, что делает ее по-особому популярной среди широкой аудитории строителей. Такой материал может использоваться для возведения небольшого жилого или хозяйственного сооружения на даче или участке возле дома, строительства помещений на недостаточно хорошем грунте и многих других бытовых задач.

Высокая популярность технологии обусловлена прекрасными свойствами материала и доступной стоимостью производства. Его без особых сложностей можно изготовить непосредственно на частном участке, не применяя сложное оборудование и помощь специалистов.

Блоки из керамзитобетона могут быть и пустотелыми и полнотелыми. При этом, независимо от формы, они включают в себя основной наполнитель — керамзитовый гравий. Полнотелые конструкции востребованы для обустройства фундамента и облицовки наружных стен, а пустотелые исполняют роль звукоизоляционной и теплоизоляционной перегородки между внутренними и наружными стенами здания.

При использовании пористой технологии можно повысить несущие способности фундамента и стеновых конструкций помещения. При этом главное достоинство применения такого бетона заключается в существенном снижении расходов на строительные работы, большом сроке службы изделия и малом весе керамзитобетона.

Состав и пропорции

Без сомнений, в настоящее время одним из самых востребованных строительных материалов является керамзитобетон. Состав на 1 м³ должен включать в себя такие компоненты:

  1. Цементная смесь.
  2. Песок.
  3. Мелкодисперный керамзит, который создается на основе натурального сырья.
  4. Вода без всевозможных примесей и химикатов. Следует отметить, что для разведения смеси ни в коем случае нельзя использовать воду с кислотностью ниже рН 4. Также нельзя задействовать морскую воду, так как она может привести к появлению белого налета.

Также состав керамзитобетона (пропорции на 1 м³ рассчитываются заранее на строительной площадке) может включать в себя несколько дополнительных добавок, таких как опилки, древесная зола и пластификаторы.

Чтобы будущая строительная смесь соответствовала всем требованиям, необходимо придерживаться таких рекомендаций и правил:

  1. Повысить эластичные свойства можно с помощью кварцевого песка.
  2. Чтобы сделать будущий блок влагостойким, в его состав нужно добавить керамзитовый гравий (без песка).
  3. Портландцемент под маркой от М400 характеризуется отличными вяжущими свойствами, поэтому лучше отдавать предпочтение именно этой модели.
  4. Цементная смесь положительно сказывается на прочностных показателях конструкции, однако при наличии этого компонента вес изделия существенно вырастает.
  5. При условии, что будущий блок будет подвергаться температурной обработке, лучше применить алитовый цемент.

Что касается плотности сырья, то она напрямую зависит от компонентов, которые вносятся в состав керамзитобетонных блоков. Пропорции для материала с нормальной плотностью подразумевают внесение крупно-фракционного керамзита. В большинстве случаев подобные блоки используются для обустройства теплоизоляционных перегородок.

Если речь идет о возведении несущих стеновых конструкций, целесообразно применить мелкий керамзит. Слишком большое количество мелких частиц сделает блок довольно тяжелым, поэтому специалисты рекомендуют искать «золотую середину», смешивая крупные и мелкие «камни» для керамзитобетона. Пропорции на 1 м³ определяются типом работ, которые планируются.

Рекомендации по приготовлению

Перед тем как приступить к созданию смеси, нужно внимательно изучить рецепт и обратить внимание на несколько рекомендаций. Это позволит избежать многих трудностей на разных этапах производства, а также получить высококачественный продукт с наилучшими характеристиками:

  1. Чтобы получить качественный керамзитоблок, лучше применить мощную бетономешалку. При этом на этапе замеса компонентов сначала в контейнер вносят воду, затем цементную смесь и воду. Керамзит добавляется лишь после тщательного перемешивания этих трех составляющих.
  2. Чтобы сделать конструкцию более прочной и устойчивой к большим нагрузкам, рекомендуется использовать арматуру.
  3. Лучшими характеристиками обладает тот цементный раствор, который способен полностью покрыть керамзитовые частицы.
  4. При выполнении замеса нужно следить за временем — оно не должно превышать семь минут на один замес. Если не соблюдать такое правило и замешивать компоненты слишком долго, это негативно скажется на качестве и эксплуатационной пригодности конечного продукта. Как только смесь получит сметанообразную консистенцию и в ней не будут присутствовать всевозможные комочки, бетономешалку можно остановить.

Убедиться в готовности смеси несложно: для этого нужно зачерпнуть лопатой однородную массу и посмотреть, расплывается ли она или нет. Если горка начинает расплываться по лопате — это указывает на то, что керамзитобетон слишком жидкий. Если консистенция устойчивая и не сыпучая, значит, требуемое соотношение компонентов достигнуто.

В зависимости от особенностей конструкции для изготовления керамзитоблоков используются разные марки бетона:

  1. М50 — подходит для возведения перегородок.
  2. М75 — является незаменимым элементом для строительства несущих стен для объектов промышленного и жилого назначения.
  3. М100 — используются при строительстве помещений с небольшой этажностью, утеплении ограждающих конструкций и обустройстве монолитных перекрытий полов и стяжек.
  4. М150−200 — эта марка бетона применяется для возведения несущих конструкций и при создании стеновых блоков или панелей. Материал отличается способностью выдерживать сильные температурные скачки и химическое воздействие.
  5. М200 — является востребованным составом для создания легких блоков и перекрытий. Преимуществом материала является устойчивость к влаге и химикатам.

Смеси керамзитоблоков

Как уже говорилось выше, пропорции и рецепт смеси керамзитобетона зависят от особенностей проекта, для которого они предназначаются. Для примера, если нужно изготовить качественные блоки, лучше следовать такой рецептуре:

  1. Для начала смешиваются одна часть цемента и 2−3 части песка.
  2. После получения однородной массы в консистенцию добавляют 0,9−1 часть воды.
  3. Затем состав размешивается еще раз, и к нему вносят 5−6 частей керамзита.

Если наполнитель недостаточно влажный, лучше увеличить объем воды. При отсутствии хорошего песка можно воспользоваться «Пескобетоном». При изготовлении керамзитобетона для пола смешивают одну часть цемента и одну часть воды, три части песка и две части керамзита. Для мокрой КБ стяжки принято задействовать керамзитовый гравий в пропорции 0,5−0,6 м\3 керамзита на 1,4−1,5 т песчано-цементного состава.

Если задача заключается в подготовке материалов для стеновых конструкций, то оптимальные пропорции будут выглядеть следующим образом:

  1. 1 часть цемента.
  2. 1,5 части керамзитового песка с фракцией до 5 мм.
  3. 1 часть мелкодисперного керамзита.

При желании создать керамзитобетон для перекрытий лучше использовать такой замес: 1 часть цемента, 3 части песка, 1,5 части воды, 4−5 частей керамзита.

Виды заполнителей

В качестве заполнителей керамзитобетона могут использоваться самые различные компоненты. Помимо керамзита или керамзитового песка, можно использовать кварцевый песок или более крупную добавку, в том числе и гравий. В таком случае керамзит будет исполнять роль основы.

Среди основных разновидностей заполнителей выделяют:

  1. Гравий с угловатой или округлой формой.
  2. Щебень с неправильной угловатой формой и шероховатой поверхностью.

В зависимости от насыпного веса выделяют 12 марок керамзита, а по показателям прочности используются два типа (А и Б). Приготовить блоки керамзитобетона в домашних условиях гораздо проще, чем может показаться вначале. Главное — соблюдать вышеперечисленные рекомендации, следовать пошаговым инструкциям и не отклоняться от установленной рецептуры. В таком случае конечное сырье получится максимально качественным, надежным и долговечным.

Керамзитобетонные блоки своими руками: состав, пропорции

Изготовить строительные керамзитобетонные блоки своими руками возможно. Для этого следует строго соблюдать установленные пропорции смеси. А чтобы готовое изделие соответствовало заявленным стандартам ГОСТа 33126–2014, для придания ему прочности и надежности рекомендуется использовать специальный станок для изготовления такого вида стройматериала.

Посмотреть «ГОСТ 33126-2014» или cкачать в PDF (230 KB)

Керамзитоблоки по своим свойствам не уступают бетонными, только в них используется не щебень, а керамзит.

Характеристики

Блочные элементы из керамзитобетона изготавливаются из бетона различных марок, все зависит от того, какими свойствами должно обладать изделие и какова сфера его применения. Бетон с наполнителем из керамзита бывает таких разновидностей:

Материал по структуре может быть уплотненным, крупнопористым, поризованным.
  • крупнопористый;
  • поризованный;
  • уплотненный.

Блоки используются для возведения конструкций различного предназначения. Учитывая сферу применения, различают такие виды этого стройматериала:

  • конструктивный;
  • конструктивно-теплоизоляционный;
  • теплоизоляционный.

Если состав и указанные пропорции для керамзитобетонных блоков соблюдены строго, получится качественный материал, обладающий такими достоинствами:

  • надежная теплоизоляция;
  • увеличенная прочность;
  • высокий коэффициент морозостойкости;
  • малый уровень расширения и деформации;
  • экологическая чистота и безопасность;
  • небольшая масса;
  • простота монтажа и обработки, изделие можно резать обычной ножовкой.
Достоинства материала основываются на его характеристиках.

Но как и у любого вида стройматериала, у бетона с керамзитом есть свои недостатки, основные из которых:

  • Невозможность возводить многоэтажные конструкции ввиду повышенной пористости структуры блока.
  • Узкая сфера применения керамзитобетона.
  • Необходимость в дополнительной наружной отделке, потому что под влиянием негативных погодных условий и механического воздействия поверхность склонна к деформации и разрушению.

Состав раствора

В процессе изготовления керамзитобетонных блочных элементов важно использовать качественное сырье, используемое в строго указанных нормативными документами пропорциях. В состав керамзитобетона входят такие компоненты:

Материал готовится из компонентов, соотносящихся между собой в нужной пропорции.
  • Цемент. Чтобы сделать керамзитобетон прочным и качественным, специалисты советуют добавлять в раствор цемент маркой не ниже М400.
  • Керамзит. Материал, используемый вместо щебня, отличающийся пористой структурой и небольшим весом. Для производства керамзитоблоков используется фракция 5—10 мм.
  • Песок. Не должен иметь примесей глины и чернозема. Используется в качестве наполнителя, создающего скелет блочного элемента. Допустимые фракции песка — средняя и крупная.
  • Вода. Изделие выйдет более качественным, если вода используется очищенной.

Для увеличения пластичных свойств керамзитоблока разрешено добавлять в массу средство для мытья посуды либо жидкий порошок. Химическая реакция между компонентами способствует образованию внутри воздушных микропор. Благодаря такому эффекту повышается коэффициент влаго- и морозоустойчивости, что положительно влияет на качество готового изделия.

Оборудование и инструменты

При постоянной необходимости в изготовлении изделий стоит купить оборудование, а не мучиться с подручными средствами.

Если средства позволяют и решено наладить беспрерывное производство материала на керамзите, можно купить специальное оборудование для производства керамзитобетонных блоков. Сюда входит вибростанок, имеющий ровное основание. Вибрации на таком устройстве строго отрегулированы, благодаря чему во время производства готовые блоки будут полностью соответствовать заявленным физико-техническим характеристикам.

Чтобы приготовить качественный, однородный раствор, потребуется бетоносмеситель, минимальный объем бункера должен быть 130 л. Помимо спецоборудования, понадобятся такие инструменты:

  • лопата;
  • ведро;
  • мастерок;
  • металлический лист для подложки;
  • деревянные доски для опалубки или готовые формы.

Технология производства своими руками

Формы и опалубка

Несложно из досок соорудить опалубку для изготовления изделий.

Чтобы изделие получилось нужных размеров, необходимо подготовить формы для керамзитобетонных блоков. Для этого понадобятся деревянные доски и металлический лист-подкладка. С помощью рулетки делается разметка параметров формы, далее ножовкой из доски вырезаются поддон и 2 части, соединенные буквой «Г». Элементы соединяются уголками, внутреннюю часть формы рекомендуется оббить тонким металлическим листом, чтобы готовое изделие можно было легко вынуть. Если это невозможно, тогда нужно перед заливкой смазать внутренние стенки опалубки техническим маслом.

Пропорции раствора

Чтобы изготовить прочные блоки для стен, рекомендуется соблюдать пропорции керамзитобетона, указанные в частях от общей массы на 1 м куб. готового раствора. Данные представлены в таблице:

КомпонентыПропорции на 1 м³, части
Портландцемент класса М4001
Керамзит6—8
Песок2
Вода0,8—1
Моющее средство или стиральный порошок1

Важно не только соблюдать рецепт приготовления керамзитобетонной смеси, но и соблюдать последовательность введения компонентов:

Вода должна оказаться в бетономешалке первой.
  1. Сначала в бетономешалку заливается вода с разведенным в ней моющим средством.
  2. Далее засыпается керамзит, после чего все перемешивается.
  3. Затем добавляется цемент и в конце песок. Масса тщательно перемешивается на протяжении 2—3 мин.

Отлив блоков

Отливать элементы необходимо в предварительно подготовленные и смазанные машинным маслом формы, установленные на максимально ровной поверхности. В помещении, где происходит заливка, не должно быть лишней влаги, оптимальная температура воздуха — 15—18 °C. Так как керамзит легкий и после заливки сразу всплывает, пока масса не схватится, необходимо гранулы утрамбовать внутрь блока. Для этого лучше использовать вибрационный станок для производства керамзитобетонных блоков. Но если оборудования нет, можно воспользоваться широким бруском, которым массу трамбуют до тех пор, пока на поверхности не образуется «цементное молоко».

После заливки в формы смесь обязательно нужно утрамбовать.

Как происходит сушка?

Через сутки утрамбованное изделие можно извлекать из опалубки, затем поместить на поддон и дать подсохнуть еще 2—3 дня. Однако, чтобы изготовленный керамзитобетон своими руками получился прочным и соответствовал заявленным характеристикам, специалисты советуют дать ему вылежаться еще месяц. По истечении этого времени стройматериал будет полностью готов к применению. Из него можно смело возводить несущие стены построек любого предназначения.

 

Керамзитобетон своими руками - состав и пропорции на 1м3

Современная технология производства бетона получила новый виток развития. Ее результатом стало появление керамзитобетона – это улучшенная разновидность бетона, где в качестве наполнителя применяется не традиционный щебень, а керамзит.

В этой статье вы узнаете про состав и пропорции керамзитобетона на 1м3, а так же мы расскажем в какой последовательности загружать компоненты при замешивании раствора «своими руками».

Для тех кто не знает что такое керамзит, привожу объяснение: искусственный стройматериал, представляющий собой обожженную глину легкой плавкости. Чаще всего керамзит имеет гранулированную форму и коричневато-бардовый цвет.

Преимущества керамзита

Прежде всего, это превосходная комбинация легкости и высокой прочности. Использование керамзита в качестве наполнителя в бетоне имеет ряд преимуществ, главное из которых – снижение веса бетона при неизменной прочности.

Несмотря на то, что керамзит гигроскопичный материал (впитывает воду), он ничуть не теряет в качестве при длительном нахождении под воздействием влаги.

Вопрос о пропорциях керамзита в бетоне на 1м3 чаще всего создает много споров, разные мнения возникают именно из-за высокой впитываемости материала.

 

 Загрузка ...

Керамзитобетон — состав и пропорции на 1м3, таблица:

Рассмотрим процесс изготовления керамзитобетона более детально. Для приготовления строительной смеси 1м3 мы используем следующие компоненты:

  • марка керамзита по прочности П150 — П200, по насыпной плотности 600-700;
  • марка бетонной смеси по удобоукладываемости — П1, класс бетона по прочности на сжатие В 20;
  • цемент марки 400;
  • песок строительный.

из книги В.Г. Батракова «Модифицированные бетоны».

Керамзитобетон своими руками — замес в бетономешале

Пропорции для керамзитобетонных блоков на один замес (жесткая бетонная смесь): вода 5 литров, мыльный раствор 50 мл, песок 28 литров, цемент (М400) 7 литров, керамзит (фр.0-10) 36 литров.

Состав керамзитобетона пропорции в ведрах

Загрузка компонентов при замешивании раствора (используем стандартное ведро 10 литров): наливаем в бетономешалку воду (0,5 ведра) и мыльный раствор. Включаем аппарат. Добавляем туда пол ведра цемента. Засыпаем 3 ведра песка, последним добавляем 4 ведра керамзита. Для наглядности смотрите видео!

Индикатором качественного раствора станет тот момент, когда цементная глазурь полностью покроет гранулы керамзита. Приготовленный керамзитный раствор подается в формовальные блоки для последующего затвердевания.

Видео: приготовление бетонной смеси для керамзитоблока

На заметку ремонтнику: оказывается штробить стены под проводку без пыли можно и даже нужно. Узнайте как это сделать!

 Загрузка ...

Статьи по теме:

состав и пропорции, своими руками

Керамзитобетон — аналог бетонного раствора, используемого для половой стяжки. Только в составе стройматериала вместо мелкой щебенки используются вспученные глиняные гранулы, в результате получается теплое половое основание. Соблюдая для керамзитобетона пропорции, установленные строительными нормами, его можно приготовить самостоятельно. Но керамзитобетон — это хрупкий строительный материал, поэтому его не используют для выравнивания поверхностей, которые будут впоследствии подвергаться постоянным нагрузкам.

Материал представляет собой композит с пористой структурой, применяемый в строительстве.

Виды керамзитобетона и их характеристики

Основные характеристики керамзитобетона определяют его марка и плотность. Эти показатели зависят от используемых компонентов в составе строительного материала и их фракций.

По плотности различают 3 категории стройматериалов:

  • беспесчаные;
  • поризованные;
  • плотные.

Плотный бетон содержит повышенное количество цементного состава.

Для производства беспесчаных бетонов применяется цемент, гравий и вода. Песок в раствор не добавляется. Материал недорогой, применяется для обустройства малоэтажных зданий: стен, перекрытий и половых оснований.

Из поризованных смесей производят 3 типа строительных блоков, отличающихся друг от друга прочностными показателями:

  • теплоизоляционные блоки d(400-700) — применяются для утепления стен зданий;
  • теплоизоляционно-конструкционные изделия d(800-1400) — предназначены для утепления и возведения внутренних перегородок;
  • стеновые стройматериалы d(1400-2000) — используются для строительства инженерных конструкций.

В состав плотного керамзитобетона входит большое количество цемента, при этом его характеристики сочетают свойства поризованного и беспечанного бетона. Этот стройматериал дорогой, поэтому в строительстве используется редко.

Также керамобетон классифицируется по объемной массе.

По этому показателю строительный материал делится на 3 категории:

Вес керамзитобетонных блоков.
  • тяжелый — объемная масса 1200-1400 кг/куб. м, значение прочности — 25 МПа;
  • легкий — объемная масса 800-1000 кг/куб. м, в его состав входит легкий керамзитовый компонент;
  • особо легкий — объемная масса 600-1800 кг/куб. м, значение прочности — 7,5-40 МПа.

При самостоятельном изготовлении бетонного раствора в него можно добавлять, кроме керамзита, шлаковую пемзу или зольный гравий.

Какие марки бывают

Керамзитобетон по прочностным характеристикам может быть следующих марок:

  1. М300 — материал отличается повышенными прочностными показателями, поэтому его используют при строительстве фундаментных оснований и несущих инженерных конструкций.
  2. М200 — используется для отливки легких цокольных перекрытий и производства строительных блоков для возведения стен.
  3. М150 — материал предназначен для отливки стеновых панелей, производства легких керамзитовых блоков.
  4. М100 — состав часто используют для обустройства половых стяжек.
  5. М(50,75) — стройматериал предназначен для обустройства перегородок в помещениях и теплоизоляции наружных стен.

Фракции керамзитобетона.

Что строят из этого вида бетона

Керамзитобетон — это универсальный материал, который широко применяется в строительной области. Его особенность — возможность регулировать необходимую плотность готового стройматериала.

Применение керамзитобетона:

  1. В малоэтажном строительстве. Из легкого керамзитобетонного раствора производят строительные блоки, панели, прочие материалы перекрытия. Часто этот стройматериал используют для возведения бань и как внутренний слой многоуровневых стеновых панелей.
  2. Для обустройства стяжки половых оснований, внутренних перегородок. При заливке стяжки пола материал выполняет теплоизолирующую функцию. Чтобы половая стяжка быстрее затвердела и набрала необходимую прочность, рекомендуется делать раствор в следующей пропорции: 1 часть цемента, 3 части песка, 2 части камня, 1 часть воды.
  3. Производство плит перекрытия. Строительный материал изготавливается по литьевой технологии. Преимущества готовых изделий: сохранение тепла внутри дома, небольшая масса, влагостойкость, продолжительный период эксплуатации. Единственный недостаток — стройматериал достаточно хрупкий.
  4. Возведение фундаментов и несущих стен зданий. Для этих целей применяются высокопрочные керамзитобетоны, изготовленные из портландцемента. Монолитные плиты дополнительно армируют стальным каркасом, что увеличивает прочность материала.

Блоки из керамзита

Блоки из керамзитобетона в зависимости от их назначения изготавливают разных размеров. Изделия могут иметь различный внешний вид. Основными видами стройматериала являются полнотелые и пустотелые блоки.

Пустотелые изделия по форме полостей делятся на следующие подвиды:

  • цилиндрические;
  • прямоугольные;
  • щелевые;
  • мелкощелевые.

Полнотелые изделия, в отличие от пустотелых блоков, имеют высокую прочность, но низкие теплоизоляционные качества. Под заказ такие блоки производятся с отверстиями для металлических штырей.

Основным связывающим компонентом строительных блоков является цемент. При изготовлении материала своими руками необходимо помнить следующее: чем больше цемента добавить в раствор, тем ниже у изделия будут теплоизоляционные показатели. Для повышения водоотталкивающих качеств стройматериала часто используют гидрофобный цемент.

При необходимости выполнения термообработки керамзитобетонных блоков рекомендуется в смесь добавлять незначительную долю алитового цемента. В этом случае при нагревании будет быстрее осуществляться полимеризация изделий.

Состав

Сделать керамзитобетонную смесь самостоятельно несложно. Главное — выдержать пропорции составных компонентов раствора, которые зависят от предназначения материала.

Стандартные пропорции составных компонентов керамобетона:

  • 1 доля цемента;
  • 2 доли песка;
  • 5 долей керамзита.

Дополнительно в керамзитобетон могут подмешиваться опилки или зола.

Таблица пропорций бетона.

При изготовлении керамобетона сухие компоненты первоначально тщательно перемешиваются без воды, а уже после этого с жидкостью. Такую смесь можно изготовить самостоятельно. Для приготовления керамзитобетонной смеси рекомендуется использовать только чистую холодную воду, т.к. примеси ухудшают затвердевание бетона. При использовании загрязненной воды на поверхности готовых изделий будет проявляться белый налет, поэтому лучше брать питьевую жидкость.

Если нужно сделать строительные блоки, понадобятся специальные формы. В них заливается готовая смесь, уплотняется с помощью вибрационного устройства, при необходимости добавляется нужное количество раствора. После заливки изделия выдерживаются неделю на свежем воздухе.

Пропорции смеси с керамзитом для различных целей

Керамзитобетон используют не только для изготовления строительных блоков. Это универсальный материал, подходящий для разных целей: заливки половых оснований, возведения стен и обустройства перекрытий сооружений.

Для пола

Пропорции компонентов смеси для выполнения половой стяжки:

  • 1 часть цемента М500 и выше;
  • 2 части мелкофракционного гравия;
  • 3 части керамзитового песка;
  • 1 часть воды.

Сначала все компоненты перемешиваются насухо, затем с водой.

Для стен

Рецепт смеси для возведения монолитных стен сооружений:

  • 1 часть цемента М400;
  • 1,5 части песка;
  • 1 часть мелкофракционного керамзита;
  • 1 часть воды.

Такой раствор применяют в малоэтажном строительстве — до 3 этажей.

Для перекрытий

Соотношение компонентов смеси для обустройства армированных керамзитобетонных перекрытий:

  • 1 часть цемента;
  • 3-4 части песка;
  • 4-5 частей керамзита;
  • 1,5 части воды.

Чтобы бетон получился эластичным, в него нужно добавлять пластификатор. Способ применения материала указывается в инструкции от производителя.

приготовление своими руками состава для блоков и стен

Широкое распространение в строительстве получили легкие бетонные смеси. Керамзитобетон — одна из наиболее популярных разновидностей. Он существенно упрощает проведение строительных работ без потери прочности возводимых конструкций. Отличается высокой долговечностью, подходит для жилых зданий и промышленных сооружений. Для обеспечения наилучших эксплуатационных характеристик можно подобрать оптимальный состав и пропорции керамзитобетона.

Описание материала

Керамзитобетон представляет собой прочный монолитный строительный материал, отличающийся от классического бетона введением в состав смеси керамзита. В традиционном бетоне роль наполнителя играет щебень. Основное назначение керамзита, которым в керамзитобетоне заменен щебень, состоит в снижении массы готовой смеси.

Сырьем для производства керамзита служит глина или глинистый сланец. Исходный материал подвергается обжигу. Различные технологические режимы позволяют получать конечный продукт с заданной плотностью, которая варьируется от 150 до 800 килограммов на кубический метр. Относительная простота технологии производства позволяет поддерживать привлекательный для потребителей уровень цен. Материал отличается хорошими теплоизолирующими свойствами, долговечен, морозоустойчив. Отдельно стоит отметить натуральность и экологичность.

Обычно в состав керамзитобетона входят следующие компоненты:

  • одна часть цемента;
  • две части песка;
  • три части керамзита.

Пропорции могут варьироваться в зависимости от назначения смеси и требуемых параметров прочности.

Иногда керамзитобетон ошибочно называют керамобетоном. Это грубейшая ошибка, поскольку керамобетон готовится не на цементной основе. Этот материал разработан в качестве эффективного огнеупора. Такие свойства обусловлены использованием высококонцентрированных керамических вяжущих суспензий и кремнеземного заполнителя. Вяжущим компонентом классического бетона и керамзитобетона является цемент.

Преимущества и недостатки

Для определения достоинств и недостатков следует обратить внимание на основные характеристики керамзитобетона. Именно от них зависит выбор материала для решения конкретных строительных задач.

Среди основных преимуществ нужно выделить следующие:

  • Небольшая масса готовых изделий. Благодаря пористой структуре керамзита материал имеет малую плотность. Для зданий из керамзитобетонных блоков нет необходимости сооружать громоздкий фундамент, рассчитанный на высокие нагрузки. Самостоятельный монтаж блоков небольшой массы существенно снижает общие трудозатраты и сокращает сроки строительства.
  • Приемлемая прочность. Керамзитобетон можно использовать для сооружения несущих стен и перекрытий, поскольку его прочность незначительно уступает классическому бетону.
  • Хорошие теплоизолирующие свойства. Керамзитобетонные стены и пол обеспечивают сохранение тепла в помещении гораздо лучше, чем выполненные из классического бетона.
  • Прекрасная звукоизоляция. Эта характеристика особенно важна при использовании материала для возведения жилого дома. Помещения будут хорошо защищены от проникновения уличного шума.
  • Экологичность. Это преимущество обусловлено применением в качестве наполнителя керамзита, получаемого из глины. Все компоненты состава не выделяют в атмосферу вредных веществ.
  • Долговечность. Керамзитобетон довольно давно используется в строительстве. За все время применения он зарекомендовал себя как надежный материал, способный прослужить много десятилетий.
  • Низкая стоимость. Благодаря небольшой стоимости керамзита материал можно считать одним из самых дешевых вариантов изготовления бетонной смеси.
  • Простота изготовления и распространенность. Несложная технология производства блоков привела к широкому распространению мелких производств. В связи с этим материал можно приобрести даже в небольших населенных пунктах, что обеспечит дополнительную экономию.
  • Легкое проведение отделочных работ. Поверхность керамзитобетона характеризуется высокой адгезией. На ней прекрасно держатся штукатурные смеси любого состава.

Некоторые особенности керамзитобетона создают определенные ограничения в применении. Основным недостатком материала считается высокая влагопроницаемость и повышенное впитывание воды. Влага активно поглощается пористой структурой керамзита. Особенно опасно это свойство при отрицательных температурах, когда накопившаяся жидкость начинает кристаллизоваться и может привести к образованию трещин. По этой причине использовать такой стройматериал можно только в изолированных от погодных воздействий конструкциях. В случае применения материала для возведения наружных стен необходима тщательная гидроизоляция.

К незначительным минусам можно отнести и необходимость в дополнительной теплоизоляции. Несмотря на хорошие теплоизолирующие свойства материала, здания из керамзитобетона требуют утепления наружных стен.

Варианты применения

Керамзитобетон получил широкое распространение в строительстве.

Наиболее популярны два способа его применения:

  • Для изготовления кирпичных блоков.
  • Для создания наливного пола, то есть сооружения стяжки.

Не должно смущать то, что блоки именуются кирпичными. Кирпичами называются строительные элементы заданной формы, из которых сооружается кладка. Материал изготовления не играет роли. Таким образом, любые строительные блоки можно называть кирпичами.

Изредка керамзитобетон применяют и для возведения монолитных стен. Это может потребоваться в зданиях с деревянными перекрытиями, поскольку снижение массы стен является приоритетной задачей.

Изготовление блоков

Чтобы сэкономить на покупке готовых блоков, можно сделать керамзитобетон своими руками. Пропорции компонентов могут незначительно отличаться, однако наиболее популярен следующий рецепт: одна часть цемента; две-три части песка; одна часть воды; три-пять частей керамзита.

Для изготовления раствора рекомендуется использовать бетономешалку, она существенно упростит перемешивание. Большое значение имеет последовательность смешивания компонентов:

  • Первым в бетономешалку или бункер для перемешивания загружается цемент. К нему добавляется песок. Эти сыпучие составляющие необходимо тщательно перемешать.
  • К полученной смеси постепенно добавляется вода, состав перемешивается до получения однородной консистенции.
  • На заключительном этапе в цементный раствор вводится керамзит. Смесь размешивается до равномерного распределения наполнителя.

Керамзит чрезвычайно гигроскопичен. Он настолько активно впитывает влагу, что иногда смесь может стать практически сухой. Применять ее в таком состоянии не представляется возможным, поэтому требуется добавить небольшое количество воды. Следует добиваться лишь полного покрытия поверхности керамзита цементным раствором. Доводить смесь до жидкой консистенции нельзя, иначе формирование будущего блока будет нарушено, он может рассыпаться при извлечении из формы или будет иметь серьезные дефекты.

Полученный раствор помещают в заранее приготовленные формы. Необходимо проследить за полным заполнением форм, чтобы исключить образование пустот в готовом изделии.

Для упрощения изготовления смеси не обязательно приобретать цемент и песок отдельно. В продаже имеется готовая сухая смесь, называемая пескобетоном. Рекомендуется применять марку М-300 и выше, это обеспечит достаточную прочность готовым блокам.

Выполнение стяжки

Устройство наливного пола предполагает использование жидкой смеси.

Для ее приготовления смешивают:

  • одну часть цемента;
  • три части песка;
  • одну-две части воды;
  • две части керамзита.

Указанное количество воды можно считать базовым. В процессе перемешивания керамзит будет активно впитывать жидкость. Воду можно добавлять до получения консистенции жидкой сметаны. Раствор составляется и перемешивается в той же последовательности, какая рекомендована для изготовления блоков.

Есть дополнительные условия, которые необходимо соблюдать перед нанесением раствора. Бетонная плита перекрытия не должна контактировать с влагой. Нельзя допускать, чтобы сухой бетон или другой материал основания впитывал воду. Для этого требуется обязательная гидроизоляция. Лучше всего для этих целей использовать специальные готовые составы, имеющиеся в продаже. Обычно они выпускаются в виде мастик или эмульсий. Заблаговременно нанесенное на основание гидроизолирующее средство обеспечит правильное затвердевание смеси с образованием монолитной структуры.

Через пару дней раствор достаточно затвердеет. После этого можно приступать к нанесению финишного слоя. Верхний слой формируют из цементно-песчаной смеси. Для удобства можно использовать готовый пескобетон. Консистенция раствора должна напоминать слегка размягченное сливочное масло. Следует избегать излишка жидкости. Рекомендуемое количество воды обычно указано в инструкции по применению.

Монолитность стяжки достигается по прошествии нескольких дней. Для увеличения прочности рекомендуется поддержание влажного состояния в течение месяца. Для этого пол можно слегка обрызгивать водой или просто накрыть полиэтиленовой пленкой.

Стены и перекрытия

Для возведения стен и перекрытий из керамзитобетона используются свои пропорции приготовления раствора.

Обычно смесь для стен имеет следующий состав:

  • одна часть цемента;
  • полторы части песка;
  • одна часть керамзита;
  • полторы части воды.

Заливку проще всего производить в съемную опалубку из досок или фанеры. Чтобы опалубка не впитывала влагу из раствора, рекомендуется покрыть деревянные элементы полиэтиленовой пленкой.

Поскольку керамзитобетон не защищен от впитывания влаги, использовать для армирования металлические элементы не рекомендуется, так как возрастает риск их поражения коррозией. В качестве армирующего материала лучше применять стеклопластиковую арматуру и сетку из того же материала.

Наружные стены из керамзитобетона обязательно должны быть защищены с двух сторон гидроизоляционным материалом. Допускается использовать для этих целей толстый слой штукатурки. В продаже можно найти специальные влагостойкие штукатурные смеси, в том числе предназначенные для наружных работ.

Раствор для сооружения перекрытий можно приготовить со следующими пропорциями:

  • три части песка;
  • одна часть цемента;
  • четыре части керамзита;
  • полторы части воды.

Для сооружения опалубки потребуются профилированные металлические листы, несущие двутавровые балки, фанера, армирующая сетка. Примерный порядок работы выглядит следующим образом:

  • В качестве основания будущего перекрытия укладываются несущие балки.
  • Поверх балок расстилаются профилированные листы, которые станут дном опалубки.
  • Из фанеры изготавливаются боковые стенки опалубки.
  • Внутрь опалубки укладывается армирующая стеклопластиковая сетка.
  • Приготовленный раствор заливается в опалубку.

Не следует полагаться на визуальное затвердевание материала. Важно помнить, что расчетную прочность бетонные смеси с любыми наполнителями приобретают по прошествии месяца с момента заливки.

Керамзитобетон завоевал большую популярность в строительстве. Основным его преимуществом является малая плотность, позволяющая упростить возведение зданий и уменьшить затраты на изготовление фундамента. Материал довольно универсален, подходит для изготовления блоков и создания монолитных конструкций. Для каждой строительной задачи существуют свои пропорции составления бетонной смеси, которые обеспечивают наилучшие эксплуатационные характеристики. Простота приготовления раствора способствовала широкому распространению самостоятельного изготовления керамзитобетонных блоков.

состав для стен и перекрытия. Как сделать керамзитобетон своими руками для отмостки? Рецепты приготовления

Бетонные растворы востребованы во всех отраслях строительства. Керамзитобетон – отличный аналог классического бетонного раствора. Особенность материала – наличие глиняных гранул вместо мелкой щебенки.

Из чего состоит раствор?

Для приготовления качественного керамзитобетона потребуется следующее.

  • Керамзитовый компонент. Размер частиц не должен превышать 20 мм. Только так удастся добиться необходимой прочности и плотности материала.
  • Бетон. Подойдет материал класса В15 и выше. С его помощью получится ускорить процесс замеса, а также сделать проще укладку смеси в форму.
  • Цемент. Требуется для повышения цепкости материала и быстроты его застывания.
  • Песок. В этом случае стоит отдать предпочтение карьерному песку, который будет заполнять пустоты между частицами керамзита.
  • Вода. Она должна быть холодной и чистой. Наличие примесей в жидкости ухудшит процесс затвердевания бетона.

Если есть необходимость, в состав добавляют опилки или золу. При замешивании смеси керамзитобетона сначала в емкость добавляют компоненты без воды. В конце вливают жидкость, которая позволяет получить смесь нужной консистенции.

Чтобы получить керамзитобетон высокого качества, который будет способен справиться с поставленной задачей, необходимо предварительно рассчитать пропорцию для замеса ингредиентов. Стоит отметить, что опытные строители уже рассчитали оптимальное количество смеси для 1 кубического метра. В сети можно встретить таблицу, посредством которой удастся получить керамзитобетон нужной марки.

Соотношение компонентов в таблице определено тем, где планируется использовать материал. Оптимальная пропорция бетона: 1: 3,5: 4,5, где 1 – это одна часть цемента, 3,5 – это три с половиной части песочного уплотнителя и 4,5 – это четыре с половиной части керамзита. Воду добавляют преимущественно в конце в пределах 1,5 части. В таблице подсчитаны пропорции для марок бетона М100, М150, М75, М50, М250.

Керамзитобетон – универсальный материал, востребованный в строительной сфере. Смесь позволяет отрегулировать плотность конечного стройматериала, что и делает керамзитобетон таким популярным. Бетон этого типа используют при следующих работах.

  • Возведение монолитных или блочных стен в строительстве. Легкий керамзитобетонный раствор позволит изготовить прочные блоки, панели и другие конструкции. В основном из такого материала сооружают бани.
  • Устройство стяжки пола. Для достижения необходимой прочности бетона используют особую пропорцию замешивания ингредиентов.
  • Изготовление плит перекрытия. Сборка конструкции осуществляется по литьевой технологии. Плюс керамзитобетонных плит заключается в теплоизоляции материала, которая позволяет поддержать в помещении нужную температуру. Также плиты из керамзитобетона отличаются небольшим весом, устойчивостью к воздействию влаги и долгим сроком службы.
  • Устройство фундаментов. Для сборки крепких оснований используют особый керамзитобетон. При замешивании раствора в него добавляют портландцемент.

В случае изготовления блоков из керамзитобетона потребуется подготовка специальных форм. В них необходимо залить готовую смесь, а затем уплотнить состав посредством вибрационного устройства.

Как сделать для разных целей?

Керамзитобетон – востребованная смесь, которую используют не только для сборки строительных блоков. Преимущества материала.

  • Небольшой вес готовых изделий. Пористая структура керамзита делает плотность готовой конструкции меньше, за счет чего она становится легче. Для установки керамзитобетонных блоков не нужно монтировать громоздкие фундаменты, так как нагрузка от таких стен будет небольшой.
  • Отличные показатели прочности. Керамзитобетон активно используют в малоэтажном строительстве, сооружая из него стены, плиты перекрытия, полы.
  • Хорошая теплоизоляция. Этот параметр позволяет использовать керамзитобетонные конструкции при строительстве жилых домов или бань. Примечательно, что материал сохраняет тепло лучше классического бетона.
  • Надежная звукоизоляция. С помощью стен из керамзитобетона удастся защитить помещение от посторонних шумов с улицы.
  • Экологичность. Для изготовления керамзитобетонных изделий используют глину и керамзит. Компоненты смеси не выделяют в окружающую среду вредных веществ, что делает использование блоков и других конструкций безопасным для здоровья.
  • Долгий срок службы. Изделия из керамзита способны прослужить более 25 лет, не разрушаясь и не деформируясь.
  • Небольшая цена. Низкая стоимость керамзита делает материал доступным и востребованным.
  • Простота изготовления. Сделать смесь можно самому. Для этого подойдут лопаты, если нет возможности организовать замес компонентов в бетономешалке. Несложная технология изготовления керамзитобетонных блоков своими руками сделала материал популярным.
  • Удобство отделки. Плюс керамзитобетонных изделий – высокая адгезия поверхности. Это означает, что на стенах или потолке будет прекрасно держаться штукатурная смесь любого состава.

Материал с его высокими эксплуатационными характеристиками подходит для достижения разных целей. Керамзитобетон часто используют для устройства полов, возведения перекрытий как монолитных, так и блочных. Цель использования керамзитобетона определяет его состав и способ изготовления. Стоит подробно рассмотреть, как приготовить каждый вариант бетона в построечных условиях.

Для перекрытий

Заливка перекрытий требует использования особой смеси керамзитобетона. Стандартная пропорция для плит:

  • цемент – 1 часть;
  • песок – 4 части;
  • керамзит – 5 части;
  • вода – 1,5 части.

Повысить эластичность бетона можно посредством добавления пластификатора в ведро, где находится смесь. Существует несколько требований относительно применения керамзитобетона для сборки плит.

Чтобы соорудить опалубку, необходимо подготовить стальные листы. Желательно, чтобы они были профилированными. Также потребуются двутавровые балки и фанера. Для достижения необходимой прочности материала дополнительно придется закупиться арматурой. Порядок работ по возведению перекрытия подразумевает выполнение следующих этапов:

  • сначала укладывают несущие балки – они выступят в качестве основания будущего перекрытия;
  • поверх балок расстилают металлические листы, которые будут играть роль дна опалубки;
  • из фанеры сооружают боковые стены опалубки;
  • внутрь укладывают арматурную сетку – каркас плиты перекрытия;
  • в опалубку заливают подготовленный раствор.

Бетонная плита не должна взаимодействовать с влагой и загрязнениями. Для этого необходимо предусмотреть наличие гидроизоляционного слоя. Материалы для гидроизоляции можно купить в магазине. Устройство гидроизоляционного слоя поможет ускорить процесс затвердевания смеси, что позволит получить качественную монолитную структуру конструкции.

Для стен

Не секрет, что для возведения вертикальных поверхностей состав керамзитобетона потребуется изменить. У раствора должна быть более плотная консистенция. Рецепт смеси для постройки монолитных стен требует подготовки следующих ингредиентов:

  • цемента М400 – 1 часть;
  • песка – 1,5 части;
  • керамзита мелкой фракции – 1 часть;
  • воды – 1 часть.

Такая пропорция поможет добиться максимальной прочности и ускорит процесс затвердевания материала. Стоит отметить, что раствор подойдет для возведения стен малоэтажных зданий. Максимальная высота сооружения не должна превышать трех этажей.

Для пола

Заливка пола в доме требует соблюдения определенных условий. Во-первых, смесь для заливки необходимо замешивать в строгом соответствии с установленными пропорциями на 1 м3. Замес состава можно производить с помощью бетономешалки или вручную.

Пропорция бетонной смеси для пола:

  • цемент М500 – 1 часть;
  • мелкий гравий – 2 части;
  • керамзитовый песок – 3 части;
  • вода – 1 часть.

Воду добавляют в конце, когда остальные ингредиенты будут тщательно перемешаны. Стоит выделить несколько особенностей.

  • При использовании в работе металла или железных частей в процессе обустройства пола можно добавлять в смесь бетон любой марки. Необходимая прочность в любом случае будет обеспечена.
  • Для обеспечения монолитности пола необходимо добавить шар из теплоизоляционного компонента. Выбор компонента стоит осуществлять, опираясь на его характеристики.
  • Укладка деревянных досок для создания пола потребует наличия дополнительного слоя, который будет предотвращать воздействие влаги на древесину.

Учет особенностей поможет сделать покрытие прочным и долговечным. Также такая рецептура бетона подойдет для устройства отмостки. Она получается прочной и способной выдержать климатические и механические воздействия.

Рекомендации

Чтобы получить качественную керамзитобетонную смесь, стоит учесть ряд рекомендаций от специалистов.

  1. Для создания смеси следует использовать «мытый» песок. Такой материал сделает усадку бетона лучше, а также повысит прочность материала.
  2. Для надежного приготовления смеси лучше пользоваться бетономешалкой. Вручную перемешать ингредиенты состава тоже можно, но качество будет ниже.
  3. Во время работы с бетономешалкой следует соблюдать очередность подачи компонентов. Сначала в емкость нужно залить воду, потом цемент, после – песок. Последний ингредиент – керамзит. Его нужно добавлять только после того, как остальные три образуют однородную массу.
  4. Если для замеса используются лопаты, то очередность добавления ингредиентов можно не соблюдать. Однако в любом случае керамзитобетон стоит добавлять только после того, как получится качественная ЦПС.
  5. Если необходимо повысить прочность керамзитобетонной смеси, стоит добавить арматуру.

Учет перечисленных рекомендаций поможет добиться высокого качества керамзитобетона и надежности изделия или конструкции, которую из него формируют.

Керамзитобетон – востребованный в строительной сфере материал, преимуществом которого является небольшая плотность. Смесь для изготовления керамзитобетона подбирается в зависимости от строительной задачи, которая определяет правильные пропорции компонентов.

О том, как приготовить керамзитобетон, смотрите в следующем видео.

применений керамзита | Латерит

Меню
  • Дом
  • О нас
    • Закрыть
    • Компания
    • Легкий заполнитель из вспененной глины
      • Закрыть
      • Что это?
      • Характеристики
      • Использование
      • Типы
      • Способы доставки
    • Производство
    • Офисы и фабрики
    • Устойчивое развитие
    • Услуги
    • Работа с нами
    • 03 9203
            Строительство Закрыть

            • СТЯЖКИ И НАПОЛКИ
              • Легкие стяжки и основания
              • Стяжки
              • Полы с подогревом
              • Сухие стяжки и сухие заливки
              • Перекрытия
            • Композитные плиты
            • 000 9 -000 Усиление
            • Новинка 9 -000 бетонные плиты
            • Корректирующие тепловые мосты
          • КРЫШИ
            • Плоские крыши
            • Сады на крышах
            • Скатные крыши
            • Изоляция кровельных пространств
          • ЗДАНИЕ 9000 ФУНДАМЕНТЫ
          • ЭТАЖИ
          • ЗДАНИЕ Изоляция
          • Изоляция бетонного настила
          • Изоляция стен фундамента и дренаж
          • Сады
.

означает, достоинства и недостатки керамзита

Большинство профессионалов и строителей выбирают для ремонта цементно-бетонную стяжку пола. Отличная альтернатива утеплению пола - керамзит. Использование такого материала возможно как в многоквартирных домах, так и в частном секторе, а легкий монтаж, невысокая стоимость пола из керамзита приятно удивляют потребителей.

Зачем нужен напольный обогреватель?

Как известно, воздух - наиболее эффективное вещество, обладающее изоляционными свойствами.Что касается изоляции различных поверхностей, то все материалы пористые - воздух задерживается даже в самых маленьких порах, что предотвращает потерю тепла. Материал для утеплителя всегда должен иметь небольшую плотность, чтобы хорошо справляться с поставленной задачей.

Основная функция утепления пола - обеспечение комфортной гостиной. Кроме того, следует провести хорошую теплоизоляцию и звукоизоляцию, чтобы защитить конструкцию от образования плесени и грибка. Керамзит отлично справляется со всеми перечисленными задачами.

Изготавливают такой материал из легкоплавной глины, которую помещают в термокамеру и для смягчения консистенции теста. После подачи высокой температуры глина закипает, и появляются поры. После застывания образуется мелкая фракция, которую называют керамзитом.

Этот тип материала является объемным и благодаря своим естественным свойствам более долговечен, чем другие типы утеплителей для полов.

Преимущества и недостатки керамзита

У этого изоляционного материала есть свои достоинства, среди которых:

  • Экологическая безопасность.Керамзит - натуральный материал, а потому не представляет опасности для человека. Даже при высоких температурах или при взаимодействии с другими веществами этот материал не содержит вредных выбросов.
  • Наличие тепло- и звукоизоляционных свойств. Пористость материала значительно увеличивает его теплопроводность, а также шумоизоляцию.
  • Малый вес. Наличие множества мелких пор делает материал легким;
  • Пожарная безопасность. Керамзит обладает свойствами огня.
  • Долгая жизнь. Благодаря тому, что материал натуральный, срок его службы достигает 10 лет.
  • Простая установка. Утеплить пол можно самостоятельно керамзитом, это не требует особых навыков.
  • выравнивание поверхности. Керамзит создаст ровный слой для последующей обработки поверхности пола.
  • Прочность материала позволяет использовать его даже в производственных помещениях, так как он износостойкий.
  • Наличие ценовой категории.По сравнению с другими видами утеплителей керамзит имеет относительно недорогую стоимость.

Керамзитовый утеплитель для полов имеет множество преимуществ и недостатков:

  • По сравнению с полистиролом и минеральной ватой керамзит теряет теплопроводность.
  • При установке утеплителя возможно образование определенного количества пыли из-за свойств глины.
  • LECA - влагопоглощающий материал, при попадании на него воды его очень трудно высыхать.

Правильная технология укладки поможет избежать некоторых недостатков этого материала.

Также существует новая техника полусухой стяжки, которая позволяет за один день произвести выравнивание пола в квартире.

Видео:

Способы утепления пола керамзитом

Перед тем как утеплить пол керамзитом, необходимо провести подготовительные работы на поверхности. Обеспечить теплоизоляцию через материал можно несколькими способами:

Утепление верхнего слоя уплотненного грунта в частных домах и строениях на земле

Такое утепление пола применяют в частных или дачных домах, а также гаражах и банях.Этот вариант также делится на несколько способов:

  • Пол по лагам земли. Для начала сняли напольное покрытие, затем демонтировали бревна. Далее укладывайте гидроизоляционный материал, а уже потом используйте наливной бетонный блок. Следующим слоем насыпается мелкофракционный материал, например. речной песок. В конце уложена армированная сетка и залита стяжка.
  • Пол Лаг, закрепленный на кирпичном плакате. В этом случае бетонный блок заливается до ровной мощеной кирпичной опоры. Обычно этот метод используется для теплоизоляции деревянного пола, поэтому к столбам прибивают доски, а затем деревянные доски.После используют другие виды утеплителя и заливают бетонный пол.
  • Утеплитель из бетона и керамзита. Такой метод используется в гаражах и банях. Непосредственно на землю укладывают гидроизоляцию, а затем делают стяжку, в которую входят цемент, песок и керамзит. Этот раствор выливается на поверхность пола и сохнет. Используется для укрепления специального цементного молочка.
Изоляция из бетона и керамзита: пенопласт, пленка, арматура, фильтр

Утепление деревянных или бетонных полов в квартирах

Для того, чтобы утеплить пол в многоэтажном многоквартирном доме, необходимо иметь достаточный запас высоты потолков, так как технология соответствует необходимости повышения уровня пола.Весь процесс состоит из снятия напольного покрытия, устранения всех трещин и щелей на поверхности пола. Далее необходимо нанести наиболее уместную в этом помещении гидроизоляцию, после чего насыпать слой керамзита. Его высота должна быть 5-10 см. В конце укладывают армированную сетку и заливают стяжку.

Теплоизоляция бетонного пола

При выборе метода утепления керамзитом руководствуйтесь условиями эксплуатации пола и типом основания.

Видео:

Как выбрать толщину слоя и фракцию материала

Чтобы керамзитовый пол привел к утеплению, необходимо рассчитать толщину слоя и правильно выбрать размер фракции. Обычно используется слой утеплителя деревянных полов в 40 см, для бетонного основания 30 см. Если утепление в частном доме для плиты перекрытия будет достаточно слоя 20 см.

Правильный расчет толщины слоя зависит от ожидаемой нагрузки на следующий этаж - чем она больше, тем выше должен быть слой.Для получения общего количества необходимого материала необходимо умножить площадь помещения на расход керамзита в 1 квартале. м. - это примерно 10 литров на слой 1 см.

Также важен выбор фракции керамзита. На сегодняшний день производители имеют керамзит трех фракций: мелкий - до 5 мм, средний - до 20 мм и крупный - до 40 мм. Первый вариант чаще всего применяется для выравнивания чернового пола, а также в качестве добавок в бетонную стяжку. Гранулы среднего размера используются для теплоизоляции в квартирах, а крупные - для утепления пола в гараже.

Пошаговое описание технологии утепления пола

Утепление пола керамзитом можно проводить самостоятельно, следует лишь придерживаться правил и соблюдать определенную технологию работы.

  1. Обучение. Первый этап заключается в демонтаже старого паркета, а также его тщательной уборке. Все, что раньше лежало на полу, нужно убрать, а затем очистить основание. Чаще в основе перекрытия лежит бетонная плита.Для чистки твердых поверхностей используйте металлические щетки, которые удаляют даже несвежий мусор и грязь. После очистки пола подместите или пропылесосите его, а затем промойте водой. Все обнаруженные трещины и отверстия необходимо заделать раствором или специальным клеем. Трещины в полу заделаны пеной.
  2. защита коммуникаций. Ведь, чтобы не повредить проводку и другие коммуникации, их необходимо закрепить. Делается это с помощью специальных креплений, предварительно намотанных трубок и проводов из полиэтилена.
  3. Следующий важный этап - гидроизоляция пола.Лучше всего использовать утеплитель типа покрытия - специальную битумную мастику. Его наносят на подготовленную поверхность широкой кистью или валиком с длинной ручкой. Необходимо помнить, что гидроизоляция также наносится по периметру стен на высоте примерно 10 см от пола. Битумная гидроизоляция должна высохнуть, в дальнейшем лучше повторить несколько слоев.
  4. Стяжка пола
  5. . Перед выполнением стяжки необходимо установить маячки. Для использования в керамзитовой стяжке маяков Tshape, изготовленных из металла.Установка маяков производится также как и на обычные цементные стяжки.

Далее стяжка пола. Она может быть сухой или наполнителем. Если выбран первый вариант, вам просто необходимо залить керамзит нужной толщины. После этого непосредственно монтируется сам пол.

Вариант сухой засыпки пола из керамзита и листов КНАУФ

Жидкая стяжка выполняется в несколько подходов: сначала керамзит смешивают с раствором для пола и заливают слоем.Второй этап заливается обычной бетонной стяжкой, которая выравнивается по маякам. Время полного высыхания пола - около месяца.

Утепление пола - эффективный метод утепления керамзитом не только в жилых домах, но и в других помещениях, не предназначенных для постоянного проживания.

Видео:

.

Важность глины в геотехнической инженерии

1. Введение

Геотехническая инженерия - это обширная дисциплина, состоящая из механики грунтов и фундаментостроения. Геотехническая инженерия также называется геотехнической инженерией или геомеханикой. Геотехническая инженерия обращается к применению инженерной механики к проблемам почвы и горных пород. Свойства, поведение и эксплуатационные характеристики грунтов рассматриваются инженерной механикой. В дальнейшем полученные данные обрабатываются и интерпретируются [1].Инженеры-геотехники учитывают оползни и землетрясения при планировании и проектировании сооружений для зданий, дорог, насыпей и свалок. Инженеры-геологи также изучают миллиарды лет геологической истории через почвы. Поэтому исследования неоднородности почв требуют решения сложных задач. Все типы инженерных сооружений, такие как жилые дома, служебные здания, мосты, плотины, дороги и аэропорты, расположены на земле или в земле. Как сказал Ричард в 1995 году, «поддерживается почти каждым строительным грунтом или камнями.Без опоры либо летают, либо плавают, либо падают »[2]. Даже если они хорошо спроектированы, безопасность инженерного сооружения не может быть обеспечена при недостаточной несущей способности, высоком потенциале набухания / усадки и оседании (сжатии) грунта. По этой причине геотехнические работы в почвах стали обязательными. Многие исследования проводились в 1910-х годах из-за большого количества оползней и доков, произошедших в Швеции. Рекомендации, полученные в результате этих исследований, теперь применяются в качестве метода анализа оползней, известного как метод шведских срезов.В 1979 г. Скемптон представил расчеты, связанные с увеличением числа сносов стен [2]. Сегодня новейшие технологии, используемые в геотехнической обработке почвы, являются проблематичными для транспортировки энергии в связи с ростом индустриализации и различных видов строительства.

Если посмотреть на историю инженерной геологии, то Турция занимает важное место. Карл фон Терзаги, основоположник геотехнической инженерии или отец механики грунтов, исследовал галичскую глину в Турции и заложил основы геотехнической науки.В своих исследованиях богатой глиной земли, которой сегодня много, Терзаги удалось получить образцы глины с побережья Черного моря (Килиос) с помощью двух отважных студентов, которые пережили множество трудностей, в том числе бандитов, и находясь в 20 км от моря. ближайшая автострада. Глины в исследовании Терзаги в 1925 году пронумерованы II и IV в книге, которая озаглавлена ​​«Механик Эрдбау». Эта книга считается основополагающим документом современной механики грунтов. Математическая формулировка консолидации глины под постоянным давлением с течением времени была исследована в этой книге, и было обнаружено, что может быть аналогия между теплопроводностью и демпфированием дополнительного давления воды в пустотах.Таким образом, «проблема консолидации глины» решена во всех ее аспектах. В 1925 году результаты исследований Терзаги в Турции были опубликованы в книге «Основы физики почвы и механики грунтов» издательства Franz Deutick в Вене. Эта книга признана Всемирным обществом инженеров-строителей основополагающим документом для современного наземного строительства [3].

Первое здание, которое приходит на ум в связи с проблемами почвы, - это Пизанская башня. Его строительство началось в 1173 году и длилось примерно 200 лет с перерывами.Башня начала наклоняться во время строительства, и наклон продолжился после завершения строительства. В 1982 г. холм был 58,4 м в длину и отклонился от отвеса на 5,6 м (рис. 1). Данная почвенная проблема объясняется оседанием глинистого грунта на высоте до 11 м от поверхности [2]. Почвы, представляющие интерес для геотехнической инженерии, образуются в результате разрушения горных пород. Этот процесс состоит из физического и химического выветривания. Глина в основном состоит из химически измененных и различных материалов коренных пород.Изменение состава и структуры из-за физических, химических и биологических процессов, происходящих в горных породах, называется выветриванием. Физическое выветривание - это механическое разрушение горных пород в результате теплообмена и воздействия ледников, волн и ветра. Биологическое выветривание является результатом деятельности растений и животных в скале. Химическое выветривание вызывается эффектами окисления, восстановления, гидролиза, карбонизации и органических кислот в горных породах. В результате выветривания образуются всевозможные почвы.При физическом выветривании образуются блоки из горных пород, гравия, песка и ила, тогда как глинистые минералы образуются в результате химического выветривания [4]. В геотехнической практике глина обычно рассматривается как проблемный грунт. Когда эти почвы видны во время строительства дорожных дамб, стен из жидкого навоза, аэропортов и свалок отходов, это становится еще более важным. Глины обычно имеют низкую прочность, высокую сжимаемость и большие изменения объема. Из-за высокой пластичности, проницаемости, несущей способности и осадки глины, это материал, который изучался и все еще изучается в геотехнической инженерии.В этом исследовании обсуждаются характеристики глины и отмечается ее важность в инженерно-геологической практике. Эта глава состоит из пяти основных разделов. В первом разделе представлено значение глины в инженерно-геологической инженерии. В разделе 2 дается определение глины и обсуждаются ее свойства. В разделе 3 представлено использование глины в инженерно-геологической практике. В Разделе 4 резюмируются предыдущие связанные исследования. Наконец, в разделе 5 кратко излагается тема глины и приводятся выводы из этой главы.

Рисунок 1.

Пизанская башня [2].

2. Определение и свойства глины

2.1. Определение глины

Глинистые минералы называются вторичными силикатами, потому что они образуются в результате выветривания первичных породообразующих минералов. Глинистые минералы встречаются с мелкими частицами (<0,002 мм), очень мелкозернистыми и чешуйчатыми; они отделены от песка, гравия и ила из-за отрицательной электрической нагрузки на краях кристаллов и положительной электрической нагрузки на грани.Глинистые минералы состоят из двух основных структур. Во-первых, кремнеземный кислород образуется за счет связывания ионов кремния с атомами кислорода со всех четырех сторон (тетраэдр). Во-вторых, образуется восьмиугольник с ионами алюминия и магния, координированными с восьми сторон с ионами кислорода и гидроксила (октаэдр). Все глинистые минералы состоят из октаэдрических и тетраэдрических листов с определенными типами катионов, которые находятся в различных формах и связаны друг с другом в определенной системе. Изменения в структуре октаэдрических и тетраэдрических пластин приводят к образованию различных глинистых минералов [4].Более распространенные группы глинистых минералов включают каолинит, иллит и смектит (монтмориллонит). Каолинит состоит из пластин кремнезема и оксида алюминия, и эти пластины очень прочно связаны, потому что каолиновая глина очень устойчива (рис. 2а). Иллит имеет слои, состоящие из двух пластин кремнезема и одной пластины оксида алюминия (рис. 2b). Однако иллит содержит ионы калия между каждым слоем; эта характеристика делает структуру глины более прочной, чем смектит. Смектит имеет слои, состоящие из двух пластин кремнезема и одной пластины оксида алюминия.Поскольку существует очень слабая связь между слоями, большое количество воды может легко проникнуть в структуру (рис. 2c). Это событие вызывает набухание такой глины [5].

Рисунок 2.

Отображение структуры обыкновенных глинистых минералов.

2.2. Свойства глины

Определенные свойства глины влияют на структуру почвы, которая определяет ее свойства, такие как прочность, гидравлическая проводимость, осадка и набухание. Эти особенности включают изоморфное замещение и способность поверхностного анионного и катионного обмена.Это событие называется изоморфным замещением, если октаэдрические или тетраэдрические узлы заменяются другим атомом, обычно встречающимся в другом месте. Удельная поверхность - это свойство твердых тел, которое определяется как общая площадь поверхности материала на единицу массы. При отделении гидроксильных ионов от поверхности глины, что приводит к дефициту кристаллов в головке кристалла, анионы впоследствии прикрепляются к поверхности, и содержание органических молекул вызывает дисбаланс электрической нагрузки. Этот дисбаланс приводит к чрезвычайному сродству глины к воде и катионам в окружающей среде (рис. 3).Вода - это диполярная молекула, а именно, она имеет один положительный и один отрицательный заряд. Поверхность глиняного кристалла электростатически удерживается на молекуле воды. Кроме того, вода удерживается в кристалле глины за счет водородных связей. Кроме того, отрицательно заряженные глиняные поверхности притягивают катионы в воде. Катионо-анионные изменения в глинистых минералах различаются между глинистыми минералами. Следовательно, ожидается, что глина, которая привлекает больше молекул воды к поверхности, будет иметь большую пластичность, большее набухание / усадку и большее изменение объема в зависимости от нагрузки на нее.Таким образом, вода влияет на глинистые минералы. Например, содержание воды изменяет пределы консистенции, что влияет на пластичность грунта. В конечном итоге изменение пластичности глины напрямую влияет на механическое поведение почвы. Исследования обычно принимают глины как полностью насыщенные в геотехнической инженерии. Следовательно, на поведение глин влияет расположение отдельных частиц глины и содержание воды в порах. Поверхности глин заряжены отрицательно, поэтому они имеют тенденцию адсорбировать положительно заряженные катионы в поровой воде.Таким образом, катионы на поверхности частицы глины, попадающие в воду, распространяются в жидкость. Это покрытие называется двойным слоем. Вкратце, катионы распределяются вокруг отрицательно заряженной поверхности частиц глины с наибольшей плотностью у поверхности и меньшей плотностью с увеличением расстояния от поверхности. Катионы образуют положительно заряженный слой, а двойной слой создается с отрицательно заряженной поверхностью частиц глины. Двойной слой влияет на расположение частиц глины, а значит, и на физические и механические свойства почвы [6].Взаимодействие этих сил в значительной степени контролирует инженерное поведение грунтов. В то же время это взаимодействие приводит к образованию различных составов и поселений в почвенных плоскостях, которые определяются как структуры в глинистых грунтах [4]. Температура окружающей среды, осадки, уровень грунтовых вод, pH и соленость - все это играет роль в свойствах глины, а также в преобразовании породы в глину. Глина, полученная из одной и той же породы, может быть разной в разных условиях окружающей среды.

Рис. 3.

Отображение частиц глины и заряда поверхности.

2.3. Структура глины и физико-химические свойства

Вокруг глины, покрытой жидкостью, имеются изменяющиеся по расстоянию двухтактные кривые. Если есть сила, поднимающая два глинистых минерала, частицы слипаются. Это называется флокуляцией. Если результирующая сила является осевой, частицы отделяются друг от друга; это называется дисперсией. Ориентация частиц почвы варьируется от флокулированной до дисперсной (рис. 4).Силы между частицами важны для глины, потому что поведение глины зависит от геологической истории и структуры. Эта разница в ориентации мелкозернистых грунтов влияет на инженерное поведение грунта. Геологический процесс образования почв в природе определяет их расположение. По этой причине инженерно-геологические исследования интересуются физическим и механическим поведением грунтовых конструкций, а также прочностью между структурой, структурой и характеристиками грунтов.Существует множество исследований, посвященных влиянию ориентации почвы на свойства почвы, такие как прочность, гидравлическая проводимость и набухание-усадка по отношению к каждой частице [7–12]. Ingles [7] исследовал ткань почвы во время уплотнения. За счет увеличения степени ориентации частиц общий объем пустот уменьшился.

Рис. 4.

Ориентация частиц глины.

Флокуляция увеличивается в зависимости от концентрации электролита, валентности иона, температуры, уменьшения диэлектрической проницаемости, диаметра гидратированных ионов, значения pH и количества ионов, поглощенных поверхностью.Инженерные свойства почвы зависят от размера, формы, большой площади поверхности и отрицательного поверхностного заряда частиц глины. В 1925 году Терзаги предложил идею расположения глины. Он сказал, что глинистые минералы прилипают друг к другу в точках соприкосновения с силами, достаточно сильными, чтобы образовать сотовую структуру. В 1932 году Касагранде показал, что эта сотовая форма представляет собой особую структуру в глинистых почвах, и эта структура может варьироваться в зависимости от многих характеристик окружающей среды [4].На рис. 5 показано дальнейшее сжатие по мере отстаивания почвы. Позже другие исследователи также предложили тканевые модели [13–17].

Рис. 5.

Модель ткани Касагранде (1932 г.) [4].

Коллинз и МакГаун [17] определили расположение элементарных частиц, сборки частиц и поровые пространства в модели ткани. Исследователи представили расположение элементарных частиц, состоящее из одной глины, ила или песка, которое показано на рис. 6a и b; групповой эффект глиняных плит показан на рисунке 6c, а взаимодействие между илом и песком показано на рисунке 6d.Сборки частиц содержат одно или несколько наборов элементарных частиц или небольших кластеров частиц. Поровое пространство определяется расстоянием между компоновками элементарных частиц и сборками частиц. Беннет и Хулберт [18] предположили, что ткань почв в основном определяется физическим расположением частиц, которое достигается во время отложения отложений физико-химическими условиями среды отложения. Ткани почв описывают кластеры, кластеры образуются другими кластерами, а пространство между кластерами и структура почв описывает ткань, содержание минералов и силы дезактивации.Кроме того, ткани почв иногда можно увидеть под микроскопом. Структуру почв можно более подробно изучить с помощью рентгеновского дифрактометра (XRD) и растрового электронного микроскопа (SEM).

Рисунок 6.

Расположение частиц глины [11]. а) расположение элементарных частиц глины; (б) расположение элементарных частиц песка и ила; в) глинистые комплексы; (d) расположение ила и песка, покрытых глиной; (e) не полностью определенная договоренность.

3. Роль глины в инженерно-геологической инженерии

В исследованиях поведения почвы, которые не учитывают физико-химические и микроструктурные свойства глинистых почв, может отсутствовать важная информация о физических и механических свойствах почвы.Это связано с тем, что большинство физических и механических воздействий можно объяснить физико-химическими и микроструктурными свойствами почвы. В общем, глина - нежелательный материал, потому что она создает серьезные инженерные проблемы. В отличие от других минералов того же размера, глина при смешивании с водой образует грязь. Глина пластична, ее можно формовать в тесто, а при приготовлении она превращается в твердое вещество с большим приростом прочности. Глина обычно увеличивает объем во влажном состоянии, а после высыхания ее объем уменьшается, что создает множество трещин.

3.1. Физико-механическое поведение глины

В геотехнической инженерии важно определить тип глины, так как этот тип напрямую влияет на важные свойства глины, такие как пределы Аттерберга, гидравлическую проводимость, набухание-усадку, оседание (сжатие) и сдвиг. сопротивление. Пределы Аттерберга, известные как пределы консистенции, определяют взаимосвязь между частицами почвы и водой и состоянием почвы относительно изменяющегося содержания воды. С повышением содержания влаги глина переходит из твердого состояния в полутвердое, в пластичное и в жидкое состояние, как показано на рисунке 7.На Рисунке 7 смесь глины и воды показывает общее уменьшение объема, которое эквивалентно объему воды, потерянной вокруг пределов жидкости и пластичности, когда глина переходит из жидкого состояния в сухое, и если уменьшение содержания воды продолжается, нет наблюдается уменьшение объема. Это предельное значение называется пределом усадки. Следовательно, предел усадки - это содержание влаги, при котором объем почвы не будет уменьшаться, если содержание влаги уменьшится. Предел пластичности - это содержание влаги, при котором почва переходит из полутвердого в пластичное (гибкое) состояние.Предел жидкости - это влажность, при которой почва переходит из пластичного в вязкое жидкое состояние [19]. В геотехнической инженерии обычно используются пределы жидкости и пластичности. Эти ограничения используются для классификации мелкозернистой почвы в соответствии с Единой системой классификации почв, системой AASHTO или TS1500 (Турция).

Рисунок 7.

Зависимость водности почв от объема.

3.1.1. Гидравлические свойства проводимости глины

Вода представляет собой проблему в инженерно-геологических изысканиях, например, вода в пустотах в массе грунта, течет в порах или в давлении или напряжении, которое вода создает в порах.Глина играет важную роль в возникновении проблем с водой, особенно на мелких почвах, и эти проблемы включают проблемы проницаемости, сопротивления сдвигу, схватывания и набухания. Кроме того, дополнительными проблемами могут быть капиллярность, замерзание и инфильтрация. Конструкции, построенные на глине, и устойчивость откосов особенно проблематичны при воздействии воды. Плотины и дамбы также вызывают разрушение конструкций без протечек и трубопроводов [4]. Следовательно, необходимо оценить количество подземной фильтрации при различных гидравлических условиях для исследования проблем, связанных с перекачкой воды для подземного строительства, а также для анализа устойчивости земляных дамб и грунтовых подпорных сооружений, которые подвергаются фильтрующим силам [19].

Коэффициент гидравлической проводимости, обычно используемый в геотехнической инженерии, также используется для определения проницаемости. Гидравлическая проводимость - это свойство, которое выражает то, как вода течет в почве. Почвы проницаемы из-за наличия взаимосвязанных пустот, через которые вода может течь из точек с высокой энергией в точки с низкой энергией [4]. Вязкость жидкости, распределение пор по размерам, гранулометрический состав, коэффициент пустотности, шероховатость частиц и степень насыщения почвы влияют на гидравлическую проводимость почвы.Глиняная почва имеет электрические ионы, поэтому гидравлическая проводимость глин влияет на концентрацию ионов и толщину слоев воды, удерживаемых на частицах глины. В таблице 1 приведены типичные значения для почв. Величина гидравлической проводимости грунтов определяет испытание постоянным напором (для грубых грунтов) и испытание падающим напором (для мелкозернистых грунтов) [19].

Тип грунта k (см / с)
Чистый гравий 100–1.0
Крупный песок 1,0–0,01
Мелкий песок 0,01–0,001
Глина илистая 0,001–0,00001
Глина <0,000001

Таблица 1

Гидравлическая проводимость грунтов [19].

3.1.2. Поведение глины при набухании-усадке

Эффект набухания-усадки на мелкозернистых грунтах часто рассматривается как проблема в инженерно-геологических приложениях.Усадочные свойства глинистых грунтов эффективны для снижения прочности откоса и несущей способности фундамента. Усадка обычно проявляется в результате испарения в засушливом климате, уменьшения количества грунтовых вод и внезапных засушливых периодов. Набухание можно увидеть из-за поднимающейся воды. Эти изменения объема вредны для тяжелого строительства и дорожных покрытий. Набухание возникает, когда внутреннее давление превышает давление покрытия или конструкции. Материальный ущерб от набухания-усадки почв более вероятен в Соединенных Штатах из-за большего давления воды, наводнений, тайфунов и землетрясений [4].

Джонс и Хольц [20] подсчитали, что усыхание и набухание почвы ежегодно наносят ущерб небольшим зданиям и дорожным покрытиям на сумму около 2,3 миллиарда долларов США. Этот ущерб вдвое превышает ущерб от наводнений, землетрясений и ураганов. Крон и Слоссон [21] подсчитали, что ежегодно набухающие почвы причиняют ущерб примерно в 7 миллиардов долларов. По данным Холтса и Харта [22] 60% из 250 000 недавно построенных домов несут незначительные обширные повреждения почвы и 10% несут значительные обширные повреждения почвы каждый год в Соединенных Штатах.Кодуто [2] отметил, что обширные почвы нанесли зданию ущерб на 490 000 долларов за 6-летний период. Ориентировочная годовая стоимость из-за значительных структурных повреждений, таких как трещины на проезжей части, тротуарах и цокольных этажах, пучение дорог и дорожных сооружений, списание зданий; а нарушение работы трубопроводов и других коммунальных служб в Колорадо, по данным AMEC [23], составляет 16 миллиардов долларов.

Давление набухания зависит от типа глинистого минерала, структуры и ткани почвы, катионообменной способности, pH, цементации и органических веществ.Любая связная почва может содержать глинистые минералы, но минералы монтмориллонитовой или бентонитовой глины более активны в отношении набухания-усадки. Набухание рассчитывается путем экспериментов по набуханию с химическим и минералогическим анализом, индексами почвы и некоторыми эмпирическими формулами из классификаций почв. Предел усадки определяется на основании лабораторных испытаний или приблизительного расчета, рекомендованного Casagrande. Свойства глины улучшаются за счет химических добавок, таких как цемент, известь, известково-летучая зола, цемент-летучая зола, хлорид кальция и т. Д.[24].

Сооружения переносят нагрузки на грунт через свои основания. Напряжение, создаваемое конструкцией, сжимает грунт. Такое сжатие массы грунта приводит к уменьшению объема массы, что приводит к оседанию конструкции, и это следует удерживать в допустимых пределах. Поэтому перед началом строительства следует оценить осадку (сжатие). Осадка определяется как сжатие слоя почвы из-за строительства фундамента или других нагрузок.Сжатие проявляется в деформации, перемещении частиц почвы и вытеснении воды или воздуха из пустот. В целом осадка почвы под нагрузкой делится на три категории: немедленная или упругая осадка, которая вызывается упругой деформацией сухой почвы или влажных и насыщенных грунтов без изменения содержания влаги; оседание первичного уплотнения, которое является результатом изменения объема насыщенных связных грунтов из-за вытеснения воды, занимающей пустоты; и вторичная осадка уплотнения - это изменение объема при постоянном действующем напряжении из-за пластической регулировки грунтовых тканей [19].Оседание уплотнения наблюдается, когда конструкция построена на насыщенной глине или когда уровень воды постоянно понижается. Одновременно наблюдается оседание консолидации под действием собственного веса или веса грунта, который существует над глиной. Уплотнение глины занимает много времени, причина этого - низкая гидравлическая проводимость и медленный дренаж глины. Осадку почвы определяют путем одномерного уплотнения (одометр) и гидравлического уплотнения (Роу).В экспериментах регистрируются вертикальные нагрузки и коэффициент пустотности. После этого соотношение между давлением и коэффициентом пустотности определяется по данным измерений. Эти данные также полезны при определении коэффициента консолидации. Коэффициент консолидации определяется методом корня из времени и методом log-t. На рисунке 8 показана взаимосвязь между коэффициентом пустотности и напряжением для типичного теста одометра на уплотнение.

Рисунок 8.

График типичного теста для проверки консолидации с помощью одометра.

3.1.3. Прочность глины на сдвиг

Прочность грунта на сдвиг - один из наиболее важных аспектов геотехнической инженерии. Прочность грунта обеспечивает безопасность геотехнических сооружений. Несущая способность, устойчивость откосов и несущая стена фундаментов зависят от прочности грунта на сдвиг. Разрушение грунтов происходит в виде сдвига. Если напряжения в грунте превышают предел прочности на сдвиг, происходит разрушение. Разрушение почвы при сдвиге зависит от взаимодействия между частицами почвы.Эти взаимодействия делятся на силу трения и прочность сцепления [2]. Когда глинистые почвы подвергаются сдвигу, изменение объема дренажного сдвига зависит от давления окружающей среды, а также от истории напряжений почвы. Кроме того, нагрузка на глинистые почвы не позволяет воде выходить из пор, и, таким образом, создается избыточное давление воды. Если нагрузка не вызывает разрушения, избыточное давление воды гасится, происходит уплотнение и наблюдается изменение объема.Длительный процесс изменения объема глин объясняется очень низкой гидравлической проводимостью. Определение прочности глины на сдвиг выполняется с помощью испытания на прямой сдвиг, испытания на трехосное сжатие, испытания на лопатку и стандартных испытаний на проникновение [4]. На рисунке 9 представлена ​​взаимосвязь между напряжением сдвига и нормальным напряжением для типичного испытания прочности на сдвиг и испытания на трехосное сжатие. После построения диапазона разрушения вычисляются сцепление (c) и угол внутреннего трения (f).

Рисунок 9.

График типичного испытания прочности на сдвиг испытанием на трехосное сжатие.

3.2. Физико-химические и микроструктурные свойства глины

Для определения физико-химических и микроструктурных свойств глинистых почв обычно используются рентгеновский дифрактометр (XRD) и сканирующий электронный микроскоп (SEM). Кроме того, для определения физико-химических свойств и структуры почв используются pH-тест, электрическая проводимость, емкость катионного обмена, гелиевый пикнометр, ртутная порометрия (MIP), анализ площади поверхности (SSA), Brunauer-Emmett-Teller ( BET) или аналогичным образом проводят тест с дзета-потенциалом и дисперсией по длине волны рентгеновской флуоресценции и дифференциальный термический анализ (DTA).Значение pH указывает на степень присутствия ионов H + или OH–. Изменение pH влияет на отношения почвы и воды. Низкий pH указывает на флокуляцию, а высокий pH указывает на дисперсию. Электропроводность глины определяется числом и типом ее ионов. Катионообменная емкость - это мера способности вытеснения изоморфов. Изоморфное смещение - это когда остаются другие ионы с валентностью, равной или отличающейся от валентности этих ионов. Это изменение возникает из-за несбалансированного электрического заряда при каждом изменении.Чтобы предотвратить этот дисбаланс, катионы из окружающей среды проникают по краям глин и между блоками.

Анализ с помощью рентгеновского дифрактометра (XRD): Минералогический состав почвы имеет решающее значение из-за его значительного влияния на поведение почвы; почвы в первую очередь подвержены влиянию физических, химических и механических свойств глины и содержания минералов. В геотехнике важно определить тип минералов, присутствующих в глине, а также их пропорции, чтобы понять механическое поведение.Кривая XRD для типичной глины показана на рисунке 10. Картины дифракции рентгеновских лучей глины показывают минералогический состав монтмориллонита, анортита, кварца, кальцита и кремнезема.

Рис. 10.

Кривая XRD для типичной глины.

Порозиметрический анализ проникновения ртути (МИП): в инженерно-геологической сфере распределение пор по размерам глины существенно влияет на геотехническое поведение почвы. Распределение размеров пор для типичной глины, полученной при испытаниях MIP, показано на Рисунке 11.На этом рисунке показана взаимосвязь между возрастающим проникновением и диаметром пор.

Рис. 11.

Распределение пор по размерам для типичной глины по результатам испытаний MIP.

Растровый электронный микроскоп (СЭМ): микроструктура почв, особенно глин, исследуется с помощью универсального аналитического автоэмиссионного СЭМ сверхвысокого разрешения. СЭМ обеспечивает высокий уровень увеличения. Образцы почвы, увеличенные до 1 000 000 раз, позволяют оценить различия на поверхности путем визуализации структур поверхности.Изменения микроструктурного развития почв играют важную роль в их поведении. В частности, эти параметры могут привести к лучшему пониманию инженерных свойств уплотненных грунтов. СЭМ-изображения типичных глин представлены на рисунке 12. Таким образом, в образцах почвы наблюдаются флокулированные и диспергированные структуры.

Рис. 12.

СЭМ-изображения типичной глины для различного увеличения (a. 1000 ×, b. 10 000 ×, c. 35 000 ×).

Анализ площади поверхности (SSA): На удельную поверхность влияет гранулометрический состав, а также типы и количества различных глинистых минералов.На удельную поверхность влияют физико-химические свойства почв.

4. Предыдущие связанные исследования

Глинистые почвы важны при строительстве зданий, плотин, дорог, аэропортов, тротуаров и автомагистралей [25–34]. Необходимо решить почвенные проблемы, встречающиеся в инженерно-геологических изысканиях. Благодаря двойному слою глина может впитывать воду в 10–500 раз больше собственного веса. Кроме того, это считается проблемной почвой, которая может оседать под нагрузкой, набухать или сжиматься при попадании воды.Karmi et al. [26] исследовали два тематических исследования насыпных дамб в Иране. Исследователи указали, что для больших плотин угол внутреннего трения играет более важную роль в анализе устойчивости, чем параметр сцепления. Чабалар [28] исследовал различное содержание мелких частиц и их влияние на трехосное поведение крупного песка. Следовательно, высокая сжимаемость и другие глиноподобные свойства смесей объяснялись характеристиками частиц (размером и формой). Shanyoug et al. [31] исследовали влияние мелких частиц на механическое поведение полностью разложившегося гранита во время динамического уплотнения цементного раствора.Следовательно, исследователи указали, что эффективность уплотнения увеличивается с увеличением содержания мелких частиц.

Naik et al. [32] исследовали поселение в институциональном здании, расположенном в Южном Гоа, Индия. В этом здании образовались трещины, когда конструкция достигла уровня балок. Некоторые фундаменты были расположены в рыхлом насыпном грунте, в соответствии со стандартным тестом на проникновение, и, таким образом, наблюдалась дифференциальная осадка в фундаменте. Дафалла [34] исследовал сцепление и угол внутреннего трения для гранулированных грунтов, используя испытание на прямой сдвиг для различного содержания глины и различного содержания влаги.Следовательно, исследователи наблюдали резкое падение когезии и угла внутреннего трения во влажной смеси глины и песка, когда содержание глины было высоким. Кроме того, многие исследователи изучали инженерно-геологические свойства глин и их микроструктуру [35–39]. Rajasekaran et al. [35] исследовали влияние извести и гидроксида натрия на микроизменения в двух морских глинах с помощью сканирующей электронной микроскопии (SEM). Эти исследователи предположили, что добавление извести и гидроксида натрия создает оптимальную пуццолановую реакцию.

Horpibulsuk et al. [36] исследовали развитие прочности и изменения микроструктуры стабилизированной илистой глины. Для качественного и количественного анализа микроструктур образцов были проведены исследования с использованием SEM, проникновения ртути и термогравитационного анализа. Исследователи предположили, что объем крупных пор увеличился из-за наличия более крупных частиц за короткий период времени, тогда как объем мелких пор уменьшился из-за затвердевания гидратированного цемента.Некоторые исследования показали, что пределы Аттерберга и гранулометрический состав являются индикаторами минералогии почвы и для определения многих свойств мелкозернистой почвы [37–38]. В то же время пределы Аттерберга влияют на гранулометрический состав и минеральный состав. Например, увеличение площади поверхности наблюдается при увеличении пределов жидкости [37, 40–43]. Grabowska-Olszewska [44] исследовала взаимосвязь между коллоидной активностью и удельной площадью поверхности модельных почв из смесей каолинита и бентонита.Исследователи заметили, что при увеличении фракции глины увеличивается и общая площадь поверхности. Rahardjo et al. [45] исследовали индексные свойства и испытания инженерных свойств остаточных грунтов из двух основных геологических формаций в Сингапуре. Эти исследователи предположили, что вариации индекса и технических свойств остаточных грунтов на разных глубинах в значительной степени зависели от распределения пор по размерам, которое варьируется в зависимости от степени выветривания.

Dananaj et al.[46] исследовали микроструктурное образование и геотехнические свойства Ca-бентонита и Na-бентонита с помощью XRD, химического анализа и сканирующей электронной микроскопии (SEM). Исследователи предположили, что различия в качестве бентонита и количестве смектита влияют на проницаемость. Димитрова и Янфул [47] исследовали факторы, влияющие на сопротивление сдвигу хвостов горных выработок. Эти исследователи предположили, что добавление глины в хвосты рудника вызовет снижение силы трения, но величина этого уменьшения была больше, когда глина была бентонитовой, и ниже, когда это был каолинит.Для стабилизации глин обычно требуются песок, известь, цемент и летучая зола в качестве добавочных материалов. Стабилизация почвы с помощью добавок - самый старый и самый распространенный метод улучшения почвы. Известные применения датируются еще древнегреческими, египетскими и римскими временами [48]. В глинистых почвах предпочтение отдается песку из-за простоты его применения и экономичности. Некоторые исследователи наблюдали глины со стабилизацией песка для изучения механических и микроструктурных изменений почв [49–56].Другие исследователи использовали химические добавки (известь, цемент, летучую золу и битум) для стабилизации глинистых почв [57–62]. Химическая стабилизация может быть наиболее экономичным и практичным методом стабилизации грунта, а также для проблемных грунтов под существующими конструкциями.

Аль-Мухтар и др. [61] исследовали влияние известковых стабилизаторов на геотехнические свойства высокопластичной глины с использованием микроскопических данных. Эти исследователи предположили, что обработка экспансивного поведения почвы в геотехнических свойствах была вызвана в первую очередь пуццолановой реакцией.Аль-Мухтар и др. [62] исследовали расход извести на 10% -ное улучшение извести, каолинит, иллит, смектит-каолинит, смектит-иллит и смектит, используя дифракционные рентгеновские лучи и термогравиметрические тесты. Эти исследователи предположили, что количество извести, потребляемой во время кратковременной реакции, варьируется от нуля для каолинита до максимального для смектита натрия. Хемисса и Махамеди [63] изучали улучшение с помощью смеси цемента и извести в различных соотношениях на расширяющейся переуплотненной глине. Эти исследователи наблюдали увеличение прочности и долговечности почвы за счет реакции между почвой и добавочными материалами.При химической стабилизации происходят катионообмен, флокуляция и агломерация, реакции карбонизации и пуццолановые реакции. Обрабатываемость почвы влияет на механизмы катионного обмена, флокуляции и агломерации, и, кроме того, несущая способность влияет на реакции карбонизации и пуццолановые реакции [64].

Кроме того, глина во многих случаях желательна из-за ее свойств, которые могут быть использованы при проектировании инженеров-геологов. Глина обеспечивает непроницаемость насыпных дамб, а глина для захоронения отходов обеспечивает эффективную поддержку в виде гелеобразной суспензии для необработанных почв при выемке для удержания воды в пруду.Глина также становится вяжущим материалом, когда она в определенном соотношении соединяется с крупнозернистыми почвами.

5. Выводы

Геотехническая инженерия - одна из важнейших частей любого строительства. Как бы хорошо ни была спроектирована надстройка, начинать строительство нет смысла, если не учтены грунтовые материалы. Как сказал Карл Терзаги в 1939 г., «… В инженерной практике трудности с почвами почти исключительно связаны не с самими почвами, а с водой, содержащейся в их пустотах.На планете без воды не было бы необходимости в механике почвы. ”Недостаточно видеть почву только с поверхности, также необходимо определить, меняются ли классы почвы и грунтовые воды. Глина оказывает большое влияние на инженерное поведение грунтов. Глинистые почвы встречаются в природе. Отложения, выветривание и напряжения во время геологических процессов гарантируют, что естественная структура отличается. В геотехнической инженерии, помимо определения свойств осадки, набухания и прочности, при обнаружении глины необходимо знать минеральные свойства почвы, структуру и прочность частиц.В этой главе описаны свойства глины, роль глины в инженерно-геологических и геотехнических исследованиях

.

Влияние летучей золы, золы и легкого керамзитобетона на бетон

Разработка новых методов упрочнения бетона ведется десятилетиями. Развивающиеся страны, такие как Индия, используют обширные армированные строительные материалы, такие как летучая зола, зольный остаток и другие ингредиенты при строительстве RCC. В строительной отрасли большое внимание уделяется использованию летучей золы и зольного остатка в качестве заменителя цемента и мелкого заполнителя. Кроме того, для облегчения веса бетона был введен легкий керамзит вместо крупного заполнителя.В данной статье представлены результаты работ, проведенных в режиме реального времени для формирования легкого бетона, состоящего из летучей золы, зольного остатка и легкого керамзитового заполнителя в качестве минеральных добавок. Экспериментальные исследования бетонной смеси М 20 проводят путем замены цемента летучей золой, мелкого заполнителя шлаковым остатком и крупного заполнителя легким керамзитом из расчета 5%, 10%, 15%, 20%, 25 %, 30% и 35% в каждой смеси, их прочность на сжатие и прочность на разрыв бетона обсуждались в течение 7, 28 и 56 дней, а прочность на изгиб обсуждалась для 7, 28 и 56 дней в зависимости от оптимальной дозировки. замены бетона по прочности на сжатие и раздельному разрыву.

1. Введение

Бетон с высокими эксплуатационными характеристиками указывает на исключительную форму бетона, наделенную удивительной производительностью и прочностью, которые не требуют периодической оценки на регулярной основе с помощью традиционных материалов и стандартных методов смешивания, укладки и отверждения [1] . Обычный портландцемент (OPC) занял незавидную и непобедимую позицию в качестве важного материала при производстве бетона и тщательно выполняет свои задуманные обязательства в качестве необычного связующего для соединения всех собранных материалов.Для достижения этой цели остро необходимо сжигание гигантской меры топлива и гниение известняка [2]. Некоторые марки обычного портландцемента (OPC) доступны по индивидуальному заказу, чтобы соответствовать классификации конкретного национального кода. В этом отношении Бюро индийских стандартов (BIS) прекрасно справляется с задачей классификации трех отдельных классов OPC, например, 33, 43 и 53, которые всегда широко использовались в строительной отрасли [3]. Прочность, прочность и различные характеристики бетона зависят от свойств его ингредиентов, пропорции смеси, стратегии уплотнения и различных мер контроля при укладке, уплотнении и отверждении [4].Бетон, содержащий отходы, может способствовать управляемому качеству строительства и способствовать развитию области гражданского строительства за счет использования промышленных отходов, минимизации использования природных ресурсов и производства более эффективных материалов [5]. В портландцементном бетоне используется летучая зола, когда потери при возгорании (LOI) находятся в пределах 6%. Летучая зола содержит кристаллические и аморфные компоненты вместе с несгоревшим углеродом. Он охватывает различные размеры несгоревшего углерода, который может достигать 17% [6].Летучая зола часто упоминается как прудовая зола, и в течение длительного времени вода может стекать. Обе методики позволяют сбрасывать летучую золу на свалки в открытом грунте. Химический состав летучей золы продолжает меняться в зависимости от типа угля, используемого для сжигания, условий горения и производительности откачки устройства контроля загрязнения воздуха [7]. Для воздействия летучей золы и замены всего вытоптанного песчаника на бетонные и мраморные разбрасыватели использовались сборные бетонные блокирующие квадраты [8].Принимая во внимание мощность бетонных зданий, современная бетонная методология устанавливает экстраординарные меры для снижения температуры на высшем уровне и разницы температур путем использования материалов с минимальным уровнем выделения тепла, чтобы избежать или снова уменьшить тепловое расщепление, что приведет к предотвращению разложение бетона [9]. Производство бетона осуществляется при чрезвычайно высоких и незаметно низких температурах бетона, чтобы понять удобоукладываемость и качество сжатия [10].Статистическая модель и кинетические свойства при изгибе, разрушающем растяжении, а также модуль гибкости по устойчивости к сжатию проистекают из необоснованного коэффициента корреляции [11]. Известно, что бетон, созданный из мельчайших общих и превосходных пустот, обогащен блестящими знаниями по исключению материалов [12]. В Индии энергетическое подразделение, сосредоточенное на угольных тепловых электростанциях, производит колоссальное количество летучей золы, оцениваемое примерно в 11 крор тонн в год.Расход летучей золы оценивается примерно в 30% для обеспечения различных инженерных свойств [13]. При зажигании угля для подачи энергии в котел выделяется около 80% несгоревшего материала или золы, которая уносится с дымовыми газами и улавливается и утилизируется в виде летучей золы. Остаточные 20% золы помогают высушить базовую золу [14]. В момент сжигания пылевидного угля в котле с сухим днищем от 80 до 90% несгоревшего материала или золы уносится с дымовыми газами, улавливается и восстанавливается в виде летучей золы.Остаточные 10–20% золы предназначены для сушки шлаков, песка, материала, который собирается в заполненных водой контейнерах у основания печи [15]. Зольный шлак в бетоне создается методом фракционного, почти агрегатного и полного замещения в бетоне мелких заполнителей [16]. С другой стороны, из легкого бетона неудобно относить корпус к уникальной категории материалов. Однако у LWC (легкого бетона) четкие края, и падение общих расходов, вызванное более низкими постоянными нагрузками, постоянно перекрывается повышенными производственными затратами [17].Фактически, легкий бетон стал приятным фаворитом по сравнению со стандартным бетоном с точки зрения множества непревзойденных характеристик. Снижение собственного веса обычно приводит к сокращению производственных затрат [18]. Самоуплотняющийся бетон на заполнителях с нормальным весом (SCNC) должен стать фаворитом при разработке. Рост затрат на строительство SCLC положительно согласуется с ростом расходов на SCNC [19]. Собственный вес бетона из легкого заполнителя оценивается примерно на 15% ~ 30% легче, чем у стандартного бетона, что в достаточной степени соответствует механическим характеристикам, которые требуются для дорожной опоры при указанной степени плотности [20].Растущее использование легкого бетона (LWC) привело к необходимости производства искусственного легкого бетона в целом, что может быть выполнено с помощью методики сборки холодным склеиванием. Производство искусственных легковесных заполнителей методом холодного склеивания требует гораздо меньших затрат энергии по сравнению со спеканием [21]. Легкий бетон, изготовленный из натуральных или искусственных легких заполнителей, доступен во многих частях мира. Его можно использовать в составе бетона с широким диапазоном удельного веса и подходящего качества для различных применений [22].Бетон из легких заполнителей повышает его эффективность, предотвращая близлежащие повреждения, вызванные баллистической нагрузкой. Более низкий модуль упругости и более высокий предел деформации при растяжении обеспечивают легкий бетон, противоположный стандартному бетону, с превосходной ударопрочностью [23]. Строители все чаще рекомендуют легкий бетонный материал для достижения приемлемого улучшения из-за его высоких прочностных и термических свойств [24]. Сила адгезии достигается за счет твердости связующего и сцепления агрегатов, которые постоянно сосредоточены на угловатости, ровности и растяжении [25].Легкий керамзитовый заполнитель (LECA), как правило, включает крошечные, легкие, вздутые частицы обожженной глины. Сотни и тысячи крошечных заполненных воздухом углублений успешно придают LECA безупречную прочность и теплоизоляционные качества. Считается, что среднее водопоглощение всего LECA (0–25 мм) связано с 18 процентами объема в состоянии насыщения в течение 3 дней. Обычный портландцемент (OPC) частично заменяется летучей золой, мелкий заполнитель заменяется зольным остатком, а крупный заполнитель заменяется легким керамзитом (LECA) по весу 5%, 10%, 15%, 20%, 25 %, 30% и 35% по отдельности.Прочность на сжатие, прочность на разрыв и прочность на изгиб успешно оцениваются с помощью определенных входных значений при одновременном исследовании.

2. Экспериментальная программа

Целью работы является оценка прочности на сжатие (CS), прочности на разрыв (STS) и прочности на изгиб (FS) бетона. В этой бетонной смеси обычный портландцемент () заменяется летучей золой, мелкий заполнитель заменяется зольным остатком, а крупный заполнитель заменяется легким керамзитом (LECA) массой 5%, 10%, 15%. , 20%, 25%, 30% и 35% соответственно.Эти материалы необходимо добавлять для увеличения прочности цемента. В экспериментальном исследовании бетонный куб или цилиндр используется для анализа свойств бетона со всеми материалами. Каждый вес (5%, 10%, 15%, 20%, 25%, 30% или 35%) материала проводил испытание в течение 7 дней, 28 дней и 56 дней. Параметрами, участвующими в оценке характеристик бетона, являются прочность на сжатие (CS), прочность на разрыв (STS) и прочность на изгиб (FS), которые достигаются в ходе экспериментов в реальном времени.Затем определение прочности на изгиб обсуждалось в течение 7, 28 и 56 дней в зависимости от нагрузки для оптимальной дозировки замены по прочности на сжатие и разделенной прочности бетона на растяжение.

2.1. Используемые материалы

В этом разделе перечислены названия материалов, использованных в данном исследовании, и их характеристики. Ресурсы: обычный портландцемент, летучая зола, зольный остаток, мелкий заполнитель, крупный заполнитель и легкий керамзитовый заполнитель (LECA).

2.1.1. Обычный портландцемент

Обычный портландцемент - это основная форма цемента, где 95% клинкера и 5% гипса, который добавляется в качестве добавки для увеличения времени схватывания цемента до 30 минут или около того.Гипс контролирует время начального схватывания цемента. Если гипс не добавлен, цемент затвердеет, как только вода будет добавлена ​​в цемент. Различные сорта (33, 43,53) OPC были классифицированы Бюро индийских стандартов (BIS). Его производят в больших количествах по сравнению с другими типами цемента, и он превосходно подходит для использования в обычных бетонных конструкциях, где отсутствует воздействие сульфатов в почве или грунтовых водах. В этом исследовании цемент () имеет удельный вес 3.15 и время начального и окончательного схватывания цемента 50 и 450 минут.

2.1.2. Летучая зола

Самый распространенный тип угольных печей в электроэнергетике, около 80% несгоревшего материала или золы уносится с дымовыми газами, улавливается и улавливается в виде летучей золы. Летучая зола была собрана на теплоэлектростанции Тотукуди, Тамил Наду, Индия. Растущая нехватка сырья и насущная необходимость защиты окружающей среды от загрязнения подчеркнули важность разработки новых строительных материалов на основе промышленных отходов, образующихся на угольных ТЭС, которые создают неуправляемые проблемы утилизации из-за их потенциального загрязнения окружающей среды. .Поскольку стоимость утилизации летучей золы продолжает расти, стратегии утилизации летучей золы имеют решающее значение с экологической и экономической точек зрения. В качестве исходных материалов используются две новые области переработки угольной летучей золы, как показано на Рисунке 1 (а).

.

Гидротон (галька из расширенной глины) Руководство по выращиванию

перейти к содержанию Категории
  • Садоводство
    • Съедобный
      • Овощи
      • Травы
      • Фрукты
      • Микрозелень
      • Ореховые деревья
    • Садоводство Как записаться
      • Садоводство по зоне
      • Вдохновение для садоводства
      • Советы по садоводству
      • Мульча
      • Проектов
      • Семена
      • Почва и удобрения
    • Декоративные сады
      • Лампы
      • Кактусы и суккуленты
      • Цветы
      • Листва
      • Земляной покров
      • Кусты
      • Деревья
    • Особые сады
      • Доступные сады
      • Контейнерные сады
      • Теплицы
      • Органическое садоводство
      • Сады теней
      • Тропические сады
      • Сады Ксерискейп
      • Виноград
      • Городское садоводство
      • Водные растения
  • Гидропоника
    • Основы
    • How-Tos
    • Системы
    • Растущие среды
    • Внутренние лампы для выращивания
    • Питательные вещества и рост
    • Распространение
    • Вентиляция и контроль окружающей среды
  • Комнатные растения
    • Особые комнатные растения
    • Общий уход за комнатными растениями
  • Проблемы растений
    • Вредители сада
    • Болезни растений
    • Сорняки
  • Отзывы о продукте
  • Курсы
  • маг.
Категории
  • Садоводство
    • Съедобный
      • Овощи
      • Травы
      • Фрукты
      • Микрозелень
      • Ореховые деревья
    • Садоводство Как записаться
      • Садоводство по зоне
      • Вдохновение для садоводства
      • Советы по садоводству
      • Мульча
      • Проектов
      • Семена
      • Почва и удобрения
    • Декоративные сады
      • Лампы
      • Кактусы и суккуленты
      • Цветы
      • Листва
      • Земляной покров
      • Кусты
      • Деревья
    • Особые сады
      • Доступные сады
      • Контейнерные сады
      • Теплицы
      • Органическое садоводство
      • Сады теней
      • Тропические сады
      • Сады Ксерискейп
      • Виноград
      • Городское садоводство
      • Водные растения
.

ПРИМЕНЕНИЕ ДОЛОМИТОВЫЕ ОТХОДЫ В КАЧЕСТВЕ ЗАПОЛНИТЕЛЯ В ПЕРЕДНЕЙ ГЛИНЕ ЛЕГКОБЕТОНЕ

1.5 Бетон (Часть I)

1.5 Бетон (Часть I) В этом разделе рассматриваются следующие темы.Составляющие бетона Свойства затвердевшего бетона (Часть I) 1.5.1 Составляющие бетона Введение Бетон - композитный материал

Дополнительная информация

Глава 8 Проектирование бетонных смесей

Глава 8 Проектирование бетонных смесей 1 Основная процедура расчета бетонных смесей применима к бетону для большинства целей, включая тротуары. Бетонные смеси должны встречаться; Технологичность (просадка / вебе) на сжатие

Дополнительная информация

Прочность бетона

Прочность бетона При проектировании и контроле качества бетона обычно указывается прочность.Это связано с тем, что по сравнению с большинством других свойств испытать прочность относительно легко. Кроме того,

Дополнительная информация

ИНЖЕНЕРНЫЙ КВАРЦЕВОЙ КАМЕНЬ

ИНЖЕНЕРНЫЙ 2 КВАРЦЕВОЙ КАМЕНЬ 18 ХОРОШИЕ ОТРАСЛЕВЫЕ ПРАКТИКИ 2 ИНЖЕНЕРНЫЙ КВАРЦЕВОЙ КАМЕНЬ Природные камни, особенно гранит, использовались для изготовления полов и материалов столешниц в элитных домах из-за их красоты и

Дополнительная информация

КАТАЛОГ ПРОДУКЦИИ

Акционерное общество Sklopísek Střeleč производит высококачественный стеклянный, литейный, технический, фильтрационный и спортивный песок, кремнеземную муку тонкого помола.Площадь Стржелец представляет собой крупнейшее месторождение первоклассного качества

Дополнительная информация

Hydrophobe VII., Лиссабон

Hydrophobe VII., Лиссабон Водоотталкивающая обработка строительных материалов в термальных ваннах Дебрецен, Венгрия Геотермальный потенциал в ЕС Большой университет Яноша в Дебрецене, факультет термальных ванн

Дополнительная информация

ОБЪЕКТЫ ИССЛЕДОВАНИЯ САЙТА

ОБОРУДОВАНИЕ ДЛЯ ИССЛЕДОВАНИЯ ПЛОЩАДКИ Бурение Гидравлические роторные буровые установки и буровые установки диаметром 100/150 мм с возможностью бурения до глубины 200 м.Шнековое бурение скважин диаметром 100/150 мм до

Дополнительная информация

ГЛАВА 3: ЭКСПЕРИМЕНТАЛЬНАЯ ПРОЦЕДУРА

ГЛАВА 3: ЭКСПЕРИМЕНТАЛЬНАЯ ПРОЦЕДУРА 58 3. ЭКСПЕРИМЕНТАЛЬНАЯ ПРОЦЕДУРА В этой главе представлена ​​экспериментальная установка, используемая для определения характеристик образцов, исследований гранулометрии и исследований обжига гранул.

Дополнительная информация

Клиент ICS / Penetron International Ltd., 45 Research Way, Suite 203, East Setauket, NY 11733 Информация о проекте заказчика Лабораторные испытания системы гидроизоляции Penetron Отчет №: 95-387

Дополнительная информация

Испытания портландцемента

Испытания портландцемента Д-р Кимберли Куртис Школа гражданского строительства Технологический институт Джорджии Атланта, Джорджия Состав Химическое название Силикат трикальция Химическая формула 3CaO SiO 2 Сокращение

Дополнительная информация .

Смотрите также

Сделать заказ

Пожалуйста, введите Ваше имя
Пожалуйста, введите Ваш номер телефона
Пожалуйста, введите Ваше сообщение