Комплексные поставки запорной арматуры
и деталей трубопроводов →

Тел: +7 (3522) 55-48-26

Обозначение трансформатора на схеме


Нормальные схемы электрических соединений объектов электроэнергетики

 Правила выполнения нормальных схем электрических соединений объектов электроэнергетики, определены двумя стандартами. Это Стандарт Организации ОАО «ФСК ЕЭС» СТО 56947007-25.040.70.101-2011 Раздел 2 и ГОСТ Р 56303-2014.

 Несмотря на то, что на данный момент оба стандарта действующие и определяют требования к выполнению одних и тех же типов схем, требования в них, несколько отличаются (вероятно разработчики стандартов не дружат ...).

 В данном материале, при составлении примеров графических обозначений элементов схем электрических соединений объектов электроэнергетики, за основу взят ГОСТ Р 56303-2014, так как по дате введения в действие он новее.
 Если вид графических обозначений, приведенных в примерах стандарта СТО 56947007-25.040.70.101-2011, отличается от аналогичных, приведенных в ГОСТ Р 56303-2014, добавлены соответствующие примечания.

 

Цветовое исполнение классов напряжения.
Класс напряжения ГОСТ Р 56303-2014 СТО 56947007-25.040.70.101-2011
Наименование цвета Спектр (RGB) Наименование цвета Спектр (RGB)
1150 кВ сиреневый 205:138:255 сиреневый 205:138:255
800 кВ темно синий 0:0:168 темно синий 0:0:200
750 кВ темно синий 0:0:168 темно синий 0:0:200
500 кВ красный 213:0:0 красный 165:15:10
400 кВ оранжевый 255:100:30 оранжевый 240:150:30
330 кВ зеленый 0:170:0 зеленый 0:140:0
220 кВ желто-зеленый 181:181:0 желто-зеленый 200:200:0
150 кВ хаки 170:150:0 хаки 170:150:0
110 кВ голубой 0:153:255 голубой 0:180:200
60 кВ лиловый 255:51:204 - -
35 кВ коричневый 102:51:0 коричневый 130:100:50
20 кВ ярко-фиолетовый 160:32:240 коричневый 130:100:50
15 кВ ярко-фиолетовый 160:32:240 - -
10 кВ фиолетовый 102:0:204 фиолетовый 100:0:100
6 кВ темно-зеленый 0:102:0 светло-коричневый 200:150:100
3 кВ темно-зеленый 0:102:0 - -
ниже 3 кВ серый 127:127:127 - -
до 1 кВ - - серый 190:190:190

Условные графические обозначения элементов нормальных схем электрических соединений объектов электроэнергетики.

В примерах, использованы условные графические обозначения из библиотеки трафаретов Visio Нормальная схема ПС.

Шаг модульной сетки 2,5 мм.

Толщина линий условных обозначений и линий электрической связи 0,4 мм (По стандарту от 0,2 до 1,0 мм. Рекомендуемая - от 0,3 до 0,4 мм.)

Графическое обозначение трансформаторов.

 

Графическое обозначение коммутационных аппаратов.

 

 Графическое обозначение устройств компенсации, фильтров.

 

Графическое обозначение разрядников, ОПН.

 

Графическое обозначение генераторов, электродвигателей.

 

Графическое обозначение предохранителей.

 

Графическое обозначение линий электрической связи, шин, заземления.
  Наименование Обозначение
 1.  Линия электрической связи, ошиновка.
 2.

 ЛЭП - линия электропередач.

 Отображается утолщенными линиями (двухкратное или большее увеличение толщины по отношинию к линиям, которыми выполнены УГО и ошиновка).

 3.

  Кабельная линия.

 Линию электрической связи с одним ответвлением допускается изображать без точки.

 

 
 4.  Пересечение линий электрической связи.  
 5.

 Ответвления линии электрической связи.

 Точка соединения, должна выполняться цветом, соответствующим классу напряжения линий электрической связи.

 Линию электрической связи с одним ответвлением допускается изображать без точки.

 
 6.

 Шина.

 Выполняться цветом, соответствующим классу напряжения, а точки подключения отводов, белым.

 
 7.  Заземление.  
Примечания:
 1.  Для линий электропередач (п. 2,3), в СТО 56947007-25.040.70.101-2011, особых указаний не найдено. Вероятно, их толщина, по этому стандарту, равна толщине линий электрической связи.

 

 Пример изображения нормальной схемы электрических соединений условной подстанции, выполненной по ГОСТ Р 56303-2014 (формат PDF).

Схема выполнена в программе Visio с использование библиотеки трафаретов:

Как начертить нормальную схему электрических соединений объекта электроэнергетики (электрической подстанции, распределительного устройства)

 


ТРАНСФОРМАТОРЫ

   В этой статье мы поговорим о трансформаторах, устройствах способных повышать или понижать напряжение при переменном токе. Существуют различные по конструкции и предназначению трансформаторы. Например есть как однофазные, так и трехфазные. На фото изображен однофазный трансформатор:


Трансформатор однофазный

   Трансформатор напряжения соответственно будет называться повышающим, если на выходе со вторичной обмотки напряжение выше, чем в первичной, и понижающим, если, напряжение во вторичной обмотке ниже, чем в первичной. На рисунке ниже изображена схема работы трансформатора:

Принципиальная схема трансформатора

   Красным (на рисунке ниже) обозначена первичная обмотка, синим вторичная, также изображен сердечник трансформатора, собранный из пластин специальной электротехнической стали. Буквами U1 обозначено напряжение первичной обмотки. Буквами I1 обозначен ток первичной обмотки. U2 обозначено напряжение на вторичной обмотке, I2 ток во вторичной. В трансформаторе две или более обмоток индуктивно связаны. Также трансформаторы могут использоваться для гальванической развязки цепей.

Принцип работы трансформатора

Принцип действия трансформатора

   При подаче напряжения на первичную обмотку в ней наводится ЭДС самоиндукции. Силовые линии магнитного поля пронизывают не только ту катушку, которая наводит ток, но и расположенную на том же сердечнике вторую катушку (вторичную обмотку) и наводит также в ней ЭДС самоиндукции. Отношение числа витков первичной обмотки к вторичной называется Коэффициентом трансформации. Записывается это так:
  • U1 =напряжение первичной обмотки.
  • U2 = напряжение вторичной обмотки.
  • w1 = количество витков первичной обмотки.
  • w2 = количество витков вторичной обмотки.
  • кт = коэффициент трансформации.

Коэффициент трансформации - формула

   Если коэффициент трансформации меньше единицы, то трансформатор повышающий, если больше единицы, понижающий. Разберем на небольшом примере: w1 количество витков первичной обмотки равно условно равно 300, w2 количество витков вторичной обмотки равно 20. Делим 300 на 20, получаем 15. Число больше единицы, значит трансформатор понижающий. Допустим, мы мотали трансформатор с 220 вольт, на более низкое напряжение, и нам теперь нужно посчитать, какое будет напряжение на вторичной обмотке. Подставляем цифры: U2=U1\кт = 220\15 = 14.66 вольт. Напряжение на выходе с вторичной обмотки будет равно 14.66 вольт.

Трансформаторы на схемах

   Обозначается на принципиальных схемах трансформатор так:

Обозначение трансформатора на схемах

   На следующем рисунке изображен трансформатор с несколькими вторичными обмотками:

Трансформатор с двумя вторичными обмотками

   Цифрой "1" обозначена первичная обмотка (слева), цифрами 2 и 3 обозначены вторичные обмотки (справа).

Сварочные трансформаторы

   Существуют специальные сварочные трансформаторы. 

Сварочный трансформатор

   Сварочный трансформатор предназначен для сварки электрической дугой, он работает как понижающий трансформатор, снижая напряжение на вторичной обмотке, до необходимой величины для сварки. Напряжение вторичной обмотки бывает не более 80 Вольт. Сварочные трансформаторы рассчитаны на кратковременные замыкания выхода вторичной обмотки, при этом образуется электрическая дуга, и трансформатор при этом не выходит из строя, в отличие от силового трансформатора.  

Силовые трансформаторы

   Электроэнергия передается по высоковольтным линиям от генераторов, где она вырабатывается до высоковольтных подстанций потребителя, в целях сокращения потерь, при высоком напряжении равном 35-110 киловольт и выше. Перед тем, как мы сможем использовать эту энергию, её напряжение нужно понизить до 380 вольт, которое подводится к электрощитовым, находящимся в подвалах многоквартирных домов. Трехфазные трансформаторы обычно бывают рассчитаны на большую мощность. В электросетях на трансформаторных подстанциях стоят трансформаторы понижающие напряжение с 35 или 110 киловольт, до 6 или 10 киловольт, наверное все видели такие трансформаторы величиной с небольшой дом:

Фото высоковольтный трансформатор

   Трансформаторы с 6-10 киловольт на 380 вольт расположены вблизи потребителей. Такие трансформаторы стоят на трансформаторных подстанциях расположенных во многих дворах. Они поменьше размерами, но вместе с ВН (выключателями нагрузки) которые ставятся перед трансформатором и вводными автоматами и фидерами могут занимать двух этажное здание. 

Трансформатор 6 киловольт

   У трехфазных трансформаторов обмотки соединяются не так, как у однофазных трансформаторов. Они могут соединяться в звезду, треугольник и звезду с выведенной нейтралью. На следующем рисунке приведена как пример одна из схем соединения обмоток высокого напряжении и низкого напряжения трехфазного трансформатора:

Пример соединения обмоток силового трансформатора

   Трансформаторы существуют не только напряжения, но и тока. Такие трансформаторы применяют для безопасного измерения тока при высоком напряжении. Обозначаются на схемах трансформаторы тока следующим образом:

Изображение на схемах трансформатор тока

   На фото далее изображены именно такие трансформаторы тока:

Трансформатор тока - фото

   Существуют также, так называемые, автотрансформаторы. В этих трансформаторах обмотки имеют не только магнитную связь, но и электрическую. Так обозначается на схемах лабораторный автотрансформатор (ЛАТР):

Лабораторный автотрансформатор - изображение на схеме

   Используется ЛАТР таким образом, что включая в работу часть обмотки, с помощью регулятора, можно получить различные напряжения на выходе. Фотографию лабораторного автотрансформатора можно видеть ниже:

Фото ЛАТР

   В электротехнике существуют схемы безопасного включения ЛАТРа с гальванической развязкой с помощью трансформатора:

Безопасный ЛАТР изображение на схеме

   Для согласования сопротивления разных частей схемы служит согласующий трансформатор. Также находят применение измерительные трансформаторы для измерения очень больших или очень маленьких величин напряжения и тока.

Тороидальные трансформаторы

   Промышленность изготавливает и так называемые тороидальные трансформаторы. Один из таких изображен на фото: 

Фотография - тороидальный трансформатор

   Преимущества таких трансформаторов по сравнению с трансформаторами обычного исполнения заключаются в более высоком КПД, меньше звуковой дребезг железа при работе, низкие значения полей рассеяния и меньший размер и вес.

   Сердечники трансформаторов, в зависимости от конструкции могут быть различными, они набираются из пластин магнитомягкого материала, на рисунке ниже приведены примеры сердечников:

Сердечники трансформаторов - рисунок

   Вот в кратце и вся основная информация о трансформаторах в радиоэлектронике, более подробно разные частные случаи можно рассмотреть на форуме. Автор AKV.

   Форум по трансформаторам

Чтение схем: трансформаторы, автотрансформаторы. | Каталог самоделок

В основы обозначений трансформаторов и автотрансформаторов на электротехнических схемах принимаются обозначения обмоток, корпуса, магнитопроводов,  экрана, а также и обозначения типов соединения обмоток. Давайте все это рассмотрим поподробнее.

Обмотки.   В схемах (обычно в схемах электроснабжения) обмотки обозначают в виде окружности, которая проиллюстрирована на  рис. № 1.  Во всех других случаях обмотки иллюстрируются полуокружностями №№ 2-5, причем количество полуокружностей и направления выводов не устанавливается. А изображенная на рис № 3 точка, рядом с обмоткой, обозначает начало обмотки.

На электротехнических схемах, при изображении обмоток окружностями, иногда, в них вписываются обозначения №№ 13-23   вида соединения, которые приведены на рисунке ниже. Здесь под обозначениями, которые состоят из черточек, приведены поясняющие схемы.

На рисунке: № 13  – однофазная обмотка с двумя выводами. № 14 – однофазная обмотка с двумя выводами  с выведенной нейтральной (средней) точкой. № 15  – соединение обмоток двух фаз в открытый треугольник. № 16 – три однофазные обмотки, каждая из которых имеет по два вывода.  № 17 – трехфазная обмотка, соединенная в «звезду». № 18  – также трехфазная обмотка, соединенная в звезду с выведенной нейтралью. № 19  трехфазная обмотка, соединенная в треугольник. № 20 – трехфазная обмотка, где три фазы соединены в разомкнутый треугольник. № 21 – трехфазная обмотка, соединенная в зигзаг. № 22 – шестифазная обмотка, которая соединена в виде обратной звезды. № 23 – то же, что и № 22, только с выведенными раздельными нейтральными точками.

Магнитопроводы. В схемах электроснабжения магнитопроводы допускается не иллюстрировать, если это, конечно, не вызывает затруднений и путаницу в схемах. Во всех других случаях этот элемент изображается обозначениями №№ 7—10. Здесь №7 — магнитопровод ферромагнитный.

(Обратите внимание: до недавнего времени у магнитопровода было другое обозначение: 3 – тонкие черты, как бы представляющие листы стали, из которых набран магнитопровод). Затем магнитопровод стали изображать жирной чертой. В настоящее время у обозначений, толщина линий, обозначающих магнитопровод и обмотку, одинакова.

№ 8 — ферромагнитный магнитопровод с воздушным зазором. Небольшой воздушный зазор нужен в том случае, когда по обмотке проходит не только переменный, но и постоянный ток, который при отсутствии зазора мог бы насытить магнитопровод;

№ 9 — магнитодиэлектрический магнитопровод. Такие магнитопроводы применяются в радиосвязи для уменьшения потерь на вихревые токи. В этих сердечниках ферромагнитные частицы разделены массой изоляционного материала.

№ 10 — магнитопровод из немагнитного материала, например из алюминия или меди. Для немагнитного магнитопровода указывают химический символ металла. Например, буквы Cu указывают на то, что магнитопровод медный. Магнитопровод из немагнитного материала играет такую же роль, как множество короткозамкнутых витков, введенных в магнитное поле обмотки. В немагнитном магнитопроводе водятся вихревые токи, магнитное поле которых противодействует основному полю, чем достигается уменьшение индуктивности.

Корпус трансформатора и автотрансформатора – на схемах обычно не изображается. Если же надо показать, что корпус присоединен к чему-либо, то это иллюстрируется обозначением № 12. Нередко корпус трансформатора соединяется с экраном.  Корпуса трансформаторов приходится так же показывать и в некоторых схемах релейной защиты.  Экран обозначается тонкой штриховой линией № 6. Подробнее про обозначения экранов, можете прочитать тут.

На обозначении № 11 проиллюстрирован регулятор, здесь он показывает, что в сборке имеется трансформаторы с регулированием напряжения с нагрузкой.

Примеры обозначений трансформаторов даны на рисунке ниже.

В разделе «а» показано однолинейное – 1, и многолинейное  – 2 обозначение однофазного трансформатора с ферромагнитным сердечником (форма I). 3 – изображение этого же трансформатора в форме II.  В разделе «б»   изображены: № 4 – трансформатор с ферромагнитным магнитопроводом, который имеет воздушный зазор. № 5   трансформатор с медным (немагнитным) магнитопроводом. № 6 – трансформатор магнитодиэлектрическим магнитопроводом. № 7 – без магнитопровода.

Автотрансформаторы. Однофазный автотрансформатор в однолинейном и многолинейном изображениях проиллюстрирован ниже на рисунке по обозначениями 1 и 2 соответственно. Хорошим примером применения этих однофазных трансформаторов является: № 3 понижения напряжения сети с 220 вольт для питания прибора (например, холодильника) на напряжение в 127 вольт. № 4 показывает повышение напряжения с 127 до 220 В. Также в разделе «б» изображены трехфазные автотрансформаторы, где № 5 показывает, что обмотки соединены в звезду, а № 6 – трехфазный трансформатор с 9-ю выводами.

Как Вы видите, чтение схем не очень то и тяжелая вещь, самое главное уметь логически связать обозначения.

Условные обозначения в электрических схемах по ГОСТ

Любые электрические цепи могут быть представлены в виде чертежей (принципиальных и монтажных схем), оформление которых должно соответствовать стандартам ЕСКД. Эти нормы распространяются как на схемы электропроводки или силовых цепей, так и электронные приборы. Соответственно, чтобы «читать» такие документы, необходимо понимать условные обозначения в электрических схемах.

Нормативные документы

Учитывая большое количество электроэлементов, для их буквенно-цифровых (далее БО) и условно графических обозначений (УГО) был разработан ряд нормативных документов исключающих разночтение. Ниже представлена таблица, в которой представлены основные стандарты.

Таблица 1. Нормативы графического обозначения отдельных элементов в монтажных и принципиальных электрических схемах.

Номер ГОСТа Краткое описание
2.710 81 В данном документе собраны требования ГОСТа к БО различных типов электроэлементов, включая электроприборы.
2.747 68 Требования к размерам отображения элементов в графическом виде.
21.614 88 Принятые нормы  для планов электрооборудования и проводки.
2.755 87 Отображение на схемах коммутационных устройств и контактных соединений
2.756 76 Нормы для воспринимающих частей электромеханического оборудования.
2.709 89 Настоящий стандарт регулирует нормы, в соответствии с которыми на схемах обозначаются контактные соединения и провода.
21.404 85 Схематические обозначения для оборудования, используемого в системах автоматизации

Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения и в нормативные документы, правда это процесс более инертен. Приведем простой пример, УЗО и дифавтоматы широко эксплуатируются в России уже более десятка лет, но единого стандарта по нормам ГОСТ 2.755-87 для этих устройств до сих пор нет, в отличие от автоматических выключателей. Вполне возможно, в ближайшее время это вопрос будет урегулирован. Чтобы быть в курсе подобных нововведений, профессионалы отслеживают изменения в нормативных документах, любителям это делать не обязательно, достаточно знать расшифровку основных обозначений.

Виды электрических схем

В соответствии с нормами ЕСКД под схемами подразумеваются графические документы, на которых при помощи принятых обозначений отображаются основные элементы или узлы конструкции, а также объединяющие их связи. Согласно принятой классификации различают десять видов схем, из которых в электротехнике, чаще всего, используется три:

  • Функциональная, на ней представлены узловые элементы (изображаются как прямоугольники), а также соединяющие их линии связи. Характерная особенность такой схемы – минимальная детализация. Для описания основных функций узлов, отображающие их прямоугольники, подписываются стандартными буквенными обозначениями. Это могут быть различные части изделия, отличающиеся функциональным назначением, например, автоматический диммер с фотореле в качестве датчика или обычный телевизор. Пример такой схемы представлен ниже. Пример функциональной схемы телевизионного приемника
  • Принципиальная. Данный вид графического документа подробно отображает как используемые в конструкции элементы, так и их связи и контакты. Электрические параметры некоторых элементов могут быть отображены, непосредственно в документе, или представлены отдельно в виде таблицы. Пример принципиальной схемы фрезерного станка

Если на схеме отображается только силовая часть установки, то она называется однолинейной, если приведены все элементы, то – полной.

Пример однолинейной схемы
  • Монтажные электрические схемы. В данных документах применяются позиционные обозначения элементов, то есть указывается их место расположения на плате, способ и очередность монтажа. Монтажная схема  стационарного сигнализатора горючих газов

Если на чертеже отображается проводка квартиры, то места расположения осветительных приборов, розеток и другого оборудования указываются на плане. Иногда можно услышать, как такой документ называют схемой электроснабжения, это неверно, поскольку последняя отображает способ подключения потребителей к подстанции или другому источнику питания.

Разобравшись с электрическими схемами, можем переходить к обозначениям указанных на них элементов.

Графические обозначения

Для каждого типа графического документа предусмотрены свои обозначения, регулируемые соответствующими нормативными документами. Приведем в качестве примера основные графические обозначения для разных видов электрических схем.

Примеры УГО в функциональных схемах

Ниже представлен рисунок с изображением основных узлов систем автоматизации.

Примеры условных обозначений электроприборов и средств автоматизации в соответствии с ГОСТом 21.404-85

Описание обозначений:

  • А – Основные (1) и допускаемые (2) изображения приборов, которые устанавливаются за пределами электрощита или распределительной коробки.
  • В – Тоже самое, что и пункт А, за исключением того, что элементы располагаются на пульте или электрощите.
  • С – Отображение исполнительных механизмов (ИМ).
  • D – Влияние ИМ на регулирующий орган (далее РО) при отключении питания:
  1. Происходит открытие РО
  2. Закрытие РО
  3. Положение РО остается неизменным.
  • Е — ИМ, на который дополнительно установлен ручной привод. Данный символ может использоваться для любых положений РО, указанных в пункте D.
  • F- Принятые отображения линий связи:
  1. Общее.
  2. Отсутствует соединение при пересечении.
  3. Наличие соединения при пересечении.

УГО в однолинейных и полных электросхемах

Для данных схем существует несколько групп условных обозначений, приведем наиболее распространенные из них. Для получения полной информации необходимо обратиться к нормативным документам, номера государственных стандартов будут приведены для каждой группы.

Источники питания.

Для их обозначения приняты символы, приведенные на рисунке ниже.

УГО источников питания на принципиальных схемах (ГОСТ 2.742-68 и ГОСТ 2.750.68)

Описание обозначений:

  • A – источник с постоянным напряжением, его полярность обозначается символами «+» и «-».
  • В – значок электричества, отображающий переменное напряжение.
  • С – символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников.
  • D – Отображение аккумуляторного или гальванического источника питания.
  • E- Символ батареи, состоящей из нескольких элементов питания.

Линии связи

Базовые элементы электрических соединителей представлены ниже.

Обозначение линий связи на принципиальных схемах (ГОСТ 2.721-74 и ГОСТ 2.751.73)

Описание обозначений:

  • А – Общее отображение, принятое для различных видов электрических связей.
  • В – Токоведущая или заземляющая шина.
  • С – Обозначение экранирования, может быть электростатическим (помечается символом «Е») или электромагнитным («М»).
  • D — Символ заземления.
  • E – Электрическая связь с корпусом прибора.
  • F – На сложных схемах, из нескольких составных частей, таким образом обозначается обрыв связи, в таких случаях «Х» это информация о том, где будет продолжена линия (как правило, указывается номер элемента).
  • G – Пересечение с отсутствием соединения.
  • H – Соединение в месте пересечения.
  • I – Ответвления.

Обозначения электромеханических приборов и контактных соединений

Примеры обозначения магнитных пускателей, реле, а также контактов коммуникационных устройств, можно посмотреть ниже.

УГО, принятые для электромеханических устройств и контакторов (ГОСТы 2.756-76, 2.755-74, 2.755-87)

Описание обозначений:

  • А – символ катушки электромеханического прибора (реле, магнитный пускатель и т.д.).
  • В – УГО воспринимающей части электротепловой защиты.
  • С – отображение катушки устройства с механической блокировкой.
  • D – контакты коммутационных приборов:
  1. Замыкающие.
  2. Размыкающие.
  3. Переключающие.
  • Е – Символ для обозначения ручных выключателей (кнопок).
  • F – Групповой выключатель (рубильник).

УГО электромашин

Приведем несколько примеров, отображения электрических машин (далее ЭМ) в соответствии с действующим стандартом.

Обозначение электродвигателей и генераторов на принципиальных схемах (ГОСТ 2.722-68)

Описание обозначений:

  • A – трехфазные ЭМ:
  1. Асинхронные (ротор короткозамкнутый).
  2. Тоже, что и пункт 1, только в двухскоростном исполнении.
  3. Асинхронные ЭМ с фазным исполнением ротора.
  4. Синхронные двигатели и генераторы.
  • B – Коллекторные, с питанием от постоянного тока:
  1. ЭМ с возбуждением на постоянном магните.
  2. ЭМ с катушкой возбуждения.
Обозначение электродвигателей на схемах

УГО трансформаторов и дросселей

С примерами графических обозначений данных устройств можно ознакомиться на представленном ниже рисунке.

Правильные обозначения трансформаторов, катушек индуктивности и дросселей (ГОСТ 2.723-78)

Описание обозначений:

  • А – Данным графическим символом могут быть обозначены катушки индуктивности или обмотки трансформаторов.
  • В – Дроссель, у которого имеется ферримагнитный сердечник (магнитопровод).
  • С – Отображение двухкатушечного трансформатора.
  • D – Устройство с тремя катушками.
  • Е – Символ автотрансформатора.
  • F – Графическое отображение ТТ (трансформатора тока).

Обозначение измерительных приборов и радиодеталей

Краткий обзор УГО данных электронных компонентов показан ниже. Тем, кто хочет более широко ознакомиться с этой информацией рекомендуем просмотреть ГОСТы 2.729 68 и 2.730 73.

Примеры условных графических обозначений электронных компонентов и измерительных приборов

Описание обозначений:

  1. Счетчик электроэнергии.
  2. Изображение амперметра.
  3. Прибор для измерения напряжения сети.
  4. Термодатчик.
  5. Резистор с постоянным номиналом.
  6. Переменный резистор.
  7. Конденсатор (общее обозначение).
  8. Электролитическая емкость.
  9. Обозначение диода.
  10. Светодиод.
  11. Изображение диодной оптопары.
  12. УГО транзистора (в данном случае npn).
  13. Обозначение предохранителя.

УГО осветительных приборов

Рассмотрим, как на принципиальной схеме отображаются электрические лампы.

Пример того, как указываются лампочки на схемах (ГОСТ 2.732-68)

Описание обозначений:

  • А – Общее изображение ламп накаливания (ЛН).
  • В — ЛН в качестве сигнализатора.
  • С – Типовое обозначение газоразрядных ламп.
  • D – Газоразрядный источник света повышенного давления (на рисунке приведен пример исполнения с двумя электродами)

Обозначение элементов в монтажной схеме электропроводки

Завершая тему графических обозначений, приведем примеры отображения розеток и выключателей.

Пример изображения на монтажных схемах розеток скрытой установки

Как изображаются розетки других типов, несложной найти в нормативных документах, которые доступны в сети.

Обозначение выключатели скрытой установкиОбозначение розеток и выключателей

Видео по теме:

Буквенные обозначения

В электрических схемах помимо графических обозначений также используются буквенные, поскольку без последних чтение чертежей будет довольно проблематичным. Буквенно-цифровая маркировка так же, как и УГО регулируется нормативными документами, для электро это ГОСТ 7624 55. Ниже представлена таблица с БО для основных компонентов электросхем.

Буквенные обозначения основных элементов

К сожалению, размеры данной статьи не позволяют привести все правильные графические и буквенные обозначения, но мы указали нормативные документы, из которых можно получить всю недостающую информацию. Следует учитывать, что действующие стандарты могут меняться в зависимости от модернизации технической базы, поэтому, рекомендуем отслеживать выход новых дополнений к нормативным актам.

Буквенное обозначение силовых трансформаторов

Структурная схема условного обозначения трансформатора

Буквенная часть условного обозначения должна содержать обозначения в следующем порядке:

1. Назначению трансформатора (может отсутствовать)

А — автотрансформатор
Э — электропечной

2. Количество фаз

О — однофазный трансформатор
Т — трехфазный трансформатор

3. Расщепление обмоток (может отсутствовать)

Р — расщепленная обмотка НН

4. Система охлаждения

1) Сухие трансформаторы

С — естественное воздушное при открытом исполнении
СЗ — естественное воздушное при защищенном исполнении
СГ — естественное воздушное при герметичном исполнении
СД — воздушное с дутьем

2) Масляные трансформаторы

М — естественное масляное
МЗ — с естественным масляным охлаждением с защитой при помощи азотной подушки без расширителя
Д — масляное с дутьем и естественной циркуляцией масла
ДЦ — масляное с дутьем и принудительной циркуляцией масла
Ц — масляно-водяное с принудительной циркуляцией масла

3) С негорючим жидким диэлектриком (совтолом)

Н — естественное охлаждение негорючим жидким диэлектриком
НД — охлаждение негорючим жидким диэлектриком с дутьем

5. Конструктивная особенность трансформатора (в обозначении может отсутствовать)

Л — исполнение трансформатора с литой изоляцией
Т — трехобмоточный трансформатор (для двухобмоточных трансформаторов не указывают)
Н — трансформатор с РПН;
З — трансформатор без расширителя и выводами, смонтированными во фланцах на стенках бака, и с азотной подушкой
Ф — трансформатор с расширителем и выводами, смонтированными во фланцах на стенках бака 
Г — трансформатор в гофробаке без расширителя — «герметичное исполнение»
У — трансформатор с симметрирующим устройством
П — подвесного исполнения на опоре ВЛ
э — трансформатор с пониженными потерями холостого хода (энергосберегающий)

6. Назначение (в обозначении может отсутствовать)

С — исполнение трансформатора для собственных нужд электростанций
П — для линий передачи постоянного тока
М — исполнение трансформатора для металлургического производства
ПН — исполнение для питания погружных электронасосов
Б — для прогрева бетона или грунта в холодное время года (бетоногрейный) , такой же литерой может обозначаться трансформатор для буровых станков
Э — для питания электрооборудования экскаваторов (экскаваторный
ТО — для термической обработки бетона и грунта, питания ручного инструмента, временного освещения

Для автотрансформаторов при классах напряжения стороны С.Н или НН 110 кВ и выше после класса напряжения стороны ВН через черту дроби указывают класс напряжения стороны СН или НН.

Примечание. Для трансформаторов, разработанных до 01.07.87, допускается указывать последние две цифры года выпуска рабочих чертежей.

графические и буквенные по ГОСТ

Как невозможно читать книгу без знания букв, так невозможно понять ни один электрический чертеж без знания условных обозначений.

В этой статье рассмотрим условные обозначения в электрических схемах: какие бываю, где найти расшифровку, если в проекте она не указана, как правильно должен быть обозначен и подписан тот или иной элемент на схеме.

Введение


Но начнем немного издалека...
Каждый молодой специалист, который приходит в проектирование, начинает либо со складывания чертежей, либо с чтения нормативной документации, либо нарисуй «вот это» по такому примеру. Вообще, нормативная литература изучается по ходу работы, проектирования.

Невозможно прочитать всю нормативную литературу, относящуюся к твоей специальности или, даже, более узкой специализации. Тем более, что ГОСТ, СНиП и другие нормативы периодически обновляются. И каждому проектировщику приходится отслеживать изменения и новые требования нормативных документов, изменения в линейках производителей электрооборудования, постоянно поддерживать свою квалификацию на должном уровне.

Помните, как Льюиса Кэролла в «Алисе в Стране Чудес»?

«Нужно бежать со всех ног, чтобы только оставаться на месте, а чтобы куда-то попасть, надо бежать как минимум вдвое быстрее!»

Это я не к тому, чтобы поплакаться «как тяжела жизнь проектировщика» или похвастаться «смотрите, какая у нас интересная работа». Речь сейчас не об этом. Учитывая такие обстоятельства, проектировщики перенимают практический опыт от более опытных коллег, многие вещи просто знают как делать правильно, но не знают почему. Работают по принципу «Здесь так заведено».

Порой, это достаточно элементарные вещи. Знаешь, как сделать правильно, но, если спросят «Почему так?», ответить сразу не сможешь, сославшись хотя бы на название нормативного документа.

В этой статье я решил структурировать информацию, касающуюся условных обозначений, разложить всё по полочкам, собрать всё в одном месте.

Виды и типы электрических схем

Прежде, чем говорить об условных обозначения на схемах, нужно разобраться, какие виды и типы схем бывают. С 01.07.2009 на территории РФ введен в действие ГОСТ 2.701-2008 «ЕСКД. Схемы. Виды и типы. Общие требования к выполнению».
В соответствии с этим ГОСТ, схемы разделяются на 10 видов:

  1. Схема электрическая
  2. Схема гидравлическая
  3. Схема пневматическая
  4. Схема газовая
  5. Схема кинематическая
  6. Схема вакуумная
  7. Схема оптическая
  8. Схема энергетическая
  9. Схема деления
  10. Схема комбинированная

Виды схем подразделяются на восемь типов:

  1. Схема структурная
  2. Схема функциональная
  3. Схема принципиальная (полная)
  4. Схема соединений (монтажная)
  5. Схема подключения
  6. Схема общая
  7. Схема расположения
  8. Схема объединенная

Меня, как электрика, интересуют схемы вида «Схема электрическая». Вообще, описание и требования к схемам приведены в ГОСТ 2.701-2008 на примере электрических схем, но с 01 января 2012 действует ГОСТ 2.702-2011 «ЕСКД. Правила выполнения электрических схем». Большей частью текст этого ГОСТ дублирует текст ГОСТ 2.701-2008, ссылается на него и другие ГОСТ.

ГОСТ 2.702-2011 подробно описывает требования к каждому виду электрической схемы. При выполнении электрических схем следует руководствоваться именно этим ГОСТ.

ГОСТ 2.702-2011 дает следующее определение понятия электрической схемы: «Схема электрическая — документ, содержащий в виде условных изображений или обозначений составные части изделия, действующие при помощи электрической энергии, и их взаимосвязи». Далее ГОСТ ссылается на документы, регламентирующие правила выполнения условных графических изображения, буквенных обозначений и обозначений проводов и контактных соединений электрических элементов. Рассмотрим каждый отдельно.

Графические обозначения в электрических схемах

В части графических обозначений в электрических схемах ГОСТ 2.702-2011 ссылается на три других ГОСТ:

  • ГОСТ 2.709-89 «ЕСКД. Обозначения условные проводов и контактных соединений электрических элементов, оборудования и участков цепей в электрических схемах».
  • ГОСТ 2.721-74 «ЕСКД. Обозначения условные графические в схемах. Обозначения общего применения»
  • ГОСТ 2.755-87 «ЕСКД. Обозначения условные графические в электрических схемах. Устройства коммутационные и контактные соединения».

Условные графические обозначения (УГО) автоматов, рубильников, контакторов, тепловых реле и прочего коммутационного оборудования, которое используется в однолинейных схемах электрических щитов, определены в ГОСТ 2.755-87.

Однако, обозначение УЗО и дифавтоматов в ГОСТ отсутствует. Думаю, в скором времени он будет перевыпущен и обозначение УЗО будет добавлено. А пока, каждый проектировщик изображает УЗО по собственному вкусу, тем более, что ГОСТ 2.702-2011 это предусматривает. Достаточно привести обозначение УГО и его расшифровку в пояснениях к схеме.

Дополнительно к ГОСТ 2.755-87 для полноты схемы понадобится использование изображений из ГОСТ 2.721-74 (в основном для вторичных цепей).

Все обозначения коммутационных аппаратов построены на четырех базовых изображениях:

с использованием девяти функциональных признаков:

Основные условные графические обозначения, используемые в однолинейных схемах электрических щитов:

Наименование Изображение
Автоматический выключатель (автомат)
Выключатель нагрузки (рубильник)
Контакт контактора
Тепловое реле
УЗО
Дифференциальный автомат
Предохранитель
Автоматический выключатель для защиты двигателя (автомат со встроенным тепловым реле)
Выключатель нагрузки с предохранителем (рубильник с предохранителем)
Трансформатор тока
Трансформатор напряжения
Счетчик электрической энергии
Частотный преобразователь
Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления автоматически
Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления посредством вторичного нажатия кнопки
Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления посредством вытягивания кнопки
Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления посредством отдельного привода (например, нажатия кнопки-сброс)
Контакт замыкающий с замедлением, действующим при срабатывании
Контакт замыкающий с замедлением, действующим при возврате
Контакт замыкающий с замедлением, действующим при срабатывании и возврате
Контакт размыкающий с замедлением, действующим при срабатывании  
 Контакт размыкающий с замедлением, действующим при возврате  
 Контакт замыкающий с замедлением, действующим при срабатывании и возврате
Катушка контактора, общее обозначение катушки реле
Катушка импульсного реле
Катушка фотореле
Катушка реле времени
Мотор-привод
Лампа осветительная, световая индикация (лампочка)
Нагревательный элемент
Разъемное соединение (розетка):
гнездо
штырь
Разрядник
Ограничитель перенапряжения (ОПН), варистор
Разборное соединение (клемма)
Амперметр
Вольтметр
Ваттметр
Частотометр

Обозначения проводов, шин в электрических щитах определяется ГОСТ 2.721-74.

Буквенные обозначения в электрических схемах

Буквенные обозначения определены ГОСТ 2.710-81 «ЕСКД. Обозначения буквенно-цифровые в электрических схемах».

Обозначения дифавтоматов и УЗО в этом ГОСТ отсутствует. На различных сайтах и форумах в интернете долго обсуждали как же правильно обозначать УЗО и дифавтомат. ГОСТ 2.710-81 в п.2.2.12. допускает использование многобуквенных кодов (а не только одно- и двухбуквенных), поэтому до введения нормативного обозначения я для себя принял трехбуквенное обозначение УЗО и дифавтомата. К двухбуквенному обозначению рубильника я добавил букву D и получил обозначение УЗО. Аналогично поступил с дифавтоматом.

Думаю, в скором времени он будет перевыпущен и обозначение УЗО будет добавлено.

Обозначения основных элементов, используемых в однолинейных схемах электрических щитов:

Наименование Обозначение
Автоматический выключатель в силовых цепях QF
Автоматический выключатель в цепях управления SF
Автоматический выключатель с дифференциальной защитой (дифавтомат) QFD
Выключатель нагрузки (рубильник) QS
Устройство защитного отключения (УЗО) QSD
Контактор KM
Тепловое реле F, KK
Реле времени KT
Реле напряжения KV
Фотореле KL
Импульсное реле KI
Разрядник, ОПН FV
Плавкий предохранитель FU
Трансформатор тока TA
Трансформатор напряжения TV
Частотный преобразователь UZ
Амперметр PA
Вольтметр PV
Ваттметр PW
Частотометр PF
Счетчик активной энергии PI
Счетчик реактивной энергии PK
Фотоэлемент BL
Нагревательный элемент EK
Лампа осветительная EL
Прибор световой индикации (лампочка) HL
Штепсельный разъем (розетка) XS
Выключатель или переключатель в цепях управления SA
Выключатель кнопочный в цепях управления SB
Клеммы XT

Изображение электрооборудования на планах

Хотя ГОСТ 2.701-2008 и ГОСТ 2.702-2011 предусматривают вид электрической схемы «схема расположения», при проектировании зданий и сооружений следует руководствоваться ГОСТ 21.210-2014 «СПДС. Изображения условные графические электрооборудования и проводок на планах». Данный ГОСТ устанавливает условные обозначения электропроводок, прокладок шин, шинопроводов, кабельных линий, электрического оборудования (трансформаторов, электрических щитов, розеток, выключателей, светильников) на планах прокладки электрических сетей.

Эти условные обозначения применяются при выполнении чертежей электроснабжения, силового электрооборудования, электрического освещения и других чертежей. Также данные обозначения используются для изображении потребителей в однолинейных принципиальных схемах электрических щитов.

Условные графические изображения электрооборудования, электротехнических устройств и электроприемников

Условные графические обозначения линий проводок и токопроводов

К сожалению, AutoCAD в базовой поставке не содержит все необходимые типы линий.

Проектировщики решают эту проблему по-разному:

  • большинство выполняет отрисовку проводки обычной линией, а потом дополняет обозначениями кружков, квадратиков и пр.;
  • продвинутые пользователи AutoCAD создают собственные типы линий.

Я — сторонник второго способа, т.к. он гораздо удобнее. Если вы используете специальный тип линии, то при её перемещении все «дополнительные» обозначения также перемещаются, ведь они часть линии.

Создать собственный тип линии в AutoCAD достаточно просто. Вы потратите некоторое время на освоение этого навыка, зато сэкономите потом массу времени при проектировании.

Изображение вертикальной прокладки удобнее всего сделать при помощи блоков AutoCAD, а лучше при помощи динамических блоков.

Условные графические изображения шин и шинопроводов

Отрисовку шин и шинопроводов в AutoCAD удобно выполнять при помощи полилинии и/или динамических блоков.

Условные графические изображения коробок, шкафов, щитов и пультов

Наименование Изображение
Коробка ответвительная
Коробка вводная
Коробка протяжная, ящик протяжной
Коробка, ящик с зажимами
Шкаф распределительный
Щиток групповой рабочего освещения
Щиток групповой аварийного освещения
Щиток лабораторный
Ящик с аппаратурой
Ящик управления
Шкаф, панель, пульт, щиток одностороннего обслуживания, пост местного управления
Шкаф, панель двухстороннего обслуживания
Шкаф, щит, пульт из нескольких панелей одностороннего обслуживания
Шкаф, щит, пульт из нескольких панелей двухстороннего обслуживания
Щит открытый
Ящик трансформаторный понижающий (ЯТП)

Отрисовку в AutoCAD удобно выполнять при помощи блоков и динамических блоков.

Условные графические обозначения выключателей, переключателей

ГОСТ 21.210-2014 не предусматривает условных изображения для светорегуляторов (диммеров) и отдельного изображения для кнопочных выключателей, поэтому я ввёл для них собственные обозначения в соответствии с п.4.7.

Отрисовку в AutoCAD удобно выполнять при помощи динамических блоков. Я себе сделал один динамический блок для всех типов выключателей.

Условные графические обозначения штепсельных розеток

Отрисовку в AutoCAD удобно выполнять при помощи динамических блоков. Я себе сделал один динамический блок для всех типов розеток.

Условные графические обозначения светильников и прожекторов

Радует, что в обновленной версии ГОСТ добавлены изображения светодиодных светильников и светильников с компактными люминесцентными лампами.

Отрисовку светильников в AutoCAD удобно выполнять при помощи динамических блоков.

Условные графические обозначения аппаратов контроля и управления

Отрисовку в AutoCAD удобно выполнять при помощи динамических блоков.


Подпишитесь и получайте уведомления о новых статьях на e-mail

Читайте также:

Условное обозначение в электрических схемах. Условные графические и буквенные обозначения

Если вы занимаетесь электромонтажными работами, то необходимо знать условные обозначения в электрических схемах. Умение читать электрические схемы - важное качество монтажников, монтажников КИПиА, схемотехников. И если у вас нет специальной подготовки, вы не сможете сразу разобраться во всех тонкостях. Но нужно помнить, что символы на схемах, которые разрабатываются для российских потребителей, отличаются от общепринятых стандартов за рубежом - в Европе, США, Японии.

История обозначений на схемах

Еще в советские годы, когда быстро развивалась электротехника, возникла необходимость в классификации устройств и их обозначении. Именно тогда появилась Единая система конструкторской документации (ЕСДК) и государственные стандарты (ГОСТ). Все было стандартизировано, так что любой инженер мог прочитать символы на чертежах своих коллег.

Но чтобы разобрать все тонкости, послушайте много лекций и выучите много специальной литературы.ГОСТ - это огромный документ, и разобраться во всех графических обозначениях и их стандартных размерах, примечаниях практически невозможно. Поэтому необходимо всегда иметь под рукой небольшую «шпаргалку», которая поможет сориентироваться во всем разнообразии электрических компонентов.

Электропроводка на чертежах

Электромонтаж - это обобщенное понятие, оно подразумевает проводники с очень низким сопротивлением. С их помощью передается напряжение от источника электроэнергии к потребителям.Это общее понятие, так как существует много видов проводки.

Люди, не разбирающиеся в схемах и электропроводке, могут решить, что проводник представляет собой изолированный кабель, подключенный к выключателям и розеткам. Но на самом деле типов проводников много, и на схемах они обозначаются по-разному.

Проводники на схемах

Даже медные дорожки на монтажных текстолитах - это проводник, можно даже сказать, что это вариант для электропроводки.Обозначается на электрических схемах в виде прямой соединительной линии, проходящей от одного элемента к другому. Таким же образом на схеме указываются и электрические провода ЛЭП, проложенные в полях между столбами. А в квартирах соединительные провода между лампами, выключателями и розетками тоже обозначают прямыми соединительными линиями.

Но можно разделить на три подгруппы обозначение токопроводящих элементов:

  1. Провода.
  2. Кабели.
  3. Электрические соединения.

Схема подключения является неправильным определением, так как подключение относится как к проводке, так и к кабелям. Но если существенно расширить перечень элементов, как это необходимо в детальной схеме, то окажется, что необходимо включать больше трансформаторов, автоматов защиты, устройств дифференциального тока, заземления, изоляторов.

Розетки на цепях

Розетки - это вилочные соединения, предназначенные для нежесткого соединения (есть возможность отключить соединение вручную) электрических цепей.Обозначения на чертежах строго регламентированы ГОСТом. С его помощью устанавливаются правила обозначения на чертежах аппаратов и осветительных приборов и различных других потребителей электроэнергии. Розетки вилочного типа можно разделить на три категории:

  1. Предназначены для наружной установки.
  2. Предназначен для скрытого монтажа.
  3. Блок, который включает розетку и выключатель.

Эти три категории можно разделить на несколько подгрупп, в зависимости от вариантов подключения и наличия защиты:

  1. Однополюсные розетки.
  2. Двухполюсный.
  3. Двухполюсный и защитный контакт.
  4. Трехполюсный.
  5. Трехполюсный и защитный контакт.

Достаточно, особых особенностей розеток нет, вариантов исполнения много. Все устройства имеют степень защиты, выбор следует делать исходя из условий, в которых они будут использоваться: уровень влажности, температура, механические воздействия.

Выключатели на схемах подключения

Выключатели - это устройства, с помощью которых нарушается электрическая цепь.Это можно сделать автоматически или вручную. Условное графическое обозначение ГОСТом регламентировано, как и на розетках. Обозначение зависит от условий, в которых работает элемент, от его конструкции и степени защиты. Конструкции выключателей бывают нескольких типов:

  1. Однополюсные (в том числе двойные и встраиваемые).
  2. Двухполюсный.
  3. Трехполюсный.

На схемах обязательно указаны параметры отключающего устройства.А графическое обозначение показывает, какой тип используется: простой переключатель, кнопка с фиксацией и без нее, акустическое устройство (реагирующее на хлопок) или оптическое устройство. Если есть условие, что освещение включается с наступлением темноты и выключается утром, можно использовать оптический датчик и небольшую схему управления.

Предохранители (плавкие вставки)

Существует множество типов защитных устройств - предохранители (одноразовые и самовосстанавливающиеся), автоматические выключатели, УЗО. Многообразие конструкции, применения, разная скорость работы, надежность, использование в определенных условиях характеризует эти устройства.Условное обозначение предохранителя - прямоугольник, проводник проходит параллельно длинной стороне через центр. Это самый простой и дешевый элемент, способный защитить электрическую цепь от короткого замыкания. Следует отметить, что такие компоненты редко используются в принципиальных электрических схемах. Можно встретить условные обозначения иного типа - это самовосстанавливающиеся предохранители, которые после размыкания цепи возвращаются в исходное состояние.

Широкое название предохранителей - плавкая вставка.Он используется во многих устройствах, в распределительных электрических щитах. В одноразовых пробках их можно встретить. Но есть и устройства, применяемые в высоковольтных распределителях. Конструктивно они выполнены из металлических наконечников и основной керамической части. Внутри находится сечение проводника (его сечение выбирается в зависимости от того, какой максимальный ток должен проходить по цепи). Керамический корпус заполнен песком, чтобы исключить возможность возгорания.

Выключатели автоматические

Условные обозначения устройств данного типа зависят от конструкции, степени защиты.Многоразовое устройство можно использовать как простой выключатель. По сути, он работает как плавкая вставка, но есть возможность перевести в исходное состояние - замкнуть цепь. Конструкция состоит из следующих элементов:

  1. Пластиковый корпус.
  2. Рычаг включения и выключения.
  3. Биметаллическая пластина - при нагревании деформируется.
  4. Контактная группа - включена в электрическую цепь.
  5. Дугогасительная камера - позволяет избавиться от образования искр и дуги при отключении.

Это элементы, из которых состоит любой автоматический выключатель. Но нужно помнить, что после спускового крючка он не может сразу вернуться в исходное положение, должно пройти время, чтобы биметаллическая пластина остыла. Срок службы автоматов измеряется количеством поездок и колеблется в пределах 30000-60000.

Заземление в цепях

Заземление

.

Различные типы трансформаторов и их применение

Трансформатор - это широко используемое устройство в области электротехники и электроники. Это электромагнитное устройство, которое следует основному принципу электромагнетизма, открытому Майклом Фарадеем. Мы подробно рассмотрели строительство и эксплуатацию трансформаторов в предыдущем руководстве. Здесь мы рассмотрим различных типов трансформаторов , используемых в различных типах приложений. Однако все трансформаторы типа работают по одним и тем же принципам, но имеют разную конструкцию.Приложив немного усилий, вы также можете построить свой собственный трансформатор, но при сборке трансформатора всегда следует соблюдать методы защиты трансформатора.

Типы трансформаторов в зависимости от уровня напряжения

Трансформатор может иметь несколько типов конструкции. Трансформатор не имеет электрического соединения с одной стороны на другую; тем не менее, две электрически независимые катушки могут проводить электричество посредством электромагнитного потока. Трансформатор может иметь несколько катушек или обмоток как на первичной, так и на вторичной стороне.В некоторых случаях несколько первичных сторон, где две катушки соединены последовательно, часто называют центральным отводом . Это состояние отвода по центру также можно увидеть на вторичной стороне.

Трансформаторы

могут быть сконструированы таким образом, что они могут преобразовывать уровень напряжения первичной стороны во вторичную. В зависимости от уровня напряжения трансформатор бывает трех категорий. Понижающий, повышающий и развязывающий трансформаторы . Для изолирующего трансформатора уровень напряжения одинаков для обеих сторон.

1. Понижающий трансформатор

Понижающий трансформатор

используется как в электронике, так и в электротехнике. Понижающий трансформатор преобразует уровень первичного напряжения в более низкое напряжение на вторичном выходе. Это достигается соотношением первичной и вторичной обмоток. Для понижающих трансформаторов количество обмоток на первичной стороне больше, чем на вторичной. Таким образом, общее соотношение первичной и вторичной обмоток всегда остается больше 1.

В области электроники многие приложения работают на 5 В, 6 В, 9 В, 12 В, 24 В или в некоторых случаях 48 В. Для преобразования напряжения однофазной розетки 230 В переменного тока в требуемый низкий уровень напряжения требуются понижающие трансформаторы. В КИП, а также во многих электрических типах оборудования понижающий трансформатор является основным требованием для силовой части. Они также используются в блоках питания и схемах зарядных устройств сотовых телефонов.

В электрических системах понижающие трансформаторы используются в системе распределения электроэнергии, работающей от очень высокого напряжения, чтобы обеспечить низкие потери и экономичное решение для передачи электроэнергии на большие расстояния.Для преобразования высокого напряжения в низковольтную линию питания используется понижающий трансформатор.

2. Повышающий трансформатор

Повышающий трансформатор прямо противоположен понижающему трансформатору. Повышающий трансформатор увеличивает низкое первичное напряжение до высокого вторичного напряжения . Опять же, это достигается за счет соотношения первичной и вторичной обмоток. Для повышающего трансформатора соотношение первичной обмотки и вторичной обмотки остается менее 1 .Это означает, что количество витков во вторичной обмотке больше, чем в первичной.

В электронике, повышающие трансформаторы часто используются в стабилизаторах, инверторах и т. Д., Где низкое напряжение преобразуется в гораздо более высокое напряжение.

Повышающий трансформатор также используется в распределении электроэнергии . Высокое напряжение требуется для приложений, связанных с распределением электроэнергии. Повышающий трансформатор используется в сети для повышения уровня напряжения перед распределением.

3. Разделительный трансформатор

Разделительный трансформатор не преобразует никакие уровни напряжения. Первичное напряжение и вторичное напряжение изолирующего трансформатора всегда остаются неизменными. Это связано с тем, что коэффициент первичной и вторичной обмоток всегда равен 1 . Это означает, что количество витков первичной и вторичной обмоток в изолирующем трансформаторе одинаково.

Изолирующий трансформатор используется для изоляции первичной и вторичной обмоток.Как обсуждалось ранее, трансформатор не имеет электрических соединений между первичной и вторичной обмотками, он также используется в качестве изолирующего барьера, где проводимость происходит только с магнитным потоком. Используется в целях безопасности и для отмены передачи шума от первичного к вторичному или наоборот.

Типы трансформаторов в зависимости от материала сердечника

Трансформатор передает энергию, проводя электромагнитный поток через материал сердечника.Различные материалы сердечника создают разную плотность потока. В зависимости от материалов сердечника в области энергетики и электроники используются несколько типов трансформаторов.

1. Трансформатор с железным сердечником

В трансформаторе

с железным сердечником в качестве материала сердечника используется несколько пластин из мягкого железа. Благодаря отличным магнитным свойствам железа, магнитная связь трансформатора с железным сердечником очень высока. Таким образом, КПД трансформатора с железным сердечником также высок.

Пластины с сердечником из мягкого железа могут быть разных форм и размеров.Катушки первичной и вторичной обмотки намотаны или намотаны на формирователь катушки. После этого катушечный формирователь устанавливается в пластинах сердечника из мягкого железа. В зависимости от размера и формы сердечника на рынке доступны различные типы сердечниковых пластин. Несколько распространенных форм - E, I, U, L и т. Д. Железные пластины тонкие, и несколько пластин сгруппированы вместе, чтобы сформировать собственно сердечник. Например, сердечники типа E изготавливаются из тонких пластин с видом на букву E.

Трансформаторы с железным сердечником широко используются и обычно имеют больший вес и форму.

2. Трансформатор с ферритовым сердечником

В трансформаторе с ферритовым сердечником используется ферритовый сердечник из-за высокой магнитной проницаемости. Этот тип трансформатора обеспечивает очень низкие потери в высокочастотном применении. Из-за этого трансформаторы с ферритовым сердечником используются в высокочастотных приложениях, таких как импульсные источники питания (SMPS), приложения, связанные с RF и т. Д.

Трансформаторы

с ферритовым сердечником также могут иметь разные формы и размеры в зависимости от требований приложения.Он в основном используется в электронике, а не в электротехнике. Наиболее распространенной формой трансформатора с ферритовым сердечником является сердечник E.

3. Трансформатор с тороидальным сердечником

В трансформаторе с тороидальным сердечником

используется материал сердечника тороидальной формы, такой как железный сердечник или ферритовый сердечник. Тороиды представляют собой материал сердечника в форме кольца или пончика и широко используются для обеспечения превосходных электрических характеристик. Благодаря форме кольца индуктивность рассеяния очень мала и обеспечивает очень высокую индуктивность и добротность.Обмотки относительно короткие, а вес намного меньше, чем у традиционных трансформаторов того же номинала.

4. Трансформатор с воздушным сердечником

Трансформатор

Air Core не использует физический магнитный сердечник в качестве материала сердечника. Потоковая связь трансформатора с воздушным сердечником полностью выполнена с использованием воздуха.

В трансформаторе с воздушным сердечником на первичную обмотку подается переменный ток, который создает вокруг нее электромагнитное поле.Когда вторичная катушка помещается внутри магнитного поля, согласно закону индукции Фарадея, вторичная катушка индуцируется магнитным полем, которое в дальнейшем используется для питания нагрузки.

Однако трансформатор с воздушным сердечником создает низкую взаимную индуктивность по сравнению с физическим материалом сердечника, таким как железо или ферритовый сердечник.

Он используется в портативной электронике, а также в приложениях, связанных с радиочастотами. Из-за отсутствия физического материала сердечника он очень легкий с точки зрения веса.Правильно настроенный трансформатор с воздушным сердечником также используется в решениях для беспроводной зарядки, где первичные обмотки расположены внутри зарядного устройства, а вторичные обмотки расположены внутри целевого устройства.

Типы трансформаторов в зависимости от расположения обмоток

Трансформатор можно классифицировать по порядку намотки. Один из популярных типов - трансформаторы с автоматической обмоткой.

Трансформатор с автоматической обмоткой

До сих пор первичная и вторичная обмотки фиксированы, но в случае трансформатора с автоматической обмоткой первичная и вторичная обмотки могут быть соединены последовательно, а центральный ответвительный узел является подвижным.В зависимости от центрального положения отвода вторичное напряжение может изменяться.

«Авто» - это не сокращенная форма «Автомат»; скорее, чтобы уведомить себя или одиночную катушку. Эта катушка формирует передаточное число, которое состоит из двух частей: первичной и вторичной. Положение центрального ответвительного узла определяет соотношение первичной и вторичной обмоток, таким образом изменяя выходное напряжение.

Чаще всего используется V ARIAC , прибор для создания переменного переменного тока из постоянного входного переменного тока.Он также используется в приложениях, связанных с передачей и распределением электроэнергии, где требуется частая замена высоковольтных линий.

Типы трансформаторов в зависимости от использования

Также доступно несколько типов трансформаторов, которые работают в определенной области. Как в электронике, так и в электротехнике, несколько специальных трансформаторов используются в качестве понижающих или повышающих трансформаторов в зависимости от области применения. Таким образом, трансформаторы можно классифицировать следующим образом в зависимости от использования:

1.Power Domain

  • Силовой трансформатор
  • Измерительный трансформатор
  • Распределительный трансформатор

2. Домен электроники

  • Импульсный трансформатор
  • Трансформатор аудиовыхода

1. Трансформаторы, используемые в области энергетики

В области «Электрооборудование» область «Электроэнергетика» занимается производством, измерением и распределением электроэнергии. Однако это очень большая область, где трансформаторы являются важной частью для обеспечения безопасного преобразования энергии и успешной подачи энергии на подстанцию ​​и конечным пользователям.

Трансформаторы, которые используются в области питания, могут быть как наружными, так и внутренними, но в основном наружными.

(а) Силовой трансформатор

Силовые трансформаторы

больше по размеру и используются для передачи энергии на подстанцию ​​или в общественное электроснабжение. Этот трансформатор действует как мост между генератором энергии и первичной распределительной сетью. В зависимости от номинальной мощности и спецификации силовые трансформаторы можно разделить на три категории: трансформаторы малой мощности , трансформаторы средней мощности и трансформаторы большой мощности .Номинальная мощность может быть от 30 кВА до 500-700 кВА или, в некоторых случаях, может быть равна или больше 7000 кВА для трансформатора малой номинальной мощности. Силовой трансформатор среднего номинала может иметь мощность до 50-100 МВА, тогда как силовые трансформаторы большого номинала могут выдерживать более 100 МВА.

Из-за очень высокой выработки мощности конструкция силового трансформатора также имеет решающее значение. Конструкция включает прочную изоляционную периферию и хорошо сбалансированную систему охлаждения. Наиболее распространенные силовые трансформаторы заполнены маслом.

Основным принципом силового трансформатора является преобразование высокого тока низкого напряжения в низкий ток высокого напряжения . Это необходимо для минимизации потерь мощности в системе распределения электроэнергии.

Еще одним важным параметром силового трансформатора является наличие фазы. Обычно силовые трансформаторы работают в трехфазной системе , но в некоторых случаях также используются однофазные малые силовые трансформаторы.Трехфазные силовые трансформаторы являются наиболее дорогими и эффективными, чем однофазные силовые трансформаторы.

(б) Измерительный трансформатор

Измерительный трансформатор часто называют измерительным трансформатором. Это еще один широко используемый измерительный прибор в области мощности. Измерительный трансформатор используется для изоляции основного питания и преобразования тока и напряжения в меньшем соотношении к его вторичному выходу. Измеряя выходную мощность, можно измерить фазу, ток и напряжение фактической линии электропередачи.

На изображении выше показана конструкция трансформатора тока.

(c) Распределительный трансформатор

Используется на последней фазе системы распределения электроэнергии. Распределительные трансформаторы представляют собой понижающий трансформатор, который преобразует высокое сетевое напряжение в требуемое конечным потребителем напряжение, 110 В или 230 В. Он также может быть однофазным или трехфазным.

Распределительные трансформаторы могут быть меньше по форме, а также больше, в зависимости от мощности преобразования или номинальных значений.

Распределительные трансформаторы

можно разделить на другие категории в зависимости от типа используемой изоляции. Он может быть сухим или погружным в жидкость. Он изготовлен из многослойных стальных пластин, в основном С-образной формы в качестве основного материала.

Распределительный трансформатор также имеет другую классификацию в зависимости от того, где он используется. Трансформатор может быть установлен на опоре электросети, в таком случае он называется распределительным трансформатором, устанавливаемым на столб. Его можно разместить внутри подземной камеры, установить на бетонную площадку (распределительный трансформатор, устанавливаемый на площадку) или внутри закрытого стального ящика.

Обычно распределительные трансформаторы имеют номинальную мощность менее 200 кВА.

2. Трансформатор, используемый в области электроники

В электронике используются различные небольшие миниатюрные трансформаторы, которые могут быть смонтированы на печатной плате или могут быть закреплены внутри небольшого корпуса продукта.

(а) Импульсный трансформатор

Импульсные трансформаторы - одни из наиболее часто используемых трансформаторов на печатных платах, которые вырабатывают электрические импульсы постоянной амплитуды.Он используется в различных цифровых схемах, где генерация импульсов необходима в изолированной среде. Таким образом, импульсные трансформаторы изолируют первичную и вторичную обмотки и распределяют первичные импульсы по вторичной цепи, часто это цифровые логические вентили или драйверы.

Правильно сконструированные импульсные трансформаторы должны иметь надлежащую гальваническую развязку, а также небольшую утечку и паразитную емкость.

(b) Трансформатор аудиовыхода

Audio Transformer - еще один широко используемый трансформатор в области электроники.Он специально используется в приложениях, связанных со звуком, где требуется согласование импеданса. Звуковой трансформатор балансирует схему усилителя и нагрузки, обычно громкоговоритель. Аудио трансформатор может иметь несколько первичных и вторичных катушек, разделенных или с отводом по центру.

Итак, мы рассмотрели различные типы трансформаторов, кроме трансформаторов специального назначения, но они выходят за рамки данной статьи.

.

Как работают трансформаторы. Трансформаторы - это разновидность нейронной… | Джулиано Джакалья

Нейронная сеть, используемая Open AI и DeepMind

Трансформаторы - это тип архитектуры нейронной сети, который набирает популярность. Трансформеры недавно использовались OpenAI в своих языковых моделях, а также недавно использовались DeepMind для AlphaStar - их программы, чтобы победить лучшего профессионального игрока в Starcraft. Преобразователи

были разработаны для решения задачи преобразования последовательности , или нейронного машинного перевода. Это означает любую задачу, которая преобразует входную последовательность в выходную последовательность. Это включает в себя распознавание речи, преобразование текста в речь и т. Д.

Преобразование последовательности. Входные данные представлены зеленым цветом, модель - синим, а выход - фиолетовым. GIF от 3

Для моделей, выполняющих преобразование последовательности , необходимо иметь какую-то память. Например, предположим, что мы переводим следующее предложение на другой язык (французский):

«Трансформеры» - японская [[хардкор-панк]] группа.Группа была образована в 1968 году, в разгар истории японской музыки »

В этом примере слово« группа »во втором предложении относится к группе« Трансформеры », представленной в первом предложении. Когда вы читаете о группе во втором предложении, вы знаете, что это относится к группе «Трансформеры». Это может быть важно для перевода. Есть много примеров, когда слова в некоторых предложениях относятся к словам в предыдущих предложениях.

Для перевода подобных предложений модель должна определять такого рода зависимости и связи.Рекуррентные нейронные сети (RNN) и сверточные нейронные сети (CNN) были использованы для решения этой проблемы из-за их свойств. Давайте рассмотрим эти две архитектуры и их недостатки.

Рекуррентные нейронные сети содержат петли, позволяющие информации сохраняться.

Вход представлен как x_t

На рисунке выше мы видим часть нейронной сети, A, , обрабатывающую некоторый вход x_t и выводящую h_t. Цикл позволяет передавать информацию от одного шага к другому.

Петли можно мыслить иначе. Рекуррентную нейронную сеть можно представить как несколько копий одной и той же сети, A , каждая из которых передает сообщение своему преемнику. Подумайте, что произойдет, если мы развернем цикл:

Развернутая рекуррентная нейронная сеть

Эта цепочечная природа показывает, что рекуррентные нейронные сети явно связаны с последовательностями и списками. Таким образом, если мы хотим перевести какой-то текст, мы можем установить каждый ввод как слово в этом тексте.Рекуррентная нейронная сеть передает информацию из предыдущих слов в следующую сеть, которая может использовать и обрабатывать эту информацию.

На следующем рисунке показано, как обычно работает модель от последовательности к последовательности с использованием рекуррентных нейронных сетей. Каждое слово обрабатывается отдельно, и результирующее предложение генерируется путем передачи скрытого состояния на этап декодирования, который затем генерирует выходные данные.

GIF от 3

Проблема долгосрочных зависимостей

Рассмотрим языковую модель, которая пытается предсказать следующее слово на основе предыдущих.Если мы пытаемся предсказать следующее слово предложения «облака в небе» , нам не нужен дальнейший контекст. Совершенно очевидно, что следующим словом будет небо.

В этом случае, когда разница между релевантной информацией и местом, которое необходимо, невелика, RNN могут научиться использовать прошлую информацию и выяснить, какое слово будет следующим в этом предложении.

Изображение из 6

Но есть случаи, когда нам нужно больше контекста. Например, предположим, что вы пытаетесь угадать последнее слово текста: «Я вырос во Франции… Я говорю свободно…». Недавняя информация предполагает, что следующее слово, вероятно, является языком, но если мы хотим сузить, какой язык, нам нужен контекст Франции, который находится дальше по тексту.

Изображение из 6

RNN становится очень неэффективным, когда разрыв между релевантной информацией и точкой, где она необходима, становится очень большим. Это связано с тем, что информация передается на каждом этапе, и чем длиннее цепочка, тем более вероятно, что информация будет потеряна по цепочке.

Теоретически RNN могут изучить эту долговременную зависимость.На практике они, кажется, не изучают их. LSTM, особый тип RNN, пытается решить эту проблему.

При составлении календаря на день мы расставляем по приоритетам встречи. Если есть что-то важное, мы можем отменить некоторые встречи и согласовать то, что важно.

RNN этого не делают. Всякий раз, когда он добавляет новую информацию, он полностью преобразует существующую информацию, применяя функцию. Изменяется вся информация, и не учитывается, что важно, а что нет.

LSTM вносят небольшие изменения в информацию путем умножения и сложения. С LSTM информация проходит через механизм, известный как состояния ячеек. Таким образом, LSTM могут выборочно запоминать или забывать важные и не очень важные вещи.

Внутри LSTM выглядит следующим образом:

Изображение из 6

Каждая ячейка принимает в качестве входных данных x_t (слово в случае перевода предложения в предложение), предыдущее состояние ячейки и выход предыдущей ячейки .Он манипулирует этими входами и на их основе генерирует новое состояние ячейки и выходные данные. Я не буду вдаваться в подробности механики каждой ячейки. Если вы хотите понять, как работает каждая ячейка, я рекомендую сообщение в блоге Кристофера:

С состоянием ячейки информация в предложении, которая важна для перевода слова, может передаваться от одного слова к другому при переводе.

Проблема с LSTM

Та же проблема, что обычно случается с RNN, случается с LSTM, т.е.е. когда предложения слишком длинные, LSTM все равно не работают. Причина этого в том, что вероятность сохранения контекста для слова, которое находится далеко от текущего обрабатываемого слова, экспоненциально уменьшается с удалением от него.

Это означает, что когда предложения длинные, модель часто забывает содержание удаленных позиций в последовательности. Другая проблема с RNN и LSTM заключается в том, что трудно распараллелить работу по обработке предложений, поскольку вам нужно обрабатывать слово за словом.Не только это, но еще и не существует модели зависимостей дальнего и ближнего действия. Подводя итог, можно сказать, что LSTM и RNN представляют 3 проблемы:

  • Последовательные вычисления препятствуют распараллеливанию
  • Отсутствует явное моделирование зависимостей дальнего и ближнего действия
  • «Расстояние» между позициями линейно

Для решения некоторых из этих проблем исследователи создали техника обращения внимания на конкретные слова.

При переводе предложения я обращаю особое внимание на слово, которое сейчас перевожу.Когда я расшифровываю аудиозапись, я внимательно слушаю фрагмент, который активно записываю. И если вы попросите меня описать комнату, в которой я сижу, я буду оглядываться на объекты, которые описываю, в процессе.

Нейронные сети могут достичь того же поведения, используя внимание , сосредотачиваясь на части подмножества информации, которую они предоставляют. Например, RNN может следить за выходом другой RNN. На каждом временном шаге он фокусируется на разных позициях в другой RNN.

Для решения этих проблем, Attention - это метод, который используется в нейронной сети. Для RNN вместо кодирования всего предложения в скрытом состоянии каждое слово имеет соответствующее скрытое состояние, которое передается на всем пути к этапу декодирования. Затем скрытые состояния используются на каждом этапе RNN для декодирования. На следующем гифке показано, как это происходит.

Шаг зеленого цвета называется этапом кодирования , а этап фиолетового цвета - этапом декодирования . GIF от 3

Идея заключается в том, что в каждом слове предложения может содержаться релевантная информация. Таким образом, чтобы декодирование было точным, оно должно учитывать каждое слово ввода, используя внимания.

Чтобы привлечь внимание к RNN при преобразовании последовательности, мы разделим кодирование и декодирование на 2 основных этапа. Одна ступенька обозначена зеленым цветом , а другая фиолетовым. Шаг , зеленый, , называется этапом кодирования , , а фиолетовый этап - этапом декодирования .

GIF из 3

Шаг, выделенный зеленым цветом, отвечает за создание скрытых состояний на входе. Вместо того, чтобы передавать декодерам только одно скрытое состояние, как мы делали до использования внимание , мы передаем все скрытые состояния, генерируемые каждым «словом» предложения, на этап декодирования. Каждое скрытое состояние используется на этапе декодирования , чтобы выяснить, на что сеть должна обратить внимание .

Например, при переводе предложения « Je suis étudiant» на английский язык требуется, чтобы на этапе декодирования при переводе учитывались разные слова.

На этой гифке показано, какой вес придается каждому скрытому состоянию при переводе предложения Je suis étudiant на английский язык. Чем темнее цвет, тем большее значение придается каждому слову. GIF из 3

Или, например, когда вы переводите предложение «L’accord sur la zone économique européenne a été signé en août 1992». с французского на английский и сколько внимания уделяется каждому входу.

Перевод предложения «L’accord sur la zone économique européenne a été signé en août 1992." на английский. Изображение из 3

Но некоторые из проблем, которые мы обсуждали, все еще не решаются с помощью RNN, использующих внимание . Например, параллельная обработка входных данных (слов) невозможна. Для большого объема текста это увеличивает время, затрачиваемое на перевод текста.

Сверточные нейронные сети помогают решить эти проблемы. С их помощью мы можем

  • Тривиально распараллелить (для каждого слоя)
  • Использовать локальные зависимости
  • Расстояние между позициями логарифмическое

Некоторые из самых популярных нейронных сетей для преобразования последовательностей, Wavenet и Bytenet, являются сверточными нейронными сетями.

Wavenet, модель представляет собой сверточную нейронную сеть (CNN). Изображение из 10

Причина, по которой сверточные нейронные сети могут работать параллельно, заключается в том, что каждое слово на входе может обрабатываться одновременно и не обязательно зависит от предыдущих слов, которые нужно перевести. Более того, «расстояние» между выходным словом и любым входом для CNN составляет порядка log (N) - это размер высоты дерева, сгенерированного от выхода к входу (вы можете увидеть это на гифке выше.Это намного лучше, чем расстояние между выходом RNN и входом, которое составляет порядка N .

Проблема в том, что сверточные нейронные сети не обязательно помогают с проблемой выяснения проблемы зависимостей при переводе предложений. Именно поэтому были созданы Transformers , они представляют собой сочетание обоих CNN с вниманием.

Чтобы решить проблему распараллеливания, Transformers пытаются решить эту проблему, используя сверточные нейронные сети вместе с моделями внимания . «Внимание» увеличивает скорость перевода модели из одной последовательности в другую.

Давайте посмотрим, как работает Transformer . Transformer - это модель, в которой внимание используется для увеличения скорости. В частности, он использует самовнимания.

Трансформатор. Image from 4

Внутри Transformer имеет такую ​​же архитектуру, что и предыдущие модели, представленные выше. Но Transformer состоит из шести кодеров и шести декодеров.

Изображение из 4

Все кодировщики очень похожи друг на друга. Все кодеры имеют одинаковую архитектуру. Декодеры обладают одним и тем же свойством, то есть они очень похожи друг на друга. Каждый кодировщик состоит из двух уровней: Самовнимание, и нейронной сети прямого распространения.

Изображение из 4

Входы кодировщика сначала проходят через слой самовнимания . Это помогает кодировщику смотреть на другие слова во входном предложении при кодировании определенного слова. В декодере есть оба этих уровня, но между ними есть уровень внимания, который помогает декодеру сосредоточиться на соответствующих частях входного предложения.

Изображение из 4

Примечание: Этот раздел взят из записи блога Джея Алламара

Давайте начнем с рассмотрения различных векторов / тензоров и того, как они перемещаются между этими компонентами, чтобы превратить входные данные обученной модели в выходные. Как и в случае с приложениями НЛП в целом, мы начинаем с преобразования каждого входного слова в вектор, используя алгоритм встраивания.

Изображение взято из 4

Каждое слово вложено в вектор размером 512. Мы представим эти векторы этими простыми прямоугольниками.

Встраивание происходит только в самый нижний кодировщик. Абстракция, которая является общей для всех кодировщиков, заключается в том, что они получают список векторов, каждый из которых имеет размер 512.

В нижнем кодировщике это будет слово embeddings, но в других кодировщиках это будет выход кодировщика, который прямо внизу. После встраивания слов в нашу входную последовательность каждое из них проходит через каждый из двух уровней кодировщика.

Изображение из 4

Здесь мы начинаем видеть одно ключевое свойство преобразователя, а именно то, что слово в каждой позиции проходит по своему собственному пути в кодировщике.Между этими путями на уровне самовнимания есть зависимости. Однако слой прямой связи не имеет этих зависимостей, и, таким образом, различные пути могут выполняться параллельно при прохождении через слой прямой связи.

Затем мы заменим пример более коротким предложением и посмотрим, что происходит на каждом подуровне кодировщика.

Самовнимание

Давайте сначала посмотрим, как вычислить самовнимание с помощью векторов, а затем перейдем к тому, как это на самом деле реализовано - с помощью матриц.

Выявление отношения слов в предложении и уделение ему внимания . Изображение из 8

Первый шаг в вычислении самовнимания состоит в том, чтобы создать три вектора из каждого из входных векторов кодировщика (в данном случае - вложение каждого слова). Итак, для каждого слова мы создаем вектор запроса, вектор ключа и вектор значения. Эти векторы создаются путем умножения вложения на три матрицы, которые мы обучили в процессе обучения.

Обратите внимание, что эти новые векторы меньше по размерности, чем вектор внедрения.Их размерность составляет 64, в то время как векторы ввода-вывода встраивания и кодировщика имеют размерность 512. Они НЕ ДОЛЖНЫ быть меньше, это выбор архитектуры, позволяющий сделать вычисление многогранного внимания (в основном) постоянным.

Изображение взято из 4

Умножение x1 на весовую матрицу WQ дает q1, вектор «запроса», связанный с этим словом. В итоге мы создаем проекцию «запроса», «ключа» и «значения» для каждого слова во входном предложении.

Что такое векторы «запроса», «ключа» и «значения»?

Это абстракции, которые полезны для вычисления внимания и размышлений о нем.Когда вы перейдете к чтению того, как рассчитывается внимание ниже, вы будете знать почти все, что вам нужно знать о роли каждого из этих векторов.

Второй шаг в вычислении самовнимания - это подсчет баллов. Допустим, мы рассчитываем самовнимание для первого слова в этом примере - «мышление». Нам нужно сопоставить каждое слово входного предложения с этим словом. Оценка определяет, сколько внимания следует уделять другим частям входного предложения, когда мы кодируем слово в определенной позиции.

Оценка рассчитывается как скалярное произведение вектора запроса на ключевой вектор соответствующего слова, которое мы оцениваем. Итак, если мы обрабатываем самовнимание для слова в позиции №1, первая оценка будет скалярным произведением q1 и k1. Вторая оценка будет скалярным произведением q1 и k2.

Изображение из 4

На третьем и четвертом шагах баллы делятся на 8 (квадратный корень из размерности ключевых векторов, используемых в статье - 64. Это приводит к получению более стабильных градиентов.Здесь могут быть другие возможные значения, но это значение по умолчанию), затем передайте результат с помощью операции softmax. Softmax нормализует оценки, так что все они положительные и в сумме составляют 1.

Изображение из 4

Эта оценка softmax определяет, насколько каждое слово будет выражено в этой позиции. Очевидно, что слово в этой позиции будет иметь наивысший балл softmax, но иногда полезно обратить внимание на другое слово, имеющее отношение к текущему слову.

Пятый шаг - это умножение каждого вектора значений на оценку softmax (при подготовке к их суммированию).Интуиция здесь состоит в том, чтобы сохранить неизменными значения слов, на которых мы хотим сосредоточиться, и заглушить не относящиеся к делу слова (например, умножив их на крошечные числа, такие как 0,001).

Шестой этап предназначен для суммирования векторов взвешенных значений. Это дает результат слоя самовнимания в этой позиции (для первого слова).

Изображение из 4

На этом расчет самовнимания завершен. Результирующий вектор - это тот, который мы можем отправить в нейронную сеть с прямой связью.Однако в реальной реализации этот расчет выполняется в матричной форме для более быстрой обработки. Итак, давайте посмотрим на это теперь, когда мы увидели интуитивное вычисление на уровне слов.

Multihead Внимание

Трансформаторы в принципе так и работают. Есть еще несколько деталей, которые улучшают их работу. Например, вместо того, чтобы обращать внимание друг на друга только в одном измерении, Трансформеры используют концепцию многоголового внимания.

Идея заключается в том, что всякий раз, когда вы переводите слово, вы можете уделять каждому слову разное внимание в зависимости от типа вопроса, который вы задаете.На изображениях ниже показано, что это значит. Например, когда вы переводите «ударом ногой» в предложении «Я ударил по мячу», вы можете спросить «Кто ударил ногой». В зависимости от ответа перевод слова на другой язык может измениться. Или задайте другие вопросы, например: «Что сделал?» И т. Д.

.

12 шагов для проектирования трансформаторов SMPS: Группа Талема

Разработка магнитных компонентов для SMPS может быть сложной задачей из-за растущих требований к современной электронике. Выполнение этих 12 шагов может помочь инженерам справиться с трудностями и обеспечить успешный проект.

При проектировании магнитных компонентов ИИП необходимы следующие параметры:

  • Диапазон входного напряжения
  • Выходное напряжение
  • Выходная мощность или выходной ток
  • Частота переключения
  • Рабочий режим
  • Максимальный рабочий цикл IC
  • Требования безопасности
  • Температура окружающей среды
  • Требования к размеру

Шаг 1: Core Choice

Сделайте предварительный выбор ядра, исходя из требований к питанию приложения, топологии коммутации и частоты.Ферритовые сердечники - лучший выбор для высокочастотных приложений. Для работы на частотах ниже 500 кГц большинство разработчиков будут использовать материал сердечника с проницаемостью от 2000 до 2500. Проницаемость значительно изменяется с повышением температуры и рабочей плотностью потока. В общем, это не повлияет на работу преобразователя, если сердечник не близок к насыщению, поскольку индуктивность (которая управляет режимом работы) в первую очередь определяется воздушным зазором. Однако повышение температуры и рабочая плотность потока будут влиять на потери в сердечнике, и это необходимо учитывать для обеспечения надежной работы.

Форма сердечника

Форма сердечника и конфигурация окна важны для конструкции высокочастотного трансформатора, чтобы минимизировать потери. Область окна намотки должна быть как можно более широкой, чтобы увеличить ширину намотки и минимизировать количество слоев. Это минимизирует сопротивление обмотки переменного тока.

  • Ядра EFD и EPC используются, когда требуется низкий профиль.
  • EE и EF являются хорошим выбором и обычно используются как с вертикальными, так и с горизонтальными шпульками (вертикальные шпульки хороши, когда место для установки ограничено).
  • Сердечники ETD и EER обычно больше по размеру, но имеют большую площадь обмотки, что делает их особенно хорошими для конструкций с более высокой мощностью и с несколькими выходами.
  • Ядра
  • PQ дороже, но занимают немного меньше места на печатной плате и требуют меньше витков, чем ядра E.
  • Для трансформатора с запасом обмотки потребуется больший размер сердечника, чем для трансформатора с тройной изоляцией, чтобы оставить место для полей.
Размер ядра

Есть много переменных, участвующих в оценке подходящего размера ядра.

  • Один из способов выбрать подходящий сердечник - это обратиться к руководству по выбору сердечника производителя.
  • Произведение площади сердечника ( W, a A c ), полученное путем умножения площади поперечного сечения сердечника на площадь окна, доступного для намотки, широко используется для первоначальной оценки размера сердечника для данного приложения.
  • Возможности обработки Core Power не масштабируются линейно с произведением площади или объемом ядра. Трансформатор большего размера должен работать с более низкой удельной мощностью, потому что площадь рассеиваемой тепла не увеличивается пропорционально объему, производящему тепло.

В таблице ниже представлен обзор типов сердечников в зависимости от пропускной способности мощности:

Уровень выходной мощности (Вт) Рекомендуемые типы сердечников
0–10 EFD15, EF16, EE19, EFD20, EFD25
10–20 EE19, EFD20, EF20, EI22, EFD25
20–30 EI25, EFD25, EFD30, ETD29, EER28 (L)
30–50 EI28, EER28 (L), ETD29, EFD30, EER35
50 –70 EER28L, ETD34, EER35, ETD39
70–100 ETD34, EER35, ETD39, EER40
100–150 EI50, EE40, EER42
150–200 EI60, EE50, EE60, EER49
200–500 ETD44, ETD49, E55
> 500 ETD59, E65, E70, E80

W a A c Соотношение / выходная мощность получается по формуле:

K f = форм-фактор; для прямоугольной формы K f = 4
K u = коэффициент использования окна
J = плотность тока
B max = рабочая плотность потока
F = частота переключения
P o = выходная мощность

Шаг 2: значение произведения вольт-времени (В-мкСек)

Определить значение V-T на основе максимально допустимого рабочего цикла и частоты

Шаг 3: Первичные витки

Определите минимальное количество витков первичной обмотки, необходимое для поддержки наихудшего значения V-T .

Примечание: B <0,3T для феррита

Шаг 4: Передаточное число

Расчет отношения витков вторичной / первичной обмоток

Примечание: падение напряжения диода В d = 0,5-1 В

Шаг 5: Вторичные витки

Выберите точное количество витков первичной и вторичной обмоток для использования на основе N p и N s / N p .

Шаг 6: Первичная индуктивность

Рассчитайте необходимую первичную индуктивность:

В таблице ниже приведены типичные значения КПД:

Топология Диапазон эффективности (η)
Обратный ход > 70%
Вперед > 85%
Push-Pull > 90%
Полумост > 90%
Полный мост > 90%

Шаг 7: Воздушный зазор

Трансформатор наименьшего размера и самой низкой стоимости достигается за счет полного использования сердечника.В конкретном приложении оптимальное использование сердечника связано с определенной оптимальной длиной зазора сердечника.

Зазор сердечника определяется количеством витков первичной обмотки и характеристиками индуктивности. Разработчик должен убедиться, что зазор достаточен для предотвращения насыщения сердечника.

Примечание. Для топологий двухтактного, прямого, полумостового и полного мостового преобразователя воздушный зазор обычно не требуется, так как это фактически действие трансформатора.

Шаг 8: Размер провода

После определения всех витков обмотки необходимо правильно выбрать размер провода, чтобы минимизировать потери проводимости обмотки и индуктивность рассеяния.Потери в обмотке зависят от действующего значения тока, длины и ширины провода, а также от конструкции трансформатора.

  • Размер провода может определяться среднеквадратичным током обмотки.
  • Потери в обмотке зависят от величины сопротивления провода.
  • Сопротивление складывается из сопротивления постоянному току и сопротивления переменному току. На низких частотах R DC >> R AC , R AC можно эффективно игнорировать.
  • На высоких частотах может потребоваться использование многожильного / литцового провода или фольги для минимизации сопротивления переменному току.
  • Из-за скин-эффекта и эффекта близости проводника диаметр провода / жилы должен быть меньше 2 * Δ d ( Δ d = глубина скин-эффекта)
  • Принять плотность тока обычно составляет 3–6 А / мм 2 .

Шаг 9: Коэффициент заполнения

Коэффициент заполнения означает площадь намотки на всю площадь окна сердечника (должно быть <1). Для первоначальных проектов рекомендуется использовать коэффициент заполнения не более 50%.Для трансформаторов с высокой удельной мощностью и несколькими выходами этот коэффициент, возможно, потребуется дополнительно уменьшить.

  • После определения размеров проводов необходимо проверить, может ли площадь окна с выбранной жилой вместить рассчитанные обмотки. Площадь окна, требуемая для каждой обмотки, должна быть соответственно рассчитана и сложена, также следует учитывать площадь межобмоточной изоляции, бобину и промежутки, существующие между витками.
  • На основе этих соображений общая требуемая площадь окна затем сравнивается с доступной площадью окна выбранного ядра. Если требуемая площадь окна больше, чем выбранная, необходимо либо уменьшить размер провода, либо выбрать жилу большего размера. Конечно, уменьшение диаметра провода увеличивает потери в меди в трансформаторе.

Шаг 10: потеря сердечника

В трансформаторе потери в сердечнике зависят от напряжения, приложенного к первичной обмотке.В индукторе это функция переменного тока, протекающего через индуктор. В любом случае, для оценки потерь в сердечнике необходимо определить уровень рабочей плотности потока. Зная частоту и уровень B, потери в сердечнике можно оценить по кривым потерь материала в сердечнике.

Шаг 11: потеря меди

В трансформаторе потери в меди зависят от сопротивления переменного и постоянного тока.

Шаг 12: Повышение температуры

Повышение температуры важно для общей надежности цепи.Пребывание ниже заданной температуры гарантирует, что изоляция проводов находится в рабочем состоянии, что близлежащие активные компоненты не выходят за пределы своей номинальной температуры и что общие температурные требования соблюдены. Может произойти тепловой разгон, вызывающий нагрев сердечника до температуры Кюри, что приведет к потере всех магнитных свойств и катастрофическому отказу. Общие потери измеряются в ваттах, а площадь поверхности - в см 2 .

Конструкция трансформатора

Конструкция трансформатора сильно влияет на индуктивность рассеяния первичной обмотки.Индуктивность утечки приводит к скачку напряжения при выключении полупроводникового переключателя, поэтому минимизация индуктивности рассеяния приведет к более низкому скачку напряжения и уменьшению или даже отсутствию потребности в демпфирующей цепи на первичной обмотке.

Для минимизации индуктивности рассеяния используются следующие методы:

  • Обмотки трансформатора всегда должны быть концентрическими, то есть друг над другом, чтобы обеспечить максимальное сцепление, по этой причине не следует использовать разделенные и многосекционные катушки.
  • Использование разделенной первичной обмотки, когда первый слой обмотки является самой внутренней обмоткой, а второй слой наматывается снаружи.
  • В трансформаторе с несколькими выходами вторичная обмотка с наивысшей выходной мощностью должна располагаться ближе всего к первичной для наилучшего соединения и наименьшей утечки.
  • Вторичные обмотки, состоящие всего из нескольких витков, должны быть расположены по ширине окна бобины, а не группироваться вместе, чтобы обеспечить максимальное соединение с первичной обмоткой.Использование нескольких параллельных жил - это дополнительный метод увеличения коэффициента заполнения и соединения обмотки с несколькими витками.
  • Чтобы минимизировать индуктивность рассеяния и при этом соответствовать требованиям изоляции, при проектировании обмоток используются провода с тройной изоляцией и минимальное количество слоев ленты.

Конструкция с намоткой по краю или конструкция с тройной изоляцией используется для соответствия международным стандартам безопасности.

Экранирование трансформатора: Использование магнитной ленты (медного экрана) вокруг всего трансформатора обеспечит защиту от излучения по окружности для вихревых токов в трансформаторе.Этот экран представляет собой просто заземленную петлю из медной фольги вокруг всей сборки. Использование этого метода требует тщательного рассмотрения требований к изоляции, а также вопросов утечки и зазоров.

Вакуумная пропитка: Для высокопроизводительных приложений, таких как военные, аэрокосмические, медицинские и высоковольтные, часто требуется дополнительный уровень защиты и изоляции. Вакуумная пропитка эпоксидными смолами и / или лаками может обеспечить такой высокий уровень производительности и долговечности.

См. Другие сообщения блога из категории «Переключенный режим»

  • Бхувана Мадхайян

    Бхувана Мадхайян - инженер по дизайну и разработке в Talema India.Она имеет степень бакалавра в области электротехники и электроники в университете Анна в Ченнаи и работает практикующим инженером с 2006 года. Бхувана присоединилась к команде Talema в 2007 году.

.

Трансформатор в состоянии нагрузки - фазовая диаграмма при различной нагрузке

Когда трансформатор находится в нагруженном состоянии, вторичная обмотка трансформатора подключена к нагрузке. Нагрузка может быть резистивной, индуктивной или емкостной. Ток I 2 протекает через вторичную обмотку трансформатора. Величина вторичного тока зависит от напряжения на клеммах V 2 и полного сопротивления нагрузки. Фазовый угол между вторичным током и напряжением зависит от характера нагрузки.

Состав:

Работа трансформатора под нагрузкой

Работа трансформатора под нагрузкой объясняется ниже:

  • Когда вторичная обмотка трансформатора остается разомкнутой, она потребляет ток холостого хода из основного источника питания. Ток холостого хода индуцирует магнитодвижущую силу N 0 I 0 , и эта сила устанавливает магнитный поток Φ в сердечнике трансформатора. Схема трансформатора в режиме холостого хода показана на рисунке ниже:
  • Разность фаз между V 1 и I 1 дает угол коэффициента мощности ϕ 1 первичной обмотки трансформатора.
  • Коэффициент мощности вторичной обмотки зависит от типа нагрузки, подключенной к трансформатору.
  • Если нагрузка является индуктивной, как показано на приведенной выше векторной диаграмме, коэффициент мощности будет отстающим, а если нагрузка емкостная, коэффициент мощности будет опережающим. Полный первичный ток I 1 является векторной суммой токов I 0 и I 1 ’. т.е.

Фазорная диаграмма трансформатора на индуктивной нагрузке

Векторная диаграмма реального трансформатора при индуктивной нагрузке показана ниже:

Фазорная схема трансформатора на индуктивной нагрузке

Этапы построения векторной диаграммы

  • Взять флюс ϕ, эталон
  • Индуцирует ЭДС E 1 и E 2 отстает от потока на 90 градусов.
  • Составляющая приложенного напряжения к первичной обмотке, равная и противоположная наведенной ЭДС в первичной обмотке. E 1 представлен как V 1 ’.
  • Ток I 0 отстает от напряжения V 1 ’на 90 градусов.
  • Отстает коэффициент мощности нагрузки. Следовательно, ток I 2 протягивается с отставанием от E 2 на угол ϕ 2 .
  • Сопротивление и реактивное сопротивление утечки обмоток приводят к падению напряжения, и, следовательно, напряжение на вторичных клеммах V 2 является разностью фаз E 2 и падением напряжения.

В 2 = E 2 - падение напряжения
I 2 R 2 находится в фазе с I 2 и I 2 X 2 находится в квадратуре с I 2 .

  • Полный ток, протекающий в первичной обмотке, равен векторной сумме I 1 ’и I 0 .
  • Приложенное первичное напряжение V 1 представляет собой векторную сумму V 1 ’и падения напряжения в первичной обмотке.
  • Ток I 1 ’отображается равным и противоположным току I 2

В 1 = В 1 ’+ падение напряжения
I 1 R 1 находится в фазе с I 1 и I 1 X I находится в квадратуре с I 1 .

  • Разность векторов между V 1 и I 1 дает угол коэффициента мощности ϕ 1 первичной обмотки трансформатора.
  • Коэффициент мощности вторичной обмотки зависит от типа нагрузки, подключенной к трансформатору.
  • Если нагрузка является индуктивной, как показано на приведенной выше векторной диаграмме, коэффициент мощности будет отстающим, а если нагрузка емкостная, коэффициент мощности будет опережающим. Где I 1 R 1 - падение сопротивления в первичной обмотке
    I 2 X 2 - падение сопротивления во вторичной обмотке

Аналогично

Фазорная диаграмма трансформатора на емкостной нагрузке

Трансформатор на емкостной нагрузке (нагрузка с опережающим коэффициентом мощности) показан ниже на векторной диаграмме.

Фазорная схема трансформатора на емкостной нагрузке

Этапы построения векторной диаграммы при емкостной нагрузке

  • Возьмем флюс ϕ эталон
  • Индуцирует ЭДС E 1 и E 2 отстает от потока на 90 градусов.
  • Составляющая приложенного напряжения к первичной обмотке, равная и противоположная наведенной ЭДС в первичной обмотке. E 1 представлен как V 1 ’.
  • Ток I 0 отстает от напряжения V 1 ’на 90 градусов.
  • Коэффициент мощности нагрузки является опережающим. Поэтому ток I 2 идет впереди E 2
  • Сопротивление и реактивное сопротивление утечки обмоток приводят к падению напряжения, и, следовательно, напряжение на вторичных клеммах V 2 является разностью векторов E 2 и падением напряжения.

В 2 = E 2 - падение напряжения
I 2 R 2 находится в фазе с I 2 и I 2 X 2 находится в квадратуре с I 2 .

  • Ток I 1 ’отображается равным и противоположным току I 2
  • Полный ток I 1 , протекающий в первичной обмотке, равен векторной сумме I 1 ’и I 0 .
  • Приложенное первичное напряжение V 1 представляет собой векторную сумму V 1 ’и падения напряжения в первичной обмотке.

В 1 = В 1 ’+ падение напряжения
I 1 R 1 находится в фазе с I 1 и I 1 X I находится в квадратуре с I 1 .

  • Разность векторов между V 1 и I 1 дает угол коэффициента мощности ϕ 1 первичной обмотки трансформатора.
  • Коэффициент мощности вторичной обмотки зависит от типа нагрузки, подключенной к трансформатору.

Это все о векторной диаграмме при различных нагрузках.

.

Что такое трансформатор напряжения (PT)? Определение, конструкция, типы, ошибки, фазовая диаграмма и приложения

Определение - Трансформатор напряжения может быть определен как измерительный трансформатор, используемый для преобразования напряжения от более высокого значения к более низкому значению. Этот трансформатор понижает напряжение до безопасного предельного значения, которое можно легко измерить с помощью обычного прибора низкого напряжения, такого как вольтметр, ваттметр, ваттметры и т. Д.

Строительство трансформатора потенциала

Трансформатор напряжения выполнен с высококачественным сердечником, работающим при низкой плотности потока, поэтому ток намагничивания невелик.Вывод трансформатора должен быть спроектирован таким образом, чтобы изменение отношения напряжений с нагрузкой было минимальным, а фазовый сдвиг между входным и выходным напряжением также был минимальным.

Первичная обмотка имеет большое количество витков, а вторичная обмотка - гораздо меньшее количество витков. Для уменьшения реактивного сопротивления утечки в трансформаторе напряжения используется коаксиальная обмотка. Стоимость изоляции также снижается за счет разделения первичной обмотки на секции, что снижает изоляцию между слоями.

Подключение трансформатора напряжения

Трансформатор напряжения включен параллельно цепи. Первичные обмотки трансформатора напряжения напрямую подключены к силовой цепи, напряжение которой необходимо измерить. Вторичные выводы трансформатора напряжения подключены к измерительному прибору, например, вольтметру, ваттметру и т. Д. Вторичные обмотки трансформатора напряжения связаны магнитным полем через магнитную цепь первичных обмоток.

Первичный вывод трансформатора рассчитан на напряжение от 400 В до нескольких тысяч вольт, а вторичный вывод всегда рассчитан на 400 В. Отношение первичного напряжения к вторичному напряжению называется коэффициентом трансформации или коэффициентом поворота.

Типы трансформаторов напряжения

Трансформаторы напряжения в основном подразделяются на два типа, то есть на обычные обмоточные (электромагнитные) и конденсаторные трансформаторы напряжения.

Обычный трансформатор с обмоткой очень дорог из-за требований к изоляции.Конденсаторный трансформатор потенциала представляет собой комбинацию конденсаторного делителя потенциала и трансформатора магнитного потенциала относительно небольшого отношения.

Принципиальная схема конденсаторного трансформатора потенциала показана на рисунке ниже. Пакет высоковольтных конденсаторов из делителя потенциала, конденсаторы двух секций становятся C 1 и C 2 , а Z - это нагрузка.

Напряжение, приложенное к первичной обмотке промежуточного трансформатора, обычно составляет порядка 10 кВ.Как делитель потенциала, так и промежуточный трансформатор имеют соотношение и требования к изоляции, которые подходят для экономичной конструкции.

Промежуточный трансформатор должен иметь очень маленькую ошибку соотношения, а фазовый угол обеспечивает удовлетворительную работу всего блока. Напряжение на вторичных клеммах рассчитывается по формуле, показанной ниже.

Ошибка соотношения и фазового угла трансформатора напряжения

В идеальном трансформаторе напряжения первичное и вторичное напряжение точно пропорционально первичному напряжению и точно противостоят фазе.Но добиться этого практически невозможно из-за падений первичного и вторичного напряжения. Таким образом, в систему вводится как первичное, так и вторичное напряжение.

Ошибка соотношения напряжений - Ошибка соотношения напряжений выражается относительно измеренного напряжения и определяется формулой, показанной ниже.

Где K n - номинальное отношение, то есть отношение номинального первичного напряжения к номинальному вторичному напряжению.

Ошибка угла фазы - Ошибка угла фазы - это ошибка между напряжением на вторичной клемме, которое точно совпадает по фазе с напряжением на первичной клемме.

Увеличение количества приборов в реле, подключенном к вторичной обмотке трансформатора напряжения, увеличит ошибки в трансформаторах напряжения.

Нагрузка на трансформатор потенциала

Нагрузка - это общая внешняя вольт-амперная нагрузка на вторичной обмотке при номинальном вторичном напряжении. Номинальная нагрузка ПТ - это нагрузка в ВА, которую нельзя превышать, если трансформатор должен работать с номинальной точностью. Номинальная нагрузка указана на паспортной табличке.

Предельная или максимальная нагрузка - это наибольшая нагрузка ВА, при которой трансформатор напряжения будет работать непрерывно без перегрева своих обмоток сверх допустимых пределов. Эта нагрузка в несколько раз превышает расчетную.

Фазорная диаграмма трансформатора потенциала

Векторная диаграмма трансформатора напряжения показана на рисунке ниже.

Где, I с - вторичный ток
E с - вторичная наведенная ЭДС
В с - напряжение вторичной обмотки
R с - сопротивление вторичной обмотки
X с - реактивное сопротивление вторичной обмотки
I p - Первичный ток
E p - первично наведенная ЭДС
В p - напряжение первичной обмотки
R p - сопротивление первичной обмотки
X p - реактивное сопротивление первичной обмотки
K t - коэффициент передачи
I o - ток возбуждения
I м - намагничивающая составляющая I o
I w - составляющая потерь в сердечнике I o
Φ м - основной поток
Β - погрешность фазового угла

Основной поток взят за эталон.В измерительном трансформаторе первичный ток представляет собой векторную сумму тока возбуждения I o и тока, равного обратному вторичному току I s , умноженному на отношение 1 / k t . V p - это напряжение, приложенное к первичной клемме трансформатора напряжения.

Падение напряжения из-за сопротивления и реактивного сопротивления первичной обмотки из-за первичного тока определяется выражениями I p X p и I p R p .Когда падение напряжения вычитается из первичного напряжения трансформатора напряжения, на выводах появляется первичная наведенная ЭДС.

Эта первичная ЭДС трансформатора преобразуется во вторичную обмотку за счет взаимной индукции и преобразуется во вторичную наведенную ЭДС E s . Эта ЭДС будет падать на сопротивление и реактивное сопротивление вторичной обмотки, и результирующее напряжение появится на вторичном зажиме, и оно обозначено как V s.

Применение трансформатора напряжения

  1. Используется для измерения.
  2. Для защиты кормушек.
  3. Для защиты импеданса генераторов.
  4. Для синхронизации генераторов и фидеров.

Трансформаторы напряжения используются в схеме релейной защиты, так как катушки потенциала защитного устройства не подключены напрямую к системе в случае высокого напряжения. Следовательно, необходимо понизить напряжение, а также изолировать средства защиты от первичной цепи.

.

Смотрите также

Сделать заказ

Пожалуйста, введите Ваше имя
Пожалуйста, введите Ваш номер телефона
Пожалуйста, введите Ваше сообщение