Комплексные поставки запорной арматуры
и деталей трубопроводов →

Тел: +7 (3522) 55-48-26

Как вычисляется площадь


Калькулятор для расчета площади

Данный онлайн-калькулятор позволяет рассчитать площадь различных геометрических фигур, таких как:

Для удобства расчетов вы можете выбрать единицу измерения (миллиметр, сантиметр, метр, километр, фут, ярд, дюйм, миля). Также полученный результат можно конвертировать в другую единицу измерения путем выбора её из выпадающего списка.


Полезные калькуляторы Конвертер единиц площади | Конвертер единиц длины

Расчет площади прямоугольника

Результат:

S= 1111 кв.ммкв.смкв.мкв.кмкв.футкв.ярдкв.дюймкв.миля

Расчет площади треугольника

Способ нахождения площади треугольника: По трем сторонамПо одной стороне и высоте, опущенной на эту сторонуПо двум сторонам и углу между ними

Вычислить

Результат:

S= 1111 кв.ммкв.смкв.мкв.кмкв.футкв.ярдкв.дюймкв.миля


Расчет площади круга

Рассчитать площадь круга, если известен:

Вычислить

Результат:

S= 1111 кв.ммкв.смкв.мкв.кмкв.футкв.ярдкв.дюймкв.миля

Расчет площади параллелограмма

Способ нахождения площади параллелограмма:
По основанию и высоте параллелограммаПо двум сторонам и углу между нимиПо двум диагоналям и углу между ними

Вычислить

Результат:

S= 1111 кв.ммкв.смкв.мкв.кмкв.футкв.ярдкв.дюймкв.миля

Расчет площади правильного многоугольника

Многоугольник с числом сторон n и длиной стороны аМногоугольник с числом сторон n, вписанный в окружность радиуса RМногоугольник с числом сторон n, описанный вокруг окружности радиуса r

Вычислить

Результат:

S= 1111 кв.ммкв.смкв.мкв.кмкв.футкв.ярдкв.дюймкв.миля

Расчет площади эллипса

Результат:

S= 1111 кв.ммкв.смкв.мкв.кмкв.футкв.ярдкв.дюймкв.миля


Расчет площади сектора круга

Рассчитать площадь сектора круга, если известен:

r=

ммсммкмфутярддюйммиля

θ=

ммсммкмфутярддюйммиля

град.рад.

Вычислить

Результат:

S= 1111 кв.ммкв.смкв.мкв.кмкв.футкв.ярдкв.дюймкв.миля

Расчет площади трапеции

Способ нахождения площади трапеции: По двум основаниям a,b и высоте hПо двум основаниям a,b и боковым сторонам c,d

Результат:

S= 1111 кв.ммкв.смкв.мкв.кмкв.футкв.ярдкв.дюймкв.миля

Площадь — численная характеристика двумерной (плоской или искривлённой) геометрической фигуры.

Метрические единицы измерения площади:   
Квадратный метр, производная единица системы СИ 1 м2 = 1 са (сантиар)
Квадратный километр - 1 км2 = 1 000 000 м2
Гектар - 1 га = 10 000 м2
Ар (сотка) - 1 а = 100 м2 (сотка как правило применяется для измерения земельных участков и равна 100 м2 или 10м х 10м)
Квадратный дециметр, 100 дм2 = 1 м2;
Квадратный сантиметр, 10 000 см2 = 1 м2;
Квадратный миллиметр, 1 000 000 мм2 = 1 м2.

Данный онлайн-калькулятор удобен при расчете площадей помещений и земельных участков.

Как посчитать площадь комнаты, стены, пола, потолка

Главная » Разное » Как посчитать квадратуру комнаты, стен, потолка, пола

Периодически нам требуется знать площадь и объем комнаты. Эти данные могут понадобиться при проектировании отопления и вентиляции, при закупке стройматериалов и еще во многих других ситуациях. Также периодически требуется знать площадь стен. Все эти данные вычисляются легко, но предварительно придется поработать рулеткой — измерять все требуемые габариты.  О том, как посчитать площадь комнаты и стен, объем помещения и пойдет речь дальше.  

Часто требуется посчитать кубатуру комнаты, ее объем

Содержание статьи

Площадь комнаты в квадратных метрах

Посчитать несложно, требуется только вспомнить простейшие формулы а также провести измерения. Для этого нужны будут:

  • Рулетка. Лучше — с фиксатором, но подойдет и обычная.
  • Бумага и карандаш или ручка.
  • Калькулятор (или считайте в столбик или в уме).

Набор инструментов нехитрый, найдется в каждом хозяйстве. Проще измерения проводить с помощником, но можно справиться и самостоятельно.

Для начала надо измерить длину стен. Делать это желательно вдоль стен, но если все они заставлены тяжелой мебелью, можно проводить измерения и посередине. Только в этом случае следите чтобы лента рулетки лежала вдоль стен, а не наискосок — погрешность измерений будет меньше.

Прямоугольная комната

Если помещение правильной формы, без выступающих частей, вычислить площадь комнаты просто. Измеряете длину и ширину, записываете на бумажке. Цифры пишите в метрах, после запятой ставите сантиметры. Например, длина 4,35 м (430 см), ширина 3,25 м (325 см).

Как высчитать площадь комнаты

Найденные цифры перемножаем, получаем площадь комнаты в квадратных метрах. Если обратимся к нашему примеру, то получится следующее: 4,35 м * 3,25 м = 14,1375 кв. м.  В данной величине оставляют обычно две цифры после запятой, значит округляем. Итого, рассчитанная квадратура комнаты 14,14 квадратных метров.

Помещение неправильной формы

Если надо высчитать площадь комнаты неправильной формы, ее разбивают на простые фигуры — квадраты, прямоугольники, треугольники. Потом измеряют все нужные размеры, производят расчеты по известным формулам (есть в таблице чуть ниже).

Перед тем как посчитать площадь комнаты, тоже проводим изменения. Только в этом случае цифр будет не две, а четыре: добавится еще длина и ширина выступа. Габариты обоих кусков считаются отдельно.

Один из примеров — на фото. Так как и то, и другое — прямоугольник, площадь считается по той же формуле: длину умножаем на ширину. Найденную цифру надо отнять или прибавить к размеру помещения — в зависимости от конфигурации.

Площадь комнаты сложной формы

Покажем на этом примере как посчитать площадь комнаты с выступом (изображена на фото выше):

  1. Считаем квадратуру без выступа: 3,6 м * 8,5 м = 30,6 кв. м.
  2. Считаем габариты выступающей части: 3,25 м * 0,8 м = 2,6 кв. м.
  3. Складываем две величины: 30,6 кв. м. + 2,6 кв. м. = 33,2 кв. м.

Еще бывают помещения со скошенными стенами. В этом случае разбиваем ее так, чтобы получились прямоугольники и треугольник (как на рисунке ниже). Как видите, для данного случая требуется иметь пять размеров. Разбить можно было по-другому, поставив вертикальную, а не горизонтальную черту. Это не важно. Просто требуется набор простых фигур, а способ их выделения произвольный.

Как посчитать площадь комнаты неправильной формы

В этом случае порядок вычислений такой:

  1. Считаем большую прямоугольную часть: 6,4 м * 1,4 м = 8,96 кв. м. Если округлить, получим 9, 0 кв.м.
  2. Высчитываем малый прямоугольник: 2,7 м * 1,9 м = 5,13 кв. м. Округляем, получаем 5,1 кв. м.
  3. Считаем площадь треугольника. Так как он с прямым углом, то равен половине площади прямоугольника с такими же размерами. (1,3 м * 1,9 м) / 2 = 1,235 кв. м. После округления получаем 1,2 кв. м.
  4. Теперь все складываем чтобы найти общую площадь комнаты: 9,0 + 5,1 + 1,2 = 15,3 кв. м.

Планировка помещений может быть очень разнообразной, но общий принцип вы поняли: делим на простые фигуры, измеряем все требуемые размеры, высчитываем квадратуру каждого фрагмента, потом все складываем.

Формулы расчета площади и периметра простых геометрических фигур

Еще одно важное замечание: площадь комнаты, пола и потолка — это все одинаковые величины. Отличия могут быть если есть какие-то полу-колоны, не доходящие до потолка. Тогда из общей квадратуры вычитается квадратура этих элементов. В результате получаем площадь пола.

Как рассчитать квадратуру стен

Определение площади стен часто требуется при закупке отделочных материалов — обоев, штукатурки и т.п. Для этого расчета нужны дополнительные измерения. К имеющимся уже ширине и длине комнаты нужны будут:

  • высота потолков;
  • высота и ширина дверных проемов;
  • высота и ширина оконных проемов.

Все измерения — в метрах, так как квадратуру стен тоже принято измерять в квадратных метрах.

Удобнее всего размеры наносить на план

Так как стены прямоугольные, то и площадь считается как для прямоугольника: длину умножаем на ширину. Таким же образом вычисляем размеры окон и дверных проемов, их габариты вычитаем. Для примера рассчитаем площадь стен, изображенных на схеме выше.

  1. Стена с дверью:
    • 2,5 м * 5,6 м = 14 кв. м. — общая площадь длинной стены
    • сколько занимает дверной проем: 2,1 м *0,9 м = 1,89 кв.м.
    • стена без учета дверного проема — 14 кв.м — 1,89 кв. м = 12,11 кв. м
  2. Стена с окном:
    1. квадратура маленьких стен: 2,5 м * 3,2 м = 8 кв.м.
    2. сколько занимает окно: 1,3 м * 1,42 м = 1,846 кв. м, округляем, получаем 1,85 кв.м.
    3. стена без оконного проема: 8 кв. м — 1,75 кв.м = 6,25 кв.м.

Найти общую площадь стен не составит труда. Складываем все четыре цифры: 14 кв.м + 12,11 кв.м. + 8 кв.м + 6,25 кв.м. = 40,36 кв. м.

Объем комнаты

Формула расчета объема комнаты

Для некоторых расчетов требуется объем комнаты. В этом случае перемножаются три величины: ширина, длинна и высота помещения. Измеряется данная величина в кубических метрах (кубометрах), называется еще кубатурой. Для примера используем данные из предыдущего пункта:

  • длинна — 5,6 м;
  • ширина — 3,2 м;
  • высота — 2,5 м.

Если все перемножить, получаем: 5,6 м * 3,2 м * 2,5 м = 44,8 м3. Итак, объем помещения 44,8 куба.

 

Как рассчитать площадь: формулы, примеры расчетов

Во многих областях повседневной жизни геометрия помогает людям отвечать на важные вопросы и решать проблемы жизнедеятельности. По меньшей мере 4 тыс. лет назад эти знания уже использовались, например, в Древнем Египте для землеустройства. И сегодня многие профессии, от модельеров до архитекторов, нуждаются в базовых геометрических знаниях, чтобы знать, как рассчитать площадь.

Поверхность тела и ее площадь

Это мера того, сколько пространства находится внутри плоской формы. В общем случае площадь поверхности представляет собой сумму всех областей геометрических фигур, покрывающих поверхность объекта. Рассчитать площадь поверхности тела часто требуется в повседневной жизни, например, чтобы узнать сколько краски нужно купить, чтобы покрыть стену, или шифера для ремонта крыши дома.

Люди издавна научились определять площадь плоских геометрических фигур, используя метод сетки. Он заключается в том, что на измеряемую фигуру накладывают масштабированную сетку из простейших квадратов, например, 1х1 см. После чего можно легко рассчитать квадратную площадь, посчитав количество квадратов сетки внутри формы. В этом случае каждый квадрат сетки имеет ширину 1 см и высоту 1 см, и площадь этого квадрата сетки составляет один квадратный сантиметр.

Использование сетки для подсчета квадратов в форме — это очень простой способ определения площади, но он не может быть применен для определения площади сложных фигур. Площадь таких сложных объектов может быть рассчитана с использованием простых математических формул. Самые простые и наиболее часто используемые в жизни вычисления - это площади квадратов и прямоугольников, и надо знать, как рассчитать площадь в метрах.

Часто в реальности расчеты могут быть более сложными. Например, типичный план этажа комнаты может не состоять из простого прямоугольника или квадрата. В этом случае перед тем, как рассчитать общую площадь, нужно разделить измеряемую сложную поверхность на несколько простейших геометрических фигур.

Простой расчет прямоугольника

Если внимательно посмотреть вокруг, можно увидеть множество примеров прямоугольников. По определению, прямоугольник представляет собой четырехсторонний многоугольник, углы которой находятся под прямым углом, равным 90 градусам. Рассчитать площадь поверхности тела прямоугольника - простая математическая операция, которая наиболее часто применяется человеком в повседневной жизни. Почему важно знать формулу площади? Многие предметы и обстановка, окружающие человека, имеют прямоугольную форму: дом, стены, пол, крыша. И очень часто надо знать их площадь для строительства или ремонта.

Если прямоугольник имеет длину b и ширину h, мы можем найти площадь S, умножив ширину на его длину. Следовательно: S=bxh.

Пример. Как рассчитать площадь прямоугольника, если известны сторона и ширина, например, длина 4 см и ширина 3 см, тогда: S=4х3=12.

Ответ: 12 см2.

Квадрат — разновидность прямоугольника с равными углами и сторонами.

S=bxb=b2.

Пример. Если квадрат имеет стороны 3 см, мы можем найти S, возведя в квадрат значение стороны. Следовательно, имеем: S=3х3=9.

Ответ: 9 см2.

Формулы параллелограмма

Параллелограмм является четырехсторонним многоугольником с двумя парами параллельных сторон одинаковой длины. По определению, прямоугольник также представляет собой тип параллелограмма, но с равными углами. Площадь параллелограмма вычисляется так же, как и для прямоугольника (высота × ширина), но важно понимать, что высота означает не длину вертикальных сторон, а расстояние между сторонами.

Из рисунка видно, что высота — это расстояние между двумя параллельными сторонами параллелограмма, расположенная под прямым углом между ними. S=ADxh. S=bxh, где AD=b - основание, h - высота.

Пример. Если параллелограмм имеет основание 3 см, а высоту 2 см, то площадь S равна произведению основания на высоту. Следовательно, имеем: S=3х2=6.

Ответ: 6 см2.

Основание трапеции

Рассмотрим, как правильно рассчитать площадь трапеции. Трапеция представляет собой четырехсторонний многоугольник с одной парой параллельных сторон. Если две непараллельные стороны имеют одинаковую длину, форма называется равнобедренной или обычной трапецией. Если непараллельные стороны имеют разную длину, она называется неравнобедренной. Однако, несмотря на эту дополнительную сложность в определении, площадь неправильной трапеции может быть рассчитана с помощью простой формулы.

Измерения для расчета площади трапеции:

  1. Выровнять прямой край транспортира вдоль более короткой из двух параллельных сторон.
  2. Использовать транспортир, чтобы провести линию перпендикулярно от основания трапеции вплоть до противоположной параллельной стороны.
  3. Измерить расстояние высоты с помощью линейки.
  4. Измерить длину более короткой параллельной стороны.
  5. Измерить длину более длинной параллельной стороны.
  6. Чтобы найти площадь трапеции, предварительно нужно вычислить среднюю величину двух ее параллельных сторон: (a+b)/2.
  7. Площадь равнобедренной (или любой) трапеции равна произведению средней длины основания и вершины на высоту.
  8. Площадь трапеции: S=1/2×h×(a + b).

Нужно обратить внимание, что высота трапеции всегда перпендикулярна основанию, точно так же, как высота параллелограмма. Пример: a=3 см, b=5 см, h=4 см. S=4х(3+5)/2=16.

Ответ: 16 см2.

Виды треугольников

Треугольник представляет собой многоугольник, который имеет три стороны и может быть отнесен к следующим типам:

  • Равносторонний треугольник имеет равные стороны и равные углы.
  • Равнобедренный треугольник имеет две равные стороны и два равных угла.
  • Разносторонний треугольник имеет три неравные стороны и три неравных угла.
  • Прямоугольный треугольник имеет один прямой угол 90 градусов.
  • Остроугольный треугольник имеет все углы меньше 90 градусов.
  • Тупоугольный треугольник имеет один угол больше 90 градусов.

Площадь любого треугольника определяется по формулам.

1. Как рассчитать площадь треугольника, если известны высота и основание треугольника:

  • S=1⁄2×a×h, где: h – высота, a - основание.
  • S=1⁄2xa×b×sinα, где: a, b – любые две стороны, α - угол между ними.
  • S=p×r, где: p = (a+b+c) / 2 - полупериметр, a, b, c – три стороны, r – радиус круга.

Площадь равностороннего треугольника:

  • S=a2х√3 ⁄4 , где a=b= c.

Площадь равнобедренного треугольника:

2. Как рассчитать площадь треугольника, если заданы две стороны и угол между ними:

  • S=1⁄2xaxbxsinC=1⁄2xbxcxsinA =1⁄2xaxcxsinB.

Пример 1: Найти S треугольника, сторона которого составляет 14 см, а высота - 10 см.

Решение: b=14 см, h=10 см, A=1⁄2х14х10=70

Ответ: 70 см2.

Пример 2. Найти область треугольника, стороны которого и угол между ними заданы следующим образом: a=5 см и b=7 см, C=45 градусов.

Решение: Площадь треугольника =1⁄2xaxbxsin 45.

Площадь =1⁄2×5×7×0,707 (поскольку sin45=0,707)

Площадь =1⁄2×24,745=12,3725

Ответ: 12,3725 см2.

Пример 3. Найдите площадь (в м2) равнобедренного треугольника, стороны которого составляют 10 м, а основание - 12 м.

Решение: Площадь равнобедренного треугольника определяется:

A=1⁄4xbx√(4a2-b2)A=1⁄4х12х√(4х(10)2-(12)2)А=48

Ответ: 48 м2.

Пример 4. Найти площадь треугольника, стороны которого равны 8, 9 и 11 соответственно. Все единицы измерения даны в метрах (м).

Решение: Стороны a=8, b=9 и c=11. Согласно формуле Херона площадь треугольника может быть определена по следующей формуле: A=√(sx(sa)х(sb)х(sc)). Прежде всего нам нужно определить s, которая является полупериметром треугольника: s =1⁄2х(a+b+c)=1⁄2х(8+9+11)=14.

Теперь, вставив значение полупериметра в формулу Герона, можно определить площадь треугольника: A=√(sx(sa)х(sb)х(sc)). A=√(14х(14-8)х(14-9)х(14-11)). A=√(1260)=35,50

Ответ: 35,50 м2.

Измерение площади ромба

Ромб - особый вид параллелограмма, имеющий равные стороны и равные противоположные углы. Площадь ромба можно определить, используя три способа.

1. Метод высоты основания. Сначала выберите одну любую сторону в качестве базы, так как они имеют одинаковую длину. Затем определите высоту - перпендикулярное расстояние от выбранного основания до противоположной стороны.

  • Площадь является произведением этих двух величин и определяется по формуле: S=a×h, где: S – площадь ромба, h - высота ромба, AB=BC=AD=DC=a – сторона ромба.

2. Метод диагоналей. Другая простая формула для площади ромба, когда известны длины диагоналей. Площадь составляет половину произведения диагоналей.

  • В качестве формулы: S=1/2xACxBD, где: S – площадь ромба, AC– большая диагональ, BD - меньшая диагональ.

3. Использование тригонометрии. В тригонометрии, есть удобная формула, когда известны длина стороны и любой угол:

  • S=a2×sin α, где: S – площадь ромба, B=BC=AD=DC= a – сторона ромба, α - острый угол, β - тупой угол.

Поверхность круга

Круг представляет собой форму, состоящую из замкнутой изогнутой линии. Каждая часть линии находится на одном и том же расстоянии от центра области, называемом радиусом. Еще с древних времен известно, как рассчитать площадь круга, если задан радиус. Площадь круга вычисляется по формуле S=πxr2, где: S - площадь круга,

π - число пи (3.1415), r - радиус круга.

Чтобы найти площадь круга, выполняем следующие действия. Запишите заданный радиус или диаметр величины как r или d соответственно. Как рассчитать площадь круга, если задан диаметр? Это совсем несложно, нужно вычислить радиус, разделив диаметр на 2, и перемножить данные с помощью калькулятора или вручную. Полученный ответ будет в квадратных единицах.

Задача: Найти площадь круга радиусом 10 см.

Решение: Мы имеем радиус окружности =10 см. Площадь круга =3,1416×10×10=314,16.

Ответ: 314,16 см2.

Найдите площадь круга диаметром 15 см.

Решение: У нас диаметр круга =15 см. Радиус =15/2=7,5 см. Площадь круга =3,14х7,5х7,5=176,625=176,63 (округлить до 2 знаков после запятой).

Ответ: 176,63 см2.

Простые геометрические фигуры крыш

Прежде чем выполнять кровельные работы, нужно знать, как рассчитать площадь крыши, чтобы определить, сколько материала потребуется. Его количество всегда нужно брать с запасом и добавлять не менее 10 процентов от общей площади кровли для учета отходов строительства.

Предварительно перед расчетом схему кровли разбивают на простые геометрические фигуры, в нашем примере это две трапеции и два треугольника. Как рассчитать площадь крыши для трапециевидных элементов? Площадь вычисляется по следующей формуле: S=(a+b)xh/2, где: а – ширина нижнего свеса - 10 м, b – ширина по коньку - 7 м, h – высота - 5 м.

Для треугольных элементов применяется формула: S=axh/2, где: а – ширина ската по нижнему свесу - 7 м, h – высота ската - 3 м.

Порядок измерения:

  1. Измерить длину, ширину и высоту каждой геометрической фигуры крыши, включая ветровые окна. Эта информация может быть доступна в исходном плане здания дома или, если поверхность крыши относительно низкая и плоская, можно ее измерить самостоятельно. Если хозяин дома сам не может безопасно подняться на крышу, расчет можно выполнить по наружным замерам здания.
  2. Перемножить длину и ширину каждой треугольной или трапецеидальной плоскости в отдельности.
  3. Вычислить площадь для симметричных треугольных плоскостей, умножив длину основания треугольника (самую длинную сторону) на его высоту (расстояние от середины самой длинной стороны до противоположного угла).
  4. Затем разделите итог на 2, чтобы получить результат в квадратных метрах. S=axh/2=7х3/2=10,5 м2.
  5. Вычислить площадь для трапеции, умножив ширину нижнего свеса плюс ширину по коньку на его высоту (расстояние от середины самой длинной стороны до противоположного угла).
  6. Затем разделить итог на 2, чтобы получить результат в квадратных метрах.
  7. Умножить площадь на 0,1, чтобы получить 10-процентную надбавку для запаса кровельного материала S=(a+b)xh/2=(10+7)*5/2= 42,5 м2.
  8. Сложить площади всех фигур вместе. S=10,5+10,5+42,5+42,5=106 м2.
  9. В результате получается общая площадь крыши 106 м2, с запасом - 116 м2.

Инструментальные обмеры дома

Для измерения площади дома потребуются инструменты, чтобы очень точно выполнить расчеты, которые могут стать основой для проведения ремонтных работ, купли-продажи или страхования дома. Перед тем как рассчитать площадь, нужно взять рулетку, карандаш и блокнот, на котором нарисовать простейшую схему плана дома. Ее можно взять из паспорта застройщика или других проектных документов. С последним источником нужно быть внимательным, указанные цифры могут быть не всегда точными, например, какие-то ремонтные работы могут быть в них не учтены. Поэтому правильнее будет выполнить измерение площади самостоятельно.

Как рассчитать площадь дома вручную? Если нужно измерять площадь пола вручную, лучше всего измерить внешние стены, не забывая различных строительных углублений, подсобных помещений, верхних этажей, отдельных зданий или гаражей. Когда сделаны простые основные измерения, площадь рассчитывается путем умножения длины дома на ширину.

В зависимости от формы плана строительства может понадобится разбить его на простейшие геометрические фигуры. В этом примере дом имеет 9 метров на 12 метров, давая нам 108 квадратных метров. Гараж составляет 6 метров на 3 метра, что составляет 18 квадратных метров, общая площадь - 126 квадратных метров.

Предремонтные замеры пола

Как рассчитать площадь пола перед проведением ремонтных работ, например, замены линолеума или покраски? Для квадратного или прямоугольного помещения сначала нужно будет измерить длину и ширину комнаты. Затем умножить длину и ширину, получим длина x ширина = площадь. Таким образом, если комната имеет размеры 3 метра в ширину и 5 метров в длину, общая площадь составит 15 квадратных метров.

Это измерение можно использовать при расчете необходимого количества плиточного раствора, герметика, линолеума, которые владелец планирует использовать для своего проекта. Чтобы рассчитать площадь для подбора материалов, как правило, нужно добавить 10% коэффициент запаса: просто умножьте площадь на 1,1, а затем округлите до целого значения.

В примере, когда общая площадь составляет 15 м2, нужно будет заказать дополнительное количество плитки и раствора для 16,5 квадратных метра. Если комната не прямоугольная, нужно разделить ее на две или более элементарных геометрических фигур, чтобы рассчитать общую площадь.

Калькулятор для неправильной фигуры

Очень часто измеряемое пространство имеет очень сложную форму, которую не всегда удается разбить на простые элементы.

Чтобы просто определить такую площадь, стоит воспользоваться интернет-приложением SketchAndCalc. Он является калькулятором площади неправильных фигур для любой формы изображения. Это единственный калькулятор площади, способный вычислять по загруженным изображениям, он имеет уникальную функцию, которая позволяет пользователю установить масштаб чертежа любого изображения, прежде чем рисовать периметр. Таким образом, углы или кривые неправильной фигуры легко вычисляются.

Проще говоря, если есть изображение, которое можно загрузить, или адрес карты для поиска, можете рассчитать площадь неправильной фигуры независимо от того, насколько сложна она, просто рисуя периметр области. Калькулятор может даже суммировать вычисления нескольких площадей вместе путем рисования слоев. После вычисления первой области можно добавить новый слой чертежа, что позволяет выполнить неограниченное количество вычислений области.

Результаты калькулятора площади отображаются в дюймах и метрах, увеличивая его полезность и устраняя необходимость преобразования. Это наряду с точными инструментами рисования и увеличения гарантирует, что площади каждой неправильной фигуры рассчитываются точно. Он также может размещать правильные формы многоугольника с фиксированными углами и точными линиями.

Инструмент с ограниченным рисунком привязывается к общим углам, а линию длины можно редактировать вручную с помощью клавиатуры. Приложение полезно, если измеряемая область имеет прямую сторону или длину. Еще одной уникальной особенностью SketchAndCalc TM является то, что он имеет продвинутый инструмент рисования кривой для неправильных фигур. Некоторые приложения калькулятора области позволяют осуществлять поиск по карте.

SketchAndCalc делает это очень точно, используя поиск по долготе и широте. Независимо от того, находится ли замеряемая область на сельскохозяйственных землях или в море, пользователь будет тратить меньше времени на поиск и больше времени на расчет площади территории. Это универсальная утилита, применяемая во многих отраслях промышленности, в строительстве, садоводстве. Она используется и энтузиастами по благоустройству своего дома и придомовой территории. Калькулятор ландшафта или калькулятор земельной площади также нашел своих пользователей среди землеустроителей. Теперь они знают, как рассчитать площадь участка легко и быстро.

Однако, помимо этих общих применений, многие работающие в области образования, медицины, науки и исследований нуждаются в расчете площади неправильных форм, таких как клеточные мембраны или другие объекты, обнаруженные в биологии, и с удовольствием пользуются этим приложением.

Для применения математики в повседневной жизни недостаточно уметь считать один плюс один. Существенным аспектом окружающей среды являются геометрические структуры, то есть представление повседневных предметов в прямоугольной, квадратной, круглой или треугольной форме. И надо уметь рассчитать нужную площадь.

Кроме того, геометрические фигуры используются и при построении диаграмм, схем, презентаций. Вот почему так важно уметь делать различные расчеты, в том числе и вычисление площади.

Формулы площадей всех основных фигур

1. Формула площади равнобедренной трапеции через стороны и угол

b - верхнее основание

a - нижнее основание

c - равные боковые стороны

α - угол при нижнем основании

 

Формула площади равнобедренной трапеции через стороны, (S):

 

Формула площади равнобедренной трапеции через стороны и угол, (S):

 

 

2. Формула площади равнобокой трапеции через радиус вписанной окружности

R - радиус вписанной окружности

D - диаметр вписанной окружности

O - центр вписанной окружности

H - высота трапеции

α, β - углы трапеции

 

Формула площади равнобокой трапеции через радиус вписанной окружности, (S):

СПРАВЕДЛИВО, для вписанной окружности в равнобокую трапецию:

 

 

3. Формула площади равнобедренной трапеции через диагонали и угол между ними

d - диагональ трапеции

α, β - углы между диагоналями

 

Формула площади равнобедренной трапеции через диагонали и угол между ними, (S):

 

 

4. Формула площади равнобедренной трапеции через среднюю линию, боковую сторону и угол при основании

m - средняя линия трапеции

c - боковая сторона

α, β - углы при основании

 

Формула площади равнобедренной трапеции через среднюю линию, боковую сторону и угол при основании, (S ):

 

 

5. Формула площади равнобедренной трапеции через основания и высоту

b - верхнее основание

a - нижнее основание

h - высота трапеции

 

Формула площади равнобедренной трапеции через основания и высоту, (S):

 

Как узнать площадь комнаты в квадратных метрах

Можно поступить еще проще и просто все стороны помещения перемножить: потолок, пол, стены.

Перевод квадратных сантиметров в квадратные метры

Перед тем, как узнать сколько в комнате квадратных метров, очень важно разобраться в самих значениях, ведь когда идет расчет с сотнями сантиметров, их в любом случае необходимо переводить в метры. Делается это по следующей формуле, уже на известном примере: 160 см * 100 см – разница величин (в одном метре – 100 сантиметров), в итоге получается 16000 см2, которые нужно разделить на 10000 и получим = 1.60 м2.

Такими цифрами намного проще оперировать и запоминать. Тем более, что «квадратуру» помещения всегда измеряют именно в метрах. Для перевода необходимо подставлять следующие формулы:

  • 8000 см² / 10000 = 0,8 м²;
  • 34000 см² / 10000 = 3,4 м²;
  • 2400 см²/ 10000 = 0,24 м².

Все достаточно просто и не составит труда составить такие несложные арифметические вычисления, даже школьнику. Очень важно перед тем, как узнать квадратуру комнаты, провести максимально точные измерения, после чего приступить к расчетам.

Как посчитать площадь комнаты в квадратных метрах

Необходимость в расчете площади возникает зачастую только во время ремонтных работ, строительства или при смене мебели. Практически все строительные материалы (например напольное покрытие) исчисляется в квадратных метрах. Для правильного расчета количества материала, важно знать площадь пола. Зная ширину и длину комнаты, найти площадь не вызовет никаких сложностей.

Измерения

Перед тем как измерить комнату в квадратных метрах, необходим минимальный набор предметов:

  • калькулятор;
  • рулетка;
  • карандаш;
  • лист бумаги.

На бумаге необходимо сделать подробный план помещения. Каждая стена должна быть измерена с использованием рулетки.

Внимание! Очень важно делать измерения на уровне пола, ведь бывают случаи (особенно в старых домах), когда стены немного завалены в одну из сторон. Так как происходит измерение пола, необходимо измерять с максимальным прилеганием к стенам.

Вторым этапом является проставление полученных измерений на плане. Лучше всего сразу делать это в метрах, но точность каждого замера должна быть до 1 сантиметра. Это необходимо для того, чтобы при выборе необходимого количества материалов, удалось максимально точно подобрать метраж требуемого материала. Рулонные напольные покрытия продаются в погонных метрах.

Округлять можно только в случае небольшого увеличения, чтобы в случае непредвиденных обстоятельство, было достаточное количество материала.

Как высчитать квадратуру комнаты

Чтобы понять, как узнать общую площадь комнаты, необходимо воспользоваться простой формулой и перемножить показания длины на ширину. Как показано на рисунке длинная стена имеет длину в 7 метров а противоположная только 4. Выходит площадь пола будет равна 28 м2. Именно таким образом и находят квадратуру. Обязательно требуется помнить о небольшом запасе, который потребуется для подгонки и подрезки, причем чем сложнее будет вариант укладки, тем больше потребуется брать запас.

Зачастую комнаты не имеют ровной квадратной или прямоугольной формы.Поэтому, перед тем как узнать площадь комнаты в квадратных метрах, необходимо просто разбить комнату на несколько простых фигур (квадраты и прямоугольники) и после считают общую квадратуру. Так например для комнаты у которой форма буквы Г, достаточно разбить ее на 2 прямоугольника, отдельно посчитать площадь, а потом сложить.

Выглядит это все следующим образом:

  • вычисляем квадратуру большого прямоугольника: 5 умножаем на 4,35 и получаем 21,75 квадратных метров;
  • теперь по тому же принципу второй: 2,5 на 2,65 и получаем 6,625 квадратов;
  • далее суммируем общий результат 6,625 + 21,75 и получаем площадь комнаты в размере 28,375 квадратных метров.

Имея на руках полученный точный результат, можно немного округлить его в большую сторону и учитывать 28,4 квадратных метра.

В том случае, если комната имеет участок со срезанной стеной, как показано на картинке, тогда необходимо нарисовать прямоугольник таким образом, чтобы косая делила его на 2 треугольника. Тогда опять получается помещение по форме буквы Г. Далее можно вычислить площадь, по выше представленному методу.

Необходимо будет найти площадь трех прямоугольников. Недостающий участок – половина маленького прямоугольника. Достаточно будет просто найти его площадь и разделить на 2, после чего прибавить к остальным размерам.

Итак, для примера можно использовать следующие данные:

  • большой прямоугольник: 1,75 м *1,93 м = 3,3775 м². Чтобы было проще, возьмем 3,38 м²;
  • средний прямоугольник: 1,18 м * 0,57 м = 0,6726 м². Опять произведем округление до 0,67 м²;
  • самый маленький прямоугольник: 0,57 м *0,57 м = 0,3249 м2, доводим до 0,33 м²;
  • теперь осталось только сложить получившиеся значения и прибавить ½ маленького прямоугольника: 3,38 + 0,67 +0,33/2 = 3,38 + 0,67 +0,17 = 4,22 м².

Это наиболее удобная методика, которой может воспользоваться любой желающий. Достаточно только разбивать сложную фигуру на несколько простых. Несмотря на то, что измерений будет больше, такой метод не требует больших усилий и временных потерь, а все вычисления можно сделать буквально на коленке.

Площадь квартиры

Многие утверждают, что ремонт – процесс, который практически невозможно закончить, его можно только приостановить. Несмотря на это, чтобы не превратить незначительный ремонт в глобальный, очень важно правильно рассчитать все необходимые цифры и провести нужные расчеты, одним из которых является измерение квадратуры.

Теперь вы знаете, как найти площадь комнаты зная длину и ширину и после всех выполненных манипуляций, достаточно просто сложить полученные данные по комнатам, тогда можно получить квадратуру всей квартиры.

Такой процесс требуется для закупки материалов. Последним этапом будет только проработка плана, где будут указаны все длины, ширина оконных и дверных рам и т.д. Это необходимо например для укладки напольной плитки или ламината. Такая схема потребуется при укладке теплого пола.

Существуют и современные приложения на смартфон или сервисы в интернете, которые упростят эти моменты и помогут найти площадь.

Урок 3: Площадь - 100urokov.ru

План урока:

Понятие площади многоугольника

Свойство аддитивности площади

Площадь квадрата

Соотношение между единицами измерения площадей

Площадь прямоугольника

 

Понятие площади многоугольника

Понятие площади уже знакомо нам из младших классов и повседневной жизни. Эта величина, которая, грубо говоря, характеризует размер плоских фигур. Она показывает, какую часть плоскости занимает та или иная фигура. Исторически понятие площади многоугольника считалось неопределяемым, так же как понятия точка, прямая, плоскость и т. д. Основная же задача геометров (а именно так называют математиков, специализирующихся на геометрии) сводилась к измерению площади.

Как известно, для проведения любых измерений должна существовать некоторая единица измерения. Так, массу измеряют в килограммах, длину – в метрах и т. д. При этом единицы измерения разных величин могут быть связаны друг с другом. С практической точки зрения удобно принять в качестве единицы измерения площади квадрат, сторона которого равна 1 метру. Принимается, что площадь такого квадрата равна 1 квадратному метру (обозначается символом м2):

Аналогично можно определить такие величины, как квадратный сантиметр (см2), квадратный километр (км2), квадратный миллиметр (мм2) и т.д.:

Как мы знаем, иногда в задачах единицу измерения длины не указывают вовсе. Например, говорят, что сторона квадрата равна единице. В таких случаях и площадь является безразмерной величиной. Принимается, что площадь квадрата со стороной, равной единице, также равна единице. Такой квадрат называется единичным.

Общепринято, что площадь фигуры обозначается буквой S.

 

Свойство аддитивности площади

Предположим, что нам надо найти площадь прямоугольника со сторонами 2 и 1. Его можно разбить на два квадрата со стороной 1, то есть на два единичных квадрата:

Этот прямоугольник занимает на плоскости в два раза больше места, чем единичный квадрат, поэтому логично считать, что его площадь равна 2. В данном случае мы разбили многоугольник на две фигуры, площадь каждой из которых нам была известна. Далее мы сложили площади известные нам площади и получили площадь прямоугольника.

В общем случае справедливо утверждение, что площадь всякой фигуры равна сумме площадей фигур, из которых она может быть составлена. Это свойство называют аддитивностью площади:

Площадь – не единственная величина, обладающая свойством аддитивности. Например, длина любого отрезка равна сумме длин отрезков, из которых он состоит. В классической физике считается, что масса сложного тела равна сумме масс тел, составляющих его. Аддитивность можно считать основным свойством площади.

Свойство аддитивности подсказывает нам, как измерять площадь произвольных многоугольников. Достаточно разбить такой многоугольник на несколько фигур, чья площадь нам известна, и сложить их площади.

 

Задание. Найдите площадь фигуры, показанной на рисунке. Длина стороны одной клеточки равна единице.

Решение. Каждая клеточка является, по сути, единичным квадратом, чья площадь равна 1. Можно видеть, что нарисованная фигура состоит 11 таких квадратов:

В силу свойства аддитивности площадь фигуры равна сумме площадей этих квадратов:

 

Если две фигуры можно разбить на одинаковые фигуры, то их называют равносоставленными фигурами. Покажем пример равносоставленных фигур, которые состоят из двух половинок круга:

Довольно очевидно, что равносоставленные фигуры имеют равную площадь. Также очевидно, что любые две равные фигуры являются равносоставленными, а потому их площади тоже равны.

Важно понимать разницу между равными и равносоставленными фигурами. Фигуры равны, если их можно наложить друг на друга, и при этом они полностью совпадут. Равносоставленные же фигуры могут и не накладываться друг на друга.

Ещё одно важное понятие – равновеликие фигуры. Так называют фигуры, чьи площади равны. Мы уже сказали, что любые две равносоставленные фигуры имеют одинаковую площадь, то есть являются равновеликими. Верно ли обратное? Всякие ли равновеликие фигуры являются равносоставленными? Оказывается, что нет. Можно нарисовать окружность и квадрат, имеющие равные площади, но разбить их на одинаковые фигуры не получится:

С помощью равных и равновеликих фигур можно находить площади фигур, которые невозможно разбить на единичные квадраты.

 

Задание. Найдите площадь прямоугольного треугольника, катеты которого равны единице.

Решение. Достроим такой прямоугольник до единичного квадрата. В результате гипотенуза треугольника окажется диагональю квадрата:

Получили, что единичный квадрат состоит из двух равных треугольников, чью площадь нам и надо найти. Обозначим площадь треугольника как S. Тогда справедливо равенство

 

Итак, зная свойства площади фигур, мы попытаемся дать этому понятию определение. Можно сказать, что площадь – это число, характеризующее плоскую фигуру и имеющее следующие свойства:

  • площадь квадрата со стороной 1 равна единице:
  • равносоставленные фигуры имеют равную площадь.

Такого описания вполне достаточно, чтобы вывести все формулы для нахождения площади многоугольников.

 

Площадь квадрата

Из младших классов известно, что для вычисления площади квадрата достаточно умножить его сторону саму на себя. Докажем это строго, используя лишь свойства площадей.

Попробуем вычислить площадь квадрата, если известна его сторона. Если она равна 2, то квадрат можно разбить на четыре единичных квадрата, а если она равна 3, то квадрат можно разделить уже на девять единичных квадратов:

Тогда площадь квадрата со стороной 2 равна 4, а со стороной 3 уже равна 9. В общем случае квадрат со стороной n (где n– натуральное число) можно разбить nединичных квадратов, поэтому его площадь будет равна n2.

Но что делать в случае, если сторона квадрата – это не целое, а дробное число? Пусть оно равно некоторой дроби 1/m, например, 1/2 или 1/3. Тогда поступим наоборот – разделим сам единичный квадрат на несколько частей. Получится почти такая же картина:

В общем случае единичный квадрат можно разбить на mквадратов со стороной 1/m. Тогда площадь каждого из таких квадратов (обозначим ее как S)может быть найдена из уравнения:

Снова получили, что площадь квадрата в точности равна его стороне, возведенной во вторую степень.

Наконец, рассмотрим случай, когда сторона квадрата равна произвольной дроби, например, 5/3. Возьмем квадраты со стороной 1/3 и построим из них квадрат, поставив 5 квадратов в ряд. Тогда его сторона как раз будет равна 5/3:

Площадь каждого маленького квадратика будет равна 1/9, а всего таких квадратиков 5х5 = 25. Тогда площадь большого квадрата может быть найдена так:

В общем случае, когда дробь имеет вид n/m, где m и n– натуральные числа, площадь квадрата будет равна величине

Получили, что если сторона квадрата – произвольное рациональное число, то его площадь в точности равна квадрату этой стороны. Конечно, возможна ситуация, когда сторона квадрата – это иррациональное число. Тогда осуществить подобное построение не получится. Здесь помогут значительно более сложные рассуждения, основанные на методе «от противного».

Предположим, что есть некоторое иррациональное число I, такое, что площадь квадрата (S) со стороной I НЕ равна величине I2. Для определенности будем считать, что I2<S (случай, когда I2>S, рассматривается абсолютно аналогично). Однако тогда, извлекая корень из обеих частей неравенства, можно записать, что

Далее построим два квадрата, стороны которых имеют длины I и R, и совместим их друг с другом:

Так как мы выбрали число R так, чтобы оно было больше I, то квадрат со стороной I является лишь частью квадрата со стороной R.Но часть меньше целого, значит, площадь квадрата со стороной I (а она равна S) должна быть меньше, чем площадь квадрата со стороной R (она равна R2):

из которого следует противоположный вывод – величина R2 меньше, чем S. Полученное противоречие показывает, что исходная утверждение, согласно которому площадь квадрата со стороной I НЕ равна I2, является ошибочным. А значит, площадь квадрата всегда равна его стороне, умноженной на саму себя.

 

Задание. Найдите площадь квадрата, если его сторона равна

 

Задание. Площадь квадрата равна 25. Найдите длину его стороны.

Решение. Пусть сторона квадрата обозначается буквой х (как неизвестная величина). Тогда условие, согласно которому его площадь равна 25, можно переписать в виде уравнения:

Его простейшее квадратное уравнение, для его решения надо просто извлечь квадратный корень из правой части:

 

Примечание. Строго говоря, записанное уравнение имеет ещё один корень – это число (– 5). Однако его можно отбросить, так как длина отрезка не может быть отрицательным числом. В более сложных геометрических задачах отрицательные корни также отбрасывают.

 

Задание. Численно площадь квадрата равна периметру квадрата (с учетом того, что площадь измеряется в см2, а периметр – в см). Вычислите его площадь.

Решение. Снова обозначим сторону квадрата как х, тогда площадь (S)и периметр (Р) будут вычисляться по формулам:

По условию эти величины численно равны, поэтому должно выполняться равенство, являющееся уравнением:

Естественно, сторона квадрата не может быть равна нулю, поэтому нас устраивает только ответ х = 4. Тогда и площадь, и периметр будут равны 16.

Ответ: 16 см2.

 

Обратите внимание, что ответ задачи зависит от единицы измерения. Если использовать миллиметры, то сторона квадрата окажется равной 40 мм, периметр будет равен 160 мм, а площадь составит 1600 мм2. Именно поэтому в условии задачи сказано, что площадь и периметр равны численно. «По-настоящему» равными бывают только величины, измеряемые в одинаковых единицах измерения.

 

Соотношение между единицами измерения площадей

Площадь измеряется в «квадратных» величинах: м2, см2, км2 и т.д. Как связаны эти единицы измерения? Для ответа на этот вопрос построим квадрат со стороной 1 см и разобьем каждую его сторону на отрезки длиной 1 мм. Естественно, что таких отрезков будет 10, ведь, в 1 см равен 10 мм. Далее разобьем большой квадрат на маленькие, их число будет равно 102 = 100:

Площадь большого квадрата равна 1 см2, а площадь маленьких составляет 1 мм2. Так как большой квадрат состоит из 100 маленьких, мы можем записать:

Существуют специальные единицы измерения площади, известные как ар (обозначается сокращением а) и гектар (сокращение га). Первый представляет собой квадрат со стороной 10 м, а второй – со стороной 100 м. Верны следующие соотношения:

В частности, если стороны квадратов отличаются в 10 раз, то их площади отличаются уже в 100 раз. Отсюда вытекает быстрый метод перевода единиц площади. Пусть надо перевести 1 квадратный километр в квадратные дециметры. Сначала мы считаем, во сколько раз километр длиннее дециметра:

 

Задание. Площадь окружности равна 24 см2. Выразите эту величину в мм2 и м2.

Решение. Миллиметр в 10 раз меньше сантиметра, а потому 1 см2 равен 100 мм2:

 

Площадь прямоугольника

Ещё из младшей школы известно, что площадь прямоугольника равна произведению его сторон. Докажем этот факт, используя только свойства площади и выведенную нами ранее формулу площади квадрата.

Возьмем произвольный прямоугольник со сторонами a и b. Далее достроим его до квадрата со стороной (а + b):

С одной стороны, площадь большого квадрата (со стороной а + b) равна величине (а + b)2. С другой стороны, он состоит из 4 фигур, а потому его площадь равна сумме

Итак, мы доказали следующее утверждение:

 

Задание. Найдите площадь прямоугольника со сторонами 5 и 8 см?

Решение. Просто перемножаем эти числа:

 

Задание. Найдите площадь фигуры, изображенной на рисунке:

Решение. Необходимо разбить фигуры на несколько прямоугольников:

Далее считаем площадь каждого отдельного прямоугольника:

 

Задание. Полкомнаты необходимо покрыть паркетом. Длина и ширина комнаты равны 6 и 5,5 метрам, а каждая дощечка паркета имеет габариты 30х5 см. Сколько дощечек паркета необходимо купить для ремонта?

Решение. В таких задачах прежде всего следует все длины выразить в одних единицах измерения. Перепишем габариты комнаты:

Важно убедиться, что пол можно полностью покрыть целым числом дощечек, не используя какие-либо дощечки наполовину. Для этого габариты дощечки должны быть кратны габаритам комнаты. Это условие соблюдается:

Получается, что для покрытия пола дощечки необходимо разместить их в 20 рядов, в каждом из которых будет 110 досок. Тогда общее количество досок будет равно

 

Задание. Площадь прямоугольника равна 64, а одна из его сторон имеет длину 16. Найдите вторую сторону прямоугольника.

Решение. Запишем формулу площади прямоугольника:

 

Задание. Найдите стороны прямоугольника, если площадь равна 500, а одна из сторон в 5 раз больше другой стороны.

Решение. Обозначим меньшую сторону переменной х. Тогда большая сторона будет в 5 раз больше, то есть она равна 5х. Площадь прямоугольника будет вычисляться как произведение этих чисел

Мы получили два значения х, 10 и (– 10). Естественно, длина отрезка не может выражаться отрицательным числом, поэтому нам подходит только значение 10. Это длина меньшей стороны. Большая же сторона в 5 раз длиннее, то есть ее длина равна

 

Задание. Одна сторона прямоугольника длиннее другой на 5 см, а площадь прямоугольника равна 150 см2. Вычислите обе стороны прямоугольника.

Решение. Снова обозначим длину меньшей стороны буквой х, тогда большая сторона будет иметь длину х + 5 см. По условию произведение этих сторон равно 150:

Это обычное квадратное уравнение, решаемое с помощью:

Снова получили два корня, из которых только один является положительным. Итак, меньшая сторона равна 10 см. Тогда большая сторона буде равна

 

Задание. Периметр прямоугольника равен 16 см, а площадь составляет 15 см2. Каковы стороны этого прямоугольника?

Решение. Обозначим смежные стороны буквами и b. Тогда и две другие стороны также будут равны а и b. Так как периметр (его обозначают буквой Р) по определению является суммой длин всех сторон, то для прямоугольника он будет равен:

Если сюда вместо S подставить 15, а вместо а выражение 8 – b, то получим такое уравнение:

Оба полученных корня являются положительными числами, то есть устраивают нас. Зная b, легко найдем и a:

В первом случае получается, что стороны равны 3 и 5 см. Во втором случае получились те же числа, только в другом порядке: 5 и 3 см. То есть эти два ответа, по сути, идентичны друг другу.

Ответ: 5 см; 3 см.

 

Расчетная область | SkillsYouNeed

Площадь - это мера того, сколько места внутри фигуры. Вычисление площади формы или поверхности может быть полезно в повседневной жизни - например, вам может потребоваться знать, сколько краски нужно купить для покрытия стены или сколько семян травы вам нужно, чтобы засеять газон.

На этой странице описаны основные сведения, которые вам необходимо знать, чтобы понять и рассчитать площади общих форм, включая квадраты и прямоугольники, треугольники и круги.

Расчет площади методом сетки

Когда фигура рисуется на масштабированной сетке, вы можете найти площадь, подсчитав количество квадратов сетки внутри фигуры.

В этом примере внутри прямоугольника 10 квадратов сетки.


Чтобы найти значение площади с использованием метода сетки, нам нужно знать размер, который представляет квадрат сетки.

В этом примере используются сантиметры, но тот же метод применяется к любой единице длины или расстояния.Вы можете, например, использовать дюймы, метры, мили, футы и т. Д.

В этом примере каждый квадрат сетки имеет ширину 1 см и высоту 1 см. Другими словами, каждый квадрат сетки равен одному квадратному сантиметру.

Подсчитайте квадраты сетки внутри большого квадрата, чтобы найти его площадь.

Есть 16 маленьких квадратов, поэтому площадь большого квадрата составляет 16 квадратных сантиметров.

В математике мы сокращаем «квадратные сантиметры» до 2 . 2 означает «квадрат».

Каждый квадрат сетки равен 1 см 2 .

Площадь большого квадрата 16см 2 .


Подсчет квадратов на сетке для определения площади работает для всех форм - если известны размеры сетки. Однако этот метод становится более сложным, когда фигуры не точно соответствуют сетке или когда вам нужно подсчитать доли квадратов сетки.

В этом примере квадрат не точно помещается на сетке.

Мы все еще можем вычислить площадь, считая квадраты сетки.

  • Имеется 25 полных квадратов сетки (заштрихованы синим).
  • 10 квадратов полусетки (заштрихованы желтым цветом) - 10 полуквадратов равны 5 полным квадратам.
  • Также есть 1 четверть квадрата (закрашена зеленым) - (или 0,25 целого квадрата).
  • Сложите целые квадраты и дроби вместе: 25 + 5 + 0,25 = 30,25.

Следовательно, площадь этого квадрата составляет 30,25 см 2 .

Вы также можете записать это как 30¼см 2 .


Хотя использование сетки и подсчет квадратов внутри фигуры - это очень простой способ изучения понятий площади, он менее полезен для нахождения точных областей с более сложными формами, когда можно сложить много частей квадратов сетки.

Площадь можно рассчитать по простым формулам в зависимости от типа фигуры, с которой вы работаете.

Остальная часть этой страницы объясняет и дает примеры того, как вычислить площадь фигуры без использования системы сеток.


Площади простых четырехугольников:
квадратов, прямоугольников и параллелограммов

Простейшие (и наиболее часто используемые) вычисления площади выполняются для квадратов и прямоугольников.

Чтобы найти площадь прямоугольника, умножьте его высоту на ширину.

Для квадрата вам нужно только найти длину одной из сторон (так как каждая сторона имеет одинаковую длину), а затем умножить это на себя, чтобы найти площадь. Это то же самое, что сказать длину 2 или длину в квадрате.

Рекомендуется проверять, является ли фигура квадратом, измерив две стороны. Например, стена в комнате может выглядеть как квадрат, но когда вы ее измеряете, вы обнаруживаете, что на самом деле это прямоугольник.

Часто в реальной жизни формы могут быть более сложными. Например, представьте, что вы хотите найти площадь пола, чтобы заказать нужное количество ковра.

Типовой план помещения не может состоять из простого прямоугольника или квадрата:

В этом и других подобных примерах фокус состоит в том, чтобы разделить фигуру на несколько прямоугольников (или квадратов).Неважно, как вы разделите фигуру - любое из трех решений даст один и тот же ответ.

Для решений 1 и 2 необходимо создать две фигуры и сложить их площади, чтобы найти общую площадь.

Для решения 3 вы создаете большую форму (A) и вычитаете из нее меньшую форму (B), чтобы найти площадь.


Другая распространенная проблема - найти область границы - фигуру внутри другой фигуры.

В этом примере показана дорожка вокруг поля - ширина дорожки 2 м.

Опять же, в этом примере есть несколько способов определить площадь пути.

Вы можете просмотреть путь как четыре отдельных прямоугольника, вычислить их размеры, а затем их площадь и, наконец, сложить области, чтобы получить итог.

Более быстрый способ - вычислить площадь всей формы и площадь внутреннего прямоугольника. Вычтите внутреннюю площадь прямоугольника из всей, оставив область пути.

  • Площадь всей формы составляет 16 м × 10 м = 160 м 2 .
  • Мы можем определить размеры средней секции, потому что знаем, что дорожка по краю имеет ширину 2 метра.
  • Ширина всей формы составляет 16 м, а ширина пути по всей форме - 4 м (2 м слева от формы и 2 м справа). 16 м - 4 м = 12 м
  • То же самое для высоты: 10м - 2м - 2м = 6м
  • Итак, мы подсчитали, что средний прямоугольник имеет размер 12 × 6 м.
  • Таким образом, площадь среднего прямоугольника составляет: 12 м × 6 м = 72 м 2 .
  • Наконец, мы убираем область среднего прямоугольника из области всей формы. 160 - 72 = 88м 2 .

Площадь тропы 88м 2 .


Параллелограмм - это четырехсторонняя форма с двумя парами сторон равной длины - по определению прямоугольник является разновидностью параллелограмма. Однако большинство людей склонны думать о параллелограммах как о четырехсторонних фигурах с наклонными линиями, как показано здесь.

Площадь параллелограмма рассчитывается так же, как и для прямоугольника (высота × ширина), но важно понимать, что высота означает не длину вертикальных (или отклоненных от вертикали) сторон, а расстояние между сторонами.

Из диаграммы вы можете видеть, что высота - это расстояние между верхней и нижней сторонами фигуры, а не длина стороны.

Представьте себе воображаемую линию под прямым углом между верхней и нижней сторонами. Это высота.


Области треугольников

Может быть полезно думать о треугольнике как о половине квадрата или параллелограмма.

Если вы знаете (или можете измерить) размеры треугольника, то вы можете быстро определить его площадь.

Площадь треугольника (высота × ширина) ÷ 2.

Другими словами, вы можете вычислить площадь треугольника так же, как площадь квадрата или параллелограмма, а затем просто разделите свой ответ на 2.

Высота треугольника измеряется по прямой линии от нижней линии (основания) до «вершины» (верхней точки) треугольника.

Вот несколько примеров:

Площадь трех треугольников на диаграмме выше одинакова.

Каждый треугольник имеет ширину и высоту 3 см.

Площадь рассчитана:

(высота × ширина) ÷ 2

3 × 3 = 9

9 ÷ 2 = 4,5

Площадь каждого треугольника составляет 4,5 см 2 .


В реальных ситуациях вы можете столкнуться с проблемой, которая требует от вас найти площадь треугольника, например:

Вы хотите покрасить фронтальный конец сарая. Вам нужно посетить магазин украшений только один раз, чтобы получить нужное количество краски.Вы знаете, что литр краски покроет 10 м 2 стены. Сколько краски нужно для покрытия фронтона?

Вам нужно три измерения:

A - Общая высота до вершины крыши.

B - Высота вертикальных стен.

C - Ширина здания.

В этом примере измерения:

A - 12,4 м

B - 6,6 м

C - 11,6 м

Следующий этап требует дополнительных расчетов.Представьте себе здание как две формы: прямоугольник и треугольник. По имеющимся у вас измерениям вы можете рассчитать дополнительное измерение, необходимое для определения площади фронтона.

Размер D = 12,4 - 6,6

D = 5,8 м

Теперь вы можете определить площадь двух частей стены:

Площадь прямоугольной части стены: 6,6 × 11,6 = 76,56 м 2

Площадь треугольной части стены: (5.8 × 11,6) ÷ 2 = 33,64 м 2

Сложите эти две области вместе, чтобы получить общую площадь:

76,56 + 33,64 = 110,2 м 2

Как вы знаете, один литр краски покрывает 10 м 2 стены, поэтому мы можем определить, сколько литров нам нужно купить:

110,2 ÷ 10 = 11,02 л.

На самом деле вы можете обнаружить, что краска продается только в 5-литровых или 1-литровых канистрах, результат - чуть более 11 литров. У вас может возникнуть соблазн округлить до 11 литров, но, если мы не будем разбавлять краску водой, этого будет недостаточно.Таким образом, вы, вероятно, округлите до следующего целого литра и купите две 5-литровые банки и две 1-литровые банки, что в сумме составит 12 литров краски. Это позволит избежать любых потерь и оставит большую часть литра для подкраски позднее. И не забывайте, что если вам нужно нанести более одного слоя краски, вы должны умножить количество краски для одного слоя на количество необходимых слоев!


Области кругов

Чтобы вычислить площадь круга, вам нужно знать его диаметр или радиус .

Диаметр круга - это длина прямой линии от одной стороны круга до другой, проходящей через центральную точку круга. Диаметр в два раза больше длины радиуса (диаметр = радиус × 2)

Радиус круга - это длина прямой линии от центральной точки круга до его края. Радиус составляет половину диаметра. (радиус = диаметр ÷ 2)

Вы можете измерить диаметр или радиус в любой точке окружности - важно измерять с использованием прямой линии, проходящей через (диаметр) или заканчивающейся в (радиусе) центра окружности.

На практике при измерении окружностей часто проще измерить диаметр, а затем разделить на 2, чтобы найти радиус.

Радиус нужен для вычисления площади круга, формула:

площадь круга = πR 2 .

Это означает:

π = Pi - постоянная, равная 3,142.

R = радиус окружности.

R 2 (радиус в квадрате) означает радиус × радиус.


Следовательно, круг с радиусом 5 см имеет площадь:

3.142 × 5 × 5 = 78,55 см 2 .

Круг диаметром 3 м имеет площадь:

Сначала прорабатываем радиус (3м ÷ 2 = 1,5м)

Затем примените формулу:

πR 2

3,142 × 1,5 × 1,5 = 7,0695.

Площадь круга диаметром 3 м составляет 7,0695 м 2 .


Последний пример

Этот пример использует большую часть содержимого этой страницы для решения простых задач с областями.

Это дом Рубена М. Бенджамина в Блумингтоне, штат Иллинойс, внесенный в Национальный реестр исторических мест США (номер записи: 376599).

Этот пример включает поиск области фасада дома, деревянной решетчатой ​​части - исключая дверь и окна. Вам нужны следующие размеры:

A - 9,7 м B - 7,6 м
C - 8,8 м D - 4,5 м
E - 2.3м F - 2,7 м
G - 1,2 м H - 1,0 м

Примечания:

  • Все размеры являются приблизительными.
  • Не нужно беспокоиться о границе вокруг дома - она ​​не учтена в измерениях.
  • Мы предполагаем, что все прямоугольные окна одинакового размера.
  • Размер круглого окна - это диаметр окна.
  • Размер двери включает ступеньки.

Какова площадь деревянной реечной части дома?

Работы и ответы ниже:



Ответы на приведенный выше пример

Сначала определите площадь основной формы дома - прямоугольника и треугольника, составляющих форму.

Главный прямоугольник (B × C) 7,6 × 8,8 = 66,88 м 2 .

Высота треугольника (A - B) 9,7 - 7,6 = 2,1.

Следовательно, площадь треугольника равна (2.1 × C) ÷ 2.
2,1 × 8,8 = 18,48. 18,48 ÷ 2 = 9,24 м 2 .

Общая площадь фасада дома равна сумме площадей прямоугольника и треугольника:

66,88 + 9,24 = 76,12 м 2 .

Затем проработайте площади окон и дверей, чтобы их можно было вычесть из всей площади.

Площадь двери и ступенек (Д × В) 4,5 × 2,3 = 10,35 м 2 .

Площадь одного прямоугольного окна составляет (G × F) 1.2 × 2,7 = 3,24 м 2 .

Есть пять прямоугольных окон. Умножьте площадь одного окна на 5.

3,24 × 5 = 16,2 м2. (общая площадь прямоугольных окон).

Круглое окно имеет диаметр 1 м и радиус 0,5 м.

Используя πR 2 , определите площадь круглого окна: 3,142 × 0,5 × 0,5 =. 0,7855м 2 .

Затем сложите площади двери и окон.

(зона двери) 10,35 + (прямоугольная зона окон) 16.2 + (площадь круглого окна) 0,7855 = 27,3355

Наконец, вычтите общую площадь окон и дверей из всей площади.

76,12 - 27,3355 = 48,7845

Площадь деревянного реечного фасада дома и ответ на проблему: 48,7845м 2 .

Вы можете округлить ответ до 48,8 м 2 или 49 м 2 .

См. Нашу страницу на Оценка, приближение и округление .
.

Как рассчитать площадь | Помощь с математикой

Расчетная зона

Площадь измеряется в квадратах (или квадратных единицах).

Сколько квадратов в этом прямоугольнике?

Мы можем посчитать квадраты или взять длину и ширину и использовать умножение. Прямоугольник выше имеет площадь 15 квадратных единиц.

Площадь прямоугольника = длина x ширина

Примеры расчета площади прямоугольника

Единицы измерения площади

Измеряем площадь квадратами.Мы используем квадраты разного размера в зависимости от того, насколько большая или маленькая площадь.

Пример Длина стороны квадратов Блок
Размер ногтя на большом пальце миллиметр мм 2
Размер бумажки Сантиметр см 2
Размер помещения Метр м 2
Размер города км км 2
Не забывайте крошечный 2
Размеры квадрата пишем маленьким 2 рядом с единицей.
Мы пишем мм 2 , см 2 , м 2 , км 2 , см 2
Мы можем сказать «63 миллиметра в квадрате» или «63 квадратных миллиметра»

Мы могли бы использовать маленькие квадраты для измерения больших площадей. Единственная проблема заключается в том, что нам придется использовать очень большие числа. Например, поле может быть измерено в 5 000 000 000 квадратных миллиметров, тогда как 5 000 квадратных метров было бы гораздо проще сказать, написать и визуализировать.

Возможно, вы услышите больше единиц измерения площади; квадратные дюймы, квадратные футы, квадратные ярды, квадратные мили, акры, гектары - все это единицы, используемые для измерения площади.

Еще примеры расчета площади

Площадь квадрата

Длина и ширина квадрата одинаковы, поэтому нам просто нужно умножить длину на длину.

Площадь = длина x длина
Площадь = 6 см x 6 см = 36 см 2

Площадь круга

Площадь круга = πr 2
, где r - радиус круга, а π - отношение длины окружности к ее диаметру.

π (произносится как «пирог» и часто пишется как «пи») - бесконечная десятичная дробь с общим приближением 3,14159. Вы можете узнать больше о Pi здесь

Пример расчета площади круга

Площадь = πr 2
Площадь = 3,14159 x (4 см) 2
Площадь = 3,14159 x 16 см 2
Площадь = 50,27 см 2
Ответ округлен до 2 десятичных знаков

Объяснение формулы площади круга

Возьмите круг, разделите его на сектора равного размера и расположите их, как показано ниже.Обратите внимание, как по мере уменьшения размеров секторов форма становится больше похожей на прямоугольник. Примечание. Нет предела тому, насколько маленькими могут быть эти секторы и насколько они могут напоминать прямоугольник при расположении.

Предполагая, что мы знаем, что длина окружности круга равна 2πr, мы можем добавить размеры к «прямоугольнику», как показано ниже. Используя формулу площади прямоугольника, площадь = ширина x высота, мы можем увидеть, как наш круг, переконфигурированный как прямоугольник, может иметь площадь, которая приблизительно равна πr x r или πr 2

Перестановка секторов круга
Перестановка секторов круга - начинает выглядеть как прямоугольник

Площадь сложных форм

Во многих случаях для вычисления общей площади требуется вычисление нескольких площадей с последующим сложением, вычитанием или другой комбинацией операций для поиска требуемой площади.

Примечание. В приведенных ниже примерах единицы измерения не показаны, а ответы и значение π (Пи) округлены до ближайшей сотой.

Пример: простые составные формы

Пример вычисления площади ниже относительно прост. Фигуру можно рассматривать как треугольник в сочетании с прямоугольником.

Площадь треугольной части:
½ x основание x высота
½ x 9 x 4 = 18

Площадь прямоугольной части:
ширина x высота
9 x 6 = 54

Общая площадь = 18 + 54 = 72

В приведенном выше примере показано общее требование при работе с составными формами - поиск размеров, которые не показаны.Обучая детей, при необходимости помогайте им найти эти «недостающие» измерения. Ниже приведен еще один пример.

Определение размеров

Каковы размеры маленькой прямоугольной детали?
Ширина? 12 - 7 - 2 = 3
Высота? 8–6 = 2

Пример: вычитание одной площади из другой

В примере ниже фигура выглядит как прямоугольник с вырезанным треугольником.

Площадь прямоугольной части:
ширина x высота
5 x 6 = 30

Площадь треугольной части:
½ x основание x высота
½ x 3 x 3 = 4,50

Общая площадь = 30 - 4,50 = 25,50

Пример: частичные участки

Пример ниже аналогичен приведенному выше, хотя, поскольку у нас есть полукруг, нам нужно вычислить долю (половину) площади круга. Обратите внимание, что в этом примере показан диаметр, а не радиус.

Площадь треугольной части:
½ x основание x высота
½ x 6 x 6 = 18

Площадь полукруглой части:
½ x ( πr 2 )
½ x (3,14 x 1,5 2 ) = 3,53

Общая площадь = 18 - 3,53 = 14,47

Пример: Решения! Объединить? Вычтем

Обычно используется более одного способа расчета окончательной площади. В приведенных ниже примерах фигуру можно увидеть как два объединенных прямоугольника или как один большой прямоугольник с меньшим прямоугольником, «вырезанным» из правого верхнего угла.

Рабочие листы расчета площади

Распечатайте приведенные ниже рабочие листы и используйте их для практики при обучении своих детей.

Здесь вы найдете другие распечатанные геометрические рабочие листы.

.Калькулятор площади

- Найдите акры с помощью карты или размеров земли

Вычислите площадь в акрах, указав длину и ширину. Для более сложных форм используйте карту, чтобы рассчитать площадь, поместив булавки на края измеряемой земли.

Что такое акр

Акр - это мера площади земли, используемая в Имперской системе измерения (США и неофициально в Великобритании и ее бывших колониях). Первоначально это было количество земли, которое волы могли распахать за день.

Теперь это определено как площадь, измеряющая одну цепь на один стадион - тоже не совсем полезные единицы!

Мы обсудим размер более разумным образом ниже. Но знайте, что акр по-прежнему является обычным измерением площади земли, используемым в США, особенно при сделках с недвижимостью и государственными земельными участками.

Насколько велик акр

Вернемся к нашей одной цепи по определению в один фарлонг - акр определяется как 66 футов (1 цепь) на 660 футов (1 фарлонг) или 43 560 квадратных футов.

Это чуть меньше футбольного поля. Зная это, легко преобразовать квадратные футы в другие единицы измерения.

Вот вам краткая справочная таблица.

1 акр равен:

Измерения в различных единицах измерения площади равны 1 акру.
Единица измерения Количество равняется 1 акру
Га . 4047 га
Метры 4047 м²
миль 0.0015625 миль² (640 акров = 1 миля²)
ярдов 4 840 ярдов²
Квадратные ноги 43,560 фут²
Квадратные дюймы 6 272 640 кв. Дюйм
Окунь 160 окуней (1 окунь = 1 удочка)
Стержни 160 стержень² (1 стержень = 16 ½ футов)

Как посчитать акры

Самый простой способ рассчитать количество акров на вашей земле - использовать калькулятор выше.Если вы знаете длину и ширину, просто введите их. Калькулятор предоставит количество акров, а также площадь в других единицах измерения. Это также даст вам периметр. Если вы уже знаете акры, но хотите указать площадь в других единицах, воспользуйтесь нашим инструментом преобразования единиц площади.

Чтобы рассчитать площадь в акрах вручную, умножьте длину и ширину (в футах), чтобы получить квадратные футы. При необходимости попробуйте наши инструменты для преобразования длины. Затем разделите на 43 560 , чтобы определить размер земли в акрах.Вы можете быстро найти квадратные метры площади с помощью нашего калькулятора площади квадратных футов.

Часто недвижимость не делится на идеальные квадраты, и найти участки неправильной формы может быть немного сложнее. Если землю можно разбить на более мелкие геометрические фигуры, вы можете найти квадратные метры этих меньших фигур по отдельности, а затем их сложить. Вы также можете использовать интерактивную карту выше, чтобы определить фактическую территорию.

Пример: Ваш городской участок под дом имеет ширину 33 фута и длину 102 фута.Сколько у вас гектаров?

33 ’x 102’ = 3 366 кв. Футов.
3366/43560 = 0,077 акра

.Калькулятор

квадратных метров

Расчет площади прямоугольника

Использование калькулятора

Используйте этот калькулятор, чтобы найти квадратные метры, квадратные метры, квадратные метры или акры для здания, дома, сада или строительного объекта. Рассчитайте квадратные метры, метры, метры и акры для проектов ландшафта, пола, ковра или плитки, чтобы оценить площадь и количество материала, которое вам понадобится.Также рассчитайте стоимость материалов, когда вы вводите цену за квадратный фут, цену за квадратный ярд или цену за квадратный метр.

Цена вводится в поля, например, как
$ цена: 3.00 за: 1 квадратная единица: фут (ft²)
означает 3 доллара США за 1 квадратный фут.
или
$ цена: 25.00 за: 1000 квадратная единица: фут (ft²)
означает 25 долларов.00 за 1000 квадратных футов
и т.д ....

Если вы хотите рассчитать объем сыпучих материалов, таких как мульча или гравий, воспользуйтесь нашим калькулятор кубометров и кубометров.

Введите размеры в единицах США или метрических единицах. Вычислите площадь по вашим измерениям в дюймах (дюймах), футах (футах), ярдах (ярдах), миллиметрах (мм), сантиметрах (см) или метрах (м). Вы также можете вводить десятичные значения.Например, если у вас есть одно измерение, которое составляет 7 футов 3 дюйма, вы можете ввести его как 7,25 фута (3 дюйма / 12 дюймов = 0,25 фута). Если у вас размер 245 см, вы также можете ввести его как 2,45 м.

Как рассчитать квадратные метры

Квадратный метр - это площадь, выраженная в квадратных футах. Точно так же квадратный метр - это площадь, выраженная в квадратных ярдах. Квадратные метры - тоже общепринятая мера площади.

Предположим, у вас есть прямоугольная область, такая как комната, и, например, вы хотите рассчитать площадь в квадратных футах для пола или ковра.

Прямоугольную площадь можно рассчитать, измерив длину и ширину вашей области, а затем умножив эти два числа вместе, чтобы получить площадь в квадратных футах (футы 2 ). Если у вас есть область необычной формы, например L-образная, разделите ее на квадратные или прямоугольные секции и рассматривайте их как две отдельные области. Вычислите площадь каждой секции, затем сложите их и получите общее количество. Если ваши измерения даны в разных единицах, например, в футах и ​​дюймах, вы можете сначала преобразовать эти значения в футы, а затем умножить их вместе, чтобы получить квадратные метры площади.

Размер

  • Измерьте стороны вашего участка

Преобразуйте все ваши измерения в футы

  • Если вы измеряли в футах, перейдите к разделу «Вычислить площадь в квадратных футах»
  • Если вы измеряли в футах и ​​дюймах, разделите дюймы на 12 и прибавьте это к своей стопе, чтобы получить общее количество футов
  • Если вы измеряете в другой единице измерения, выполните следующие действия, чтобы преобразовать в футы
    - дюймы: разделите на 12, и это ваше измерение в футах
    - ярды: умножьте на 3, и это ваше измерение в футах
    - сантиметры: умножить на 0.03281 конвертировать в футы
    - метры: умножьте на 3,281, чтобы преобразовать в футы

Вычислить площадь как квадратные метры

  • Если вы измеряете площадь квадрата или прямоугольника, умножьте длину на ширину; Длина x Ширина = Площадь.
  • Для других форм площади см. Формулы ниже, чтобы вычислить площадь (футы 2 ) = квадратные метры.

Преобразование из квадратных дюймов, квадратных футов, квадратных ярдов и квадратных метров

Вы можете, например, выполнить все свои измерения в дюймах или сантиметрах, вычислить площадь в квадратных дюймах или квадратных сантиметрах, а затем преобразовать окончательный ответ в нужные вам единицы, такие как квадратные футы или квадратные метры.

Для преобразования квадратных футов, ярдов и метров используйте следующие коэффициенты преобразования. Для других единиц используйте наш калькулятор для преобразование площади.

  • квадратных футов в квадратные ярды
    • Умножьте 2 футов на 0,11111, чтобы получить ярдов 2
  • квадратных футов в квадратных метров
    • умножить 2 футов на 0.092903 получить м 2
  • квадратных ярдов в квадратных футов
    • умножьте ярды 2 на 9, чтобы получить футы 2
  • Квадратные ярды в Квадратные метры
    • умножьте ярд 2 на 0,836127, чтобы получить m 2
  • квадратных метров в квадратных футов
    • умножить m 2 на 10.7639, чтобы получить ft 2
  • квадратных метров в квадратных ярдов
    • умножьте m 2 на 1.19599, чтобы получить ярд 2

Формулы квадратных метров и изображения для различных областей

Площадь

Рассчитать площадь в квадратных футах для квадратная площадь

Используя измерения в футах:

Площадь (футы 2 ) = длина стороны x длина стороны

Площадь прямоугольника

.

Расчет площади, длины и других геометрических свойств - справка

Инструмент «Расчет геометрии» позволяет получить доступ к геометрии пространственных объектов в слое. Инструмент может вычислять значения координат, длины и площади в зависимости от геометрии входного слоя. Вы можете рассчитать площадь, длину или периметр объектов только в том случае, если используемая система координат проецируется. Имейте в виду, что разные проекции имеют разные пространственные свойства и искажения. Если система координат источника данных и фрейма данных не совпадают, вы можете получить другой результат при вычислении геометрии с использованием системы координат фрейма данных, чем при вычислении с использованием системы координат источника данных.При расчете площадей рекомендуется использовать проекцию равной площади.

Если вы хотите вычислить Xmin, Xmax, Ymin или Ymax, вы можете сделать это с помощью Python с калькулятором поля; см. Примеры вычисления поля.

Вы можете использовать диалоговое окно «Вычислить геометрию», чтобы обновить площадь, длину или периметр объектов в шейп-файлах, поскольку эти свойства не обновляются автоматически при редактировании объектов в шейп-файлах.

Вы можете вычислить значения координаты z или трехмерные измерения, только если объект поддерживает z.Значения Z-координаты и трехмерные измерения могут быть рассчитаны независимо от выбранной системы координат. Единицы, перечисленные для вычислений z и 3D, являются планарными (мили, метры и т. Д.), Если для слоя определена вертикальная система координат. Если для данных не определена вертикальная система координат, единицы отображаются как неизвестные. Для получения дополнительной информации о z-значениях и типах геометрии пространственных объектов см. Основы классов пространственных объектов.

.

Смотрите также

Сделать заказ

Пожалуйста, введите Ваше имя
Пожалуйста, введите Ваш номер телефона
Пожалуйста, введите Ваше сообщение