Комплексные поставки запорной арматуры
и деталей трубопроводов →

Тел: +7 (3522) 55-48-26

Как вычислить общую площадь


Калькулятор для расчета площади

Данный онлайн-калькулятор позволяет рассчитать площадь различных геометрических фигур, таких как:

Для удобства расчетов вы можете выбрать единицу измерения (миллиметр, сантиметр, метр, километр, фут, ярд, дюйм, миля). Также полученный результат можно конвертировать в другую единицу измерения путем выбора её из выпадающего списка.


Полезные калькуляторы Конвертер единиц площади | Конвертер единиц длины

Расчет площади прямоугольника

Результат:

S= 1111 кв.ммкв.смкв.мкв.кмкв.футкв.ярдкв.дюймкв.миля

Расчет площади треугольника

Способ нахождения площади треугольника: По трем сторонамПо одной стороне и высоте, опущенной на эту сторонуПо двум сторонам и углу между ними

Вычислить

Результат:

S= 1111 кв.ммкв.смкв.мкв.кмкв.футкв.ярдкв.дюймкв.миля


Расчет площади круга

Рассчитать площадь круга, если известен:

Вычислить

Результат:

S= 1111 кв.ммкв.смкв.мкв.кмкв.футкв.ярдкв.дюймкв.миля

Расчет площади параллелограмма

Способ нахождения площади параллелограмма:
По основанию и высоте параллелограммаПо двум сторонам и углу между нимиПо двум диагоналям и углу между ними

Вычислить

Результат:

S= 1111 кв.ммкв.смкв.мкв.кмкв.футкв.ярдкв.дюймкв.миля

Расчет площади правильного многоугольника

Многоугольник с числом сторон n и длиной стороны аМногоугольник с числом сторон n, вписанный в окружность радиуса RМногоугольник с числом сторон n, описанный вокруг окружности радиуса r

Вычислить

Результат:

S= 1111 кв.ммкв.смкв.мкв.кмкв.футкв.ярдкв.дюймкв.миля

Расчет площади эллипса

Результат:

S= 1111 кв.ммкв.смкв.мкв.кмкв.футкв.ярдкв.дюймкв.миля


Расчет площади сектора круга

Рассчитать площадь сектора круга, если известен:

r=

ммсммкмфутярддюйммиля

θ=

ммсммкмфутярддюйммиля

град.рад.

Вычислить

Результат:

S= 1111 кв.ммкв.смкв.мкв.кмкв.футкв.ярдкв.дюймкв.миля

Расчет площади трапеции

Способ нахождения площади трапеции: По двум основаниям a,b и высоте hПо двум основаниям a,b и боковым сторонам c,d

Результат:

S= 1111 кв.ммкв.смкв.мкв.кмкв.футкв.ярдкв.дюймкв.миля

Площадь — численная характеристика двумерной (плоской или искривлённой) геометрической фигуры.

Метрические единицы измерения площади:   
Квадратный метр, производная единица системы СИ 1 м2 = 1 са (сантиар)
Квадратный километр - 1 км2 = 1 000 000 м2
Гектар - 1 га = 10 000 м2
Ар (сотка) - 1 а = 100 м2 (сотка как правило применяется для измерения земельных участков и равна 100 м2 или 10м х 10м)
Квадратный дециметр, 100 дм2 = 1 м2;
Квадратный сантиметр, 10 000 см2 = 1 м2;
Квадратный миллиметр, 1 000 000 мм2 = 1 м2.

Данный онлайн-калькулятор удобен при расчете площадей помещений и земельных участков.

Как узнать площадь комнаты в квадратных метрах

Можно поступить еще проще и просто все стороны помещения перемножить: потолок, пол, стены.

Перевод квадратных сантиметров в квадратные метры

Перед тем, как узнать сколько в комнате квадратных метров, очень важно разобраться в самих значениях, ведь когда идет расчет с сотнями сантиметров, их в любом случае необходимо переводить в метры. Делается это по следующей формуле, уже на известном примере: 160 см * 100 см – разница величин (в одном метре – 100 сантиметров), в итоге получается 16000 см2, которые нужно разделить на 10000 и получим = 1.60 м2.

Такими цифрами намного проще оперировать и запоминать. Тем более, что «квадратуру» помещения всегда измеряют именно в метрах. Для перевода необходимо подставлять следующие формулы:

  • 8000 см² / 10000 = 0,8 м²;
  • 34000 см² / 10000 = 3,4 м²;
  • 2400 см²/ 10000 = 0,24 м².

Все достаточно просто и не составит труда составить такие несложные арифметические вычисления, даже школьнику. Очень важно перед тем, как узнать квадратуру комнаты, провести максимально точные измерения, после чего приступить к расчетам.

Как посчитать площадь комнаты в квадратных метрах

Необходимость в расчете площади возникает зачастую только во время ремонтных работ, строительства или при смене мебели. Практически все строительные материалы (например напольное покрытие) исчисляется в квадратных метрах. Для правильного расчета количества материала, важно знать площадь пола. Зная ширину и длину комнаты, найти площадь не вызовет никаких сложностей.

Измерения

Перед тем как измерить комнату в квадратных метрах, необходим минимальный набор предметов:

  • калькулятор;
  • рулетка;
  • карандаш;
  • лист бумаги.

На бумаге необходимо сделать подробный план помещения. Каждая стена должна быть измерена с использованием рулетки.

Внимание! Очень важно делать измерения на уровне пола, ведь бывают случаи (особенно в старых домах), когда стены немного завалены в одну из сторон. Так как происходит измерение пола, необходимо измерять с максимальным прилеганием к стенам.

Вторым этапом является проставление полученных измерений на плане. Лучше всего сразу делать это в метрах, но точность каждого замера должна быть до 1 сантиметра. Это необходимо для того, чтобы при выборе необходимого количества материалов, удалось максимально точно подобрать метраж требуемого материала. Рулонные напольные покрытия продаются в погонных метрах.

Округлять можно только в случае небольшого увеличения, чтобы в случае непредвиденных обстоятельство, было достаточное количество материала.

Как высчитать квадратуру комнаты

Чтобы понять, как узнать общую площадь комнаты, необходимо воспользоваться простой формулой и перемножить показания длины на ширину. Как показано на рисунке длинная стена имеет длину в 7 метров а противоположная только 4. Выходит площадь пола будет равна 28 м2. Именно таким образом и находят квадратуру. Обязательно требуется помнить о небольшом запасе, который потребуется для подгонки и подрезки, причем чем сложнее будет вариант укладки, тем больше потребуется брать запас.

Зачастую комнаты не имеют ровной квадратной или прямоугольной формы.Поэтому, перед тем как узнать площадь комнаты в квадратных метрах, необходимо просто разбить комнату на несколько простых фигур (квадраты и прямоугольники) и после считают общую квадратуру. Так например для комнаты у которой форма буквы Г, достаточно разбить ее на 2 прямоугольника, отдельно посчитать площадь, а потом сложить.

Выглядит это все следующим образом:

  • вычисляем квадратуру большого прямоугольника: 5 умножаем на 4,35 и получаем 21,75 квадратных метров;
  • теперь по тому же принципу второй: 2,5 на 2,65 и получаем 6,625 квадратов;
  • далее суммируем общий результат 6,625 + 21,75 и получаем площадь комнаты в размере 28,375 квадратных метров.

Имея на руках полученный точный результат, можно немного округлить его в большую сторону и учитывать 28,4 квадратных метра.

В том случае, если комната имеет участок со срезанной стеной, как показано на картинке, тогда необходимо нарисовать прямоугольник таким образом, чтобы косая делила его на 2 треугольника. Тогда опять получается помещение по форме буквы Г. Далее можно вычислить площадь, по выше представленному методу.

Необходимо будет найти площадь трех прямоугольников. Недостающий участок – половина маленького прямоугольника. Достаточно будет просто найти его площадь и разделить на 2, после чего прибавить к остальным размерам.

Итак, для примера можно использовать следующие данные:

  • большой прямоугольник: 1,75 м *1,93 м = 3,3775 м². Чтобы было проще, возьмем 3,38 м²;
  • средний прямоугольник: 1,18 м * 0,57 м = 0,6726 м². Опять произведем округление до 0,67 м²;
  • самый маленький прямоугольник: 0,57 м *0,57 м = 0,3249 м2, доводим до 0,33 м²;
  • теперь осталось только сложить получившиеся значения и прибавить ½ маленького прямоугольника: 3,38 + 0,67 +0,33/2 = 3,38 + 0,67 +0,17 = 4,22 м².

Это наиболее удобная методика, которой может воспользоваться любой желающий. Достаточно только разбивать сложную фигуру на несколько простых. Несмотря на то, что измерений будет больше, такой метод не требует больших усилий и временных потерь, а все вычисления можно сделать буквально на коленке.

Площадь квартиры

Многие утверждают, что ремонт – процесс, который практически невозможно закончить, его можно только приостановить. Несмотря на это, чтобы не превратить незначительный ремонт в глобальный, очень важно правильно рассчитать все необходимые цифры и провести нужные расчеты, одним из которых является измерение квадратуры.

Теперь вы знаете, как найти площадь комнаты зная длину и ширину и после всех выполненных манипуляций, достаточно просто сложить полученные данные по комнатам, тогда можно получить квадратуру всей квартиры.

Такой процесс требуется для закупки материалов. Последним этапом будет только проработка плана, где будут указаны все длины, ширина оконных и дверных рам и т.д. Это необходимо например для укладки напольной плитки или ламината. Такая схема потребуется при укладке теплого пола.

Существуют и современные приложения на смартфон или сервисы в интернете, которые упростят эти моменты и помогут найти площадь.

что входит и не входит, как рассчитать правильно

Большинство жителей России проживают в квартирах. Эти объекты недвижимого имущества обладают несколькими основными характеристиками, одной из которых является метраж жилья. При расчете данного параметра некоторые части квартиры не принимаются во внимание. В статье рассмотрены такие важные вопросы как: что входит в общую площадь квартиры, как ее рассчитать, различия между жилой и общей квадратурой.

Отличия жилплощади от общей

Общая площадь (ОП) – это сумма квадратных метров всех помещений, имеющихся в квартире вне зависимости от их предназначения, которые используются для осуществления расчетов по коммунальным платежам, в договорах купли-продажи имущества и прочих целях.

При проведении сделки с объектом недвижимости, как правило, в документах фигурируют 2 термина – жилая и общая площади. Несмотря на то, что различить их несложно, некоторые все же допускают ошибки при их использовании.

Важно знать: Общий метраж – это вся квадратура квартиры, которая по документам причисляется к данному объекту имущества, а жилплощадь подразумевает только пригодные для жилья комнаты.

Ниже приведен ответ на вопрос, в чем разница между жилой и общей площадью квартиры:

  1. Размерные параметры. Жилая квадратура представляет только часть от общей, т.е. ее размер меньше. Чаще всего эта разница существенна, иногда метраж для жилья бывает равен половине совокупного.
  2. В жилплощадь включаются комнаты (спальни, детские, гостиные), где люди проводят основную часть своего времени дома. В ОП кроме них включаются все остальные квадратные метры жилья.
  3. Цели использования. Размер жилых помещений оказывает влияние на условия жизни граждан (на возможность получения соцпособий, усыновления ребенка и пр.). От ОП зависит рыночная стоимость жилья, размер коммунальных платежей и взносов (за отопление, капительный ремонт).

Ниже приведена информация, как считать площадь квартиры по совокупному метражу.

Что включается

В совокупную квадратуру включаются все помещения, из которых состоит единица жилья в многоквартирном доме:

  1. Жилые помещения (комнаты). Это спальни, гостиные, детские, где люди спят, работают, отдыхают – проводят свой домашний досуг.
  2. Кухни. Независимо от количества времяпрепровождения жильцов на кухне, это помещение все равно относится к бытовым и включается в общую площадь. Даже если хозяин решил устроить там место для отдыха и проводит там все свое свободное время, это не оказывает влияния на предназначение кухни.
  3. Коридоры, которые связывают помещения внутри квартиры между собой.
  4. Комнаты санитарно-технического назначения (ванные, туалеты) не относятся к жилой площади. Они являются частью общего метража.
  5. Стенные шкафы также относятся к ОП, несмотря на то, что жильцы, как правило, туда совсем не заходят.
  6. Ниши в стенах домов-«сталинок», предназначенные для хранения продуктов зимой, вместо холодильника.

Что не включается

Некоторые ошибочно считают, что в расчет общей площади квартиры должны быть включены все помещения объекта, но и в данном случае есть исключения. Не входят в учет ОП следующие квадратные метры:

  1. Балконы, лоджии. До недавнего времени они учитывались с уменьшающим коэффициентом – включалась 1/2 от лоджии и 1/3 от балкона, но в настоящее время их исключили из расчета совсем.
  2. Веранды, террасы. Эти места предназначены для того, чтобы человек мог отдохнуть, заняться своим хобби (например, выращиванием цветов). Поэтому они не берутся во внимание при подсчете совокупного метража.
  3. Ниши высотой менее 1,8 м. Таким образом, в ОП не включаются низкие стенные шкафы.
  4. Место под лестницей при высоте пролета менее 1,6 м от пола (расстояние необходимо замерить рулеткой под прямым углом к полу). Это относится к двухуровневым квартирам.
  5. Печи и камины. Даже если они находятся в рабочем состоянии место под ними не включается в общую площадь.
  6. Двери и арочные конструкции шириной менее 2-х метров, т.е. они имеют очень низкий порог. Поэтому включать их в ОП нецелесообразно.
  7. Помещения без отопления, когда общую квадратуру необходимо рассчитать в целях подсчета суммы платежей за отопление и проверки расчетов жилищной компании.

Правила расчета

О том, как считать общую площадь квартиры, приведено ниже. Этот расчет не представляет сложности – необходимо произвести замеры площади всех входящих в нее помещений и суммировать полученные результаты. Но здесь есть некоторые нюансы, которые следует учитывать:

  1. Для подсчета квадратуры комнаты прямоугольной формы нужно измерить длины 2-х ее стен, которые стыкуются между собой. После этого полученные цифры надо перемножить.
  2. Помещение сложной формы можно мысленно разделить на прямоугольники, вычислить их площади по аналогии с первым вариантом и сложить. Полученный результат и будет равен площади комнаты.
  3. Если комната имеет диагональные стены, то действовать следует аналогично: разделить ее на воображаемые прямоугольники. Та часть, одной из сторон которой является стена под углом к другим стенам, будет представлять собой прямоугольный треугольник. Его площадь равна половине произведения его катетов (стен, составляющих прямой угол). Все полученные значения сложить между собой.

Рекомендация: Прямоугольные фигуры, которые принимаются в расчет, лучше начертить на бумаге с помощью линейки. Это действие поможет снизить вероятность ошибки.

Замеры комнат необходимо осуществлять изнутри помещения с помощью рулетки, прикладывая ее к стыку стены с полом. Данные действия лучше выполнять вдвоем для удобства.

Законодательная основа

Все вопросы, которые имеют отношение к жилым помещениям в многоквартирных домах, регламентируются Жилищным Кодексом РФ.

Также при возникновении необходимости можно обратиться к таким нормативно-правовым документам как:

  1. Строительные нормы и правила (СниП) от 2003 г..
  2. Федеральный закон №384 от 30 декабря 2009 года, где представлен технический регламент безопасности зданий и сооружений.

Важно: Приоритет регулирования среди этих документов принадлежит последнему (ФЗ №384). Таким образом, его положения могут отменить действие некоторых пунктов ЖК РФ и СниПа 2003.

При изучении Жилищного кодекса в целях расчета метража квартиры особенно нужно выделить статью 15, где приведено определение, что именно является объектом жилищных прав.

Все субъекты РФ применяют единую систему подсчета ОП. О том, как разделяются разные типы жилых комнат, рассмотрено в ст. 16 ЖК. В статье 17 описаны такие вопросы как назначение жилых помещений, и определены ограничения по их использованию.

На что оказывает влияние ОП

От величины ОП квартиры зависят некоторые важные моменты:

  1. Стоимость объекта недвижимости для покупателя. Неопытный человек при поиске жилья может ошибочно заострять внимание на величине ОП. Выбирая подходящий для покупки вариант, в первую очередь следует сконцентрироваться размере жилплощади.
  2. Сумма платежей за отопление. Коммунальные службы ведут расчет на основе совокупного метража.
  3. Сумма взноса за капитальный ремонт дома. Величина платежа за общедомовой капремонт напрямую зависит от квадратуры всей квартиры каждого конкретного собственника.
  4. Комфорт проживания. Размер жилплощади оказывает прямое влияние на комфортабельные условия жизни каждого человека. Но ОП не менее важна, так как включает и другие помещения, играющие важную роль для удобства проживания (ванные, кладовки, шкафы в нишах, кухня).

ОП является важным параметром для собственника квартиры. От нее зависят многие моменты: начиная от рыночной цены и заканчивая комфортабельностью проживания. Общую квадратуру следует отличать от жилой, которая включает только жилые комнаты. Основным законодательным документом, регулирующим вопросы, имеющие отношение к квадратуре жилья граждан, является ЖК РФ. Также в нем приведен ответ на достаточно популярный среди граждан вопрос, входит ли лоджия в общую площадь квартиры. В нормативном документе четко закреплено, какие помещения входят в ОП, а какие нет. Расчет данного параметра выполняется путем вычисления квадратного метража каждого помещения объекта недвижимости.

Как посчитать площадь комнаты, стены, пола, потолка

Главная » Разное » Как посчитать квадратуру комнаты, стен, потолка, пола

Периодически нам требуется знать площадь и объем комнаты. Эти данные могут понадобиться при проектировании отопления и вентиляции, при закупке стройматериалов и еще во многих других ситуациях. Также периодически требуется знать площадь стен. Все эти данные вычисляются легко, но предварительно придется поработать рулеткой — измерять все требуемые габариты.  О том, как посчитать площадь комнаты и стен, объем помещения и пойдет речь дальше.  

Часто требуется посчитать кубатуру комнаты, ее объем

Содержание статьи

Площадь комнаты в квадратных метрах

Посчитать несложно, требуется только вспомнить простейшие формулы а также провести измерения. Для этого нужны будут:

  • Рулетка. Лучше — с фиксатором, но подойдет и обычная.
  • Бумага и карандаш или ручка.
  • Калькулятор (или считайте в столбик или в уме).

Набор инструментов нехитрый, найдется в каждом хозяйстве. Проще измерения проводить с помощником, но можно справиться и самостоятельно.

Для начала надо измерить длину стен. Делать это желательно вдоль стен, но если все они заставлены тяжелой мебелью, можно проводить измерения и посередине. Только в этом случае следите чтобы лента рулетки лежала вдоль стен, а не наискосок — погрешность измерений будет меньше.

Прямоугольная комната

Если помещение правильной формы, без выступающих частей, вычислить площадь комнаты просто. Измеряете длину и ширину, записываете на бумажке. Цифры пишите в метрах, после запятой ставите сантиметры. Например, длина 4,35 м (430 см), ширина 3,25 м (325 см).

Как высчитать площадь комнаты

Найденные цифры перемножаем, получаем площадь комнаты в квадратных метрах. Если обратимся к нашему примеру, то получится следующее: 4,35 м * 3,25 м = 14,1375 кв. м.  В данной величине оставляют обычно две цифры после запятой, значит округляем. Итого, рассчитанная квадратура комнаты 14,14 квадратных метров.

Помещение неправильной формы

Если надо высчитать площадь комнаты неправильной формы, ее разбивают на простые фигуры — квадраты, прямоугольники, треугольники. Потом измеряют все нужные размеры, производят расчеты по известным формулам (есть в таблице чуть ниже).

Перед тем как посчитать площадь комнаты, тоже проводим изменения. Только в этом случае цифр будет не две, а четыре: добавится еще длина и ширина выступа. Габариты обоих кусков считаются отдельно.

Один из примеров — на фото. Так как и то, и другое — прямоугольник, площадь считается по той же формуле: длину умножаем на ширину. Найденную цифру надо отнять или прибавить к размеру помещения — в зависимости от конфигурации.

Площадь комнаты сложной формы

Покажем на этом примере как посчитать площадь комнаты с выступом (изображена на фото выше):

  1. Считаем квадратуру без выступа: 3,6 м * 8,5 м = 30,6 кв. м.
  2. Считаем габариты выступающей части: 3,25 м * 0,8 м = 2,6 кв. м.
  3. Складываем две величины: 30,6 кв. м. + 2,6 кв. м. = 33,2 кв. м.

Еще бывают помещения со скошенными стенами. В этом случае разбиваем ее так, чтобы получились прямоугольники и треугольник (как на рисунке ниже). Как видите, для данного случая требуется иметь пять размеров. Разбить можно было по-другому, поставив вертикальную, а не горизонтальную черту. Это не важно. Просто требуется набор простых фигур, а способ их выделения произвольный.

Как посчитать площадь комнаты неправильной формы

В этом случае порядок вычислений такой:

  1. Считаем большую прямоугольную часть: 6,4 м * 1,4 м = 8,96 кв. м. Если округлить, получим 9, 0 кв.м.
  2. Высчитываем малый прямоугольник: 2,7 м * 1,9 м = 5,13 кв. м. Округляем, получаем 5,1 кв. м.
  3. Считаем площадь треугольника. Так как он с прямым углом, то равен половине площади прямоугольника с такими же размерами. (1,3 м * 1,9 м) / 2 = 1,235 кв. м. После округления получаем 1,2 кв. м.
  4. Теперь все складываем чтобы найти общую площадь комнаты: 9,0 + 5,1 + 1,2 = 15,3 кв. м.

Планировка помещений может быть очень разнообразной, но общий принцип вы поняли: делим на простые фигуры, измеряем все требуемые размеры, высчитываем квадратуру каждого фрагмента, потом все складываем.

Формулы расчета площади и периметра простых геометрических фигур

Еще одно важное замечание: площадь комнаты, пола и потолка — это все одинаковые величины. Отличия могут быть если есть какие-то полу-колоны, не доходящие до потолка. Тогда из общей квадратуры вычитается квадратура этих элементов. В результате получаем площадь пола.

Как рассчитать квадратуру стен

Определение площади стен часто требуется при закупке отделочных материалов — обоев, штукатурки и т.п. Для этого расчета нужны дополнительные измерения. К имеющимся уже ширине и длине комнаты нужны будут:

  • высота потолков;
  • высота и ширина дверных проемов;
  • высота и ширина оконных проемов.

Все измерения — в метрах, так как квадратуру стен тоже принято измерять в квадратных метрах.

Удобнее всего размеры наносить на план

Так как стены прямоугольные, то и площадь считается как для прямоугольника: длину умножаем на ширину. Таким же образом вычисляем размеры окон и дверных проемов, их габариты вычитаем. Для примера рассчитаем площадь стен, изображенных на схеме выше.

  1. Стена с дверью:
    • 2,5 м * 5,6 м = 14 кв. м. — общая площадь длинной стены
    • сколько занимает дверной проем: 2,1 м *0,9 м = 1,89 кв.м.
    • стена без учета дверного проема — 14 кв.м — 1,89 кв. м = 12,11 кв. м
  2. Стена с окном:
    1. квадратура маленьких стен: 2,5 м * 3,2 м = 8 кв.м.
    2. сколько занимает окно: 1,3 м * 1,42 м = 1,846 кв. м, округляем, получаем 1,85 кв.м.
    3. стена без оконного проема: 8 кв. м — 1,75 кв.м = 6,25 кв.м.

Найти общую площадь стен не составит труда. Складываем все четыре цифры: 14 кв.м + 12,11 кв.м. + 8 кв.м + 6,25 кв.м. = 40,36 кв. м.

Объем комнаты

Формула расчета объема комнаты

Для некоторых расчетов требуется объем комнаты. В этом случае перемножаются три величины: ширина, длинна и высота помещения. Измеряется данная величина в кубических метрах (кубометрах), называется еще кубатурой. Для примера используем данные из предыдущего пункта:

  • длинна — 5,6 м;
  • ширина — 3,2 м;
  • высота — 2,5 м.

Если все перемножить, получаем: 5,6 м * 3,2 м * 2,5 м = 44,8 м3. Итак, объем помещения 44,8 куба.

 

Как посчитать квадратные метры комнаты (квадратуру)

При ремонте, покупке материалов нужно знать площадь помещений. Говорят еще «квадратура». Как посчитать площадь комнаты в квадратных метрах, что для этого нужно — будем рассматривать в статье. 

Содержание статьи

Немного теории

Как найти площадь различных фигур, проходили еще в начальной школе. Было это давно, так что «обновить» информацию может быть полезно. Будем рассматривать только то, что может иметь отношение к полу. Итак, начнем с самого простого — единиц измерения.

Чтобы посчитать площадь комнаты в квадратных метрах, нужен будет карандаш, рулетка и некоторый багаж знаний

Что такое 1 см² и 1 м²

Площадь любой фигуры измеряется в квадратных метрах или в квадратных сантиметрах. Обозначение см² или м², может встречаться написание кв.м, кв. см., кв. метры, кв. сантиметры и другие вариации.

Что такое один квадратный сантиметр

Один квадратный сантиметр — это площадь квадрата со стороной 1 см. Если нарисовать такой квадрат, стороны которого равны 1 см, то заштрихованная часть (на рисунке красным или синим) и будет один квадратный сантиметр. Соответственно, квадрат со стороной один метр — 1 м — имеет площадь один квадратный метр. Тот самый «квадрат площади». То есть, это квадратный участок пола (или стены) со стороной в один метр — 1 м².  В одном квадратном метре десять тысяч квадратных сантиметров: 1 м² = 10000 см².

Формулы

Это то, что касалось единиц измерения и их соответствия. Но наши помещения, слава богу, больше чем один квадратный метр. Как посчитать площадь комнаты? Сколько в ней квадратных метров? Обычно комната имеет форму прямоугольника, реже — квадрата. Значит, надо будет вспомнить формулы нахождения площади квадрата и прямоугольника.

При помощи очень простых формул, можно рассчитать площадь прямоугольника и квадрата

Надо длины сторон прямоугольника перемножить. Получим искомую площадь. Давайте потренируемся.

  1. Имеем прямоугольник со сторонами 80 см и 50 см. Перемножаем эти цифры: 80 * 50 = 4000 см². Это и будет его площадь.
  2. Стороны 322 см и 300 см. Получим: 322*300 = 96000 см².
  3. Есть квадрат со стороной 60 см. Его площадь — 60 * 60 = 3600 см².

В случае с квадратом длину стороны можно возвести в квадрат — получится одно и то же. Но можно не морочить голову. Проще помнить, что надо стороны умножить.

Простейший калкулятор для расчета площади прямоугольной комнаты.

Перевод квадратных сантиметров в квадратные метры

Когда имеем дело с сотнями сантиметров, удобнее и проще считать в метрах. Мы знаем, что в одном метре сто сантиметров. Давайте решим те же примеры, но переведем сантиметры в метры:

  1. 80 см = 0,8 м; 50 см = 0,5 м. Перемножаем 0,8*0,5 = 0,4 м². То есть, 0,4 квадратных метра.
  2. 322 см это 3,22 м; 300 см это 3 м. Теперь умножаем полученные цифры: 3,22 * 3 = 9,6 м².
  3. 60 см равны 0,6 м. Площадь квадрата с такой стороной 0,6*0,6 = 0,36 м².

Цифры получаются намного меньше, запомнить их проще. И если мы хотим посчитать площадь комнаты в квадратных метрах, ее размеры мы меряем в метрах, а не сантиметрах. Можно перевести квадратные сантиметры в квадратные метры. Как уже говорили, в одном квадратном метре содержится десять тысяч квадратных сантиметров.

Соотношение квадратных сантиметров и квадратных метров

Если же у вас есть площадь в квадратных сантиметрах, чтобы перевести ее в квадратные метры, цифру надо разделить на 10 000. Например:

  • 4000 см² / 10000 = 0,4 м²;
  • 96000 см² / 10000 = 9,6 м²;
  • 3600 см²/ 10000 = 0,36 м².

Как видите, все просто. Надо только запомнить основные положения и посчитать площадь комнаты в квадратных метрах будет совсем несложно. Нужно будет предварительно провести измерения, а потом заняться расчетами.

Как посчитать площадь комнаты в квадратных метрах

Рассчитать площадь комнаты, часто надо при закупке материалов для строительства или ремонта. Например, некоторые виды напольного покрытия продают на квадраты (то есть, на квадратные метры). Чтобы правильно рассчитать его количество, надо знать площадь пола (часто говорят квадратура комнаты, что по сути одно и то же).

Можно найти площадь комнаты зная длину и ширину

Измерения

Берем рулетку, листок бумаги, карандаш и калькулятор. На бумаге рисуем план комнаты. При помощи рулетки измеряем длины всех стен. Измерения проводим на уровне пола — если постройка старая, велика вероятность того, что стены «завалены» в ту или другую сторону. Тем более что определяем площадь пола, так что логичнее измерять вплотную к стенам, но мерную ленту тянуть по полу.

Схема комнаты с нанесенными измерениями

На схеме проставляем измерения. Лучше всего в метрах. Точность измерений — до сантиметра. Это понадобится при покупке материалов, которые продаются на погонные метры — линолеум, ковролин или другие рулонные покрытия. Чтобы посчитать площадь комнаты в квадратных метрах, тоже желательна такая точность. Хоть можно, конечно, и округлить. Но лучше это сделать уже получив результат.

Как высчитать квадратуру комнаты

Имея длину и ширину комнаты прямоугольной формы, цифры надо просто перемножить. На рисунке выше такая комната нарисована справа. Длинная стена равна 7 м, короткая — 4 метрам. Перемножаем 7*4 = 28 квадратных метров. Это и есть площадь этого помещения, пола. Другими словами, мы нашли квадратуру. Используя эту цифру, можно покупать напольное покрытие. Но надо иметь в виду, что требуется некоторый запас — на подгонку, подрезку. Чем сложнее схема укладки и чем больше фрагменты напольного покрытия, тем запас должен быть больше.

Часто комната не прямоугольная, а имеет более сложную форму. Чтобы посчитать площадь такой комнаты в квадратных метрах, ее разбивают на простые фигуры. Если удается — на прямоугольники или квадраты. Например, Г-образную комнату разбивают на два прямоугольника. Затем считают площадь каждого прямоугольника отдельно, потом их складывают.

Как найти площадь комнаты сложной формы
  • Считаем большой прямоугольник: 5 м * 4,35 м = 21,75 м².
  • Находим квадратуру маленького: 2,5 м * 2,65 м = 6,625 м².
  • Площадь пола в этом помещении равна сумме 21,75 м² + 6,625 м² = 28,375 м².

При покупке материалов, проще пользоваться округленными значениями. Чаще всего говорят, что в этом помещении 28,4 квадрата.

Если помещение имеет участок «срезанной» стены, как на рисунке ниже, проще всего дорисовать прямоугольник так, чтобы косая делила его на два треугольника. В этом случае снова-таки получаем Г-образную комнату. Как высчитать ее площадь уже знаем.

Получается, ищем площадь трех прямоугольников

А недостающий участок — это половина маленького прямоугольника. То есть, находим площадь этого маленького прямоугольника, делим ее пополам и прибавляем к размерам Г-образного участка.

Приведем пример расчета подставляя произвольные значения:

  • Большой прямоугольник: 1,75 м *1,93 м = 3,3775 м². Для простоты округлим до 3,38 м².
  • Средний прямоугольник: 1,18 м * 0,57 м = 0,6726 м².  Снова округлим до 0,67 м².
  • Самый маленький прямоугольник (в нашем случае это будет квадрат): 0,57 м *0,57 м = 0,3249 м2, после округления имеем 0,33 м².
  • Чтобы найти общую площадь складываем квадратуру двух прямоугольников и добавляем половину площади последнего, самого маленького участка. 3,38 + 0,67 +0,33/2 = 3,38 + 0,67 +0,17 = 4,22 м².

Такая методика — разбиение на простые фигуры — самый удобный и простой метод. Всегда стоит стараться преобразовать сложную фигуру в набор простых. Правда, измерений может потребоваться больше.

Площадь квартиры

Так как ремонт — это «бедствие», которое периодически нас посещает, лучше сделать план всей квартиры с подробными замерами. На этом же плане проставьте площади каждого помещения. После того, как рассчитаете квадратуру всех комнат, сложите цифры и получите метраж квартиры.

Для плана лучше рассчитать метраж каждой комнаты

Один вариант может быть как на рисунке выше — для того, чтобы знать именно площади каждого помещения. Это потребуется для закупки материалов. Но нужен будет еще план, на котором будут все длины. Простенки, ширина окон, дверей и т.д. Это потребуется, например, для разработки схем укладки ламината, напольной плитки или других покрытий. Нужен будет такой план и при планировании теплого пола.

Есть, кстати, приложение-калькулятор для телефона, при помощи которого все вычисления сделать очень просто.

Как посчитать площадь - комнаты стены пола потолка



Периодически нам требуется знать площадь и объем комнаты. Эти данные могут понадобиться при проектировании отопления, вентиляции, при закупке стройматериалов и еще во многих других ситуациях. Также периодически требуется знать площадь стен. Эти вычисления легко получить, но предварительно придется поработать рулеткой — измерять все требуемые величины. О том, как посчитать площадь комнаты и стен, объем помещения расскажем дальше.


Часто требуется посчитать кубатуру комнаты, ее объем

Площадь комнаты в квадратных метрах

Посчитать несложно, требуется только вспомнить простейшие формулы а также провести измерения. Для этого нужны будут:



  • Рулетка. Лучше — с фиксатором, но подойдет и обычная.
  • Бумага и карандаш или ручка.
  • Калькулятор (или считайте в столбик или в уме).

Набор инструментов нехитрый, найдется в каждом хозяйстве. Проще измерения проводить с помощником, но можно справиться и самостоятельно.

Для начала надо измерить длину стен. Делать это желательно вдоль стен, но если все они заставлены тяжелой мебелью, можно проводить измерения и посередине. Только в этом случае следите чтобы лента рулетки лежала вдоль стен, а не наискосок — погрешность измерений будет меньше.

Прямоугольная комната

Если помещение правильной формы, без выступающих частей, вычислить площадь комнаты просто. Измеряете длину и ширину, записываете на бумажке. Цифры пишите в метрах, после запятой ставите сантиметры. Например, длина 4,35 м (430 см), ширина 3,25 м (325 см).


Как высчитать площадь комнаты

Найденные цифры перемножаем, получаем площадь комнаты в квадратных метрах. Если обратимся к нашему примеру, то получится следующее: 4,35 м * 3,25 м = 14,1375 м². В данной величине оставляют обычно две цифры после запятой, значит округляем. Итого, рассчитанная квадратура комнаты 14,14 квадратных метров.

Помещение неправильной формы

Если надо высчитать площадь комнаты неправильной формы, ее разбивают на простые фигуры — квадраты, прямоугольники, треугольники. Потом измеряют все нужные размеры, производят расчеты по известным формулам (есть в таблице чуть ниже).

Перед тем как посчитать площадь комнаты, тоже проводим изменения. Только в этом случае цифр будет не две, а четыре: добавится еще длина и ширина выступа. Габариты обоих кусков считаются отдельно.

Один из примеров — на фото. Так как и то, и другое — прямоугольник, площадь считается по той же формуле: длину умножаем на ширину. Найденную цифру надо отнять или прибавить к размеру помещения — в зависимости от конфигурации.


Площадь комнаты сложной формы

Покажем на этом примере как посчитать площадь комнаты с выступом (изображена на фото выше):


  1. Считаем квадратуру без выступа: 3,6 м * 8,5 м = 30,6 м².
  2. Считаем габариты выступающей части: 3,25 м * 0,8 м = 2,6 м².
  3. Складываем две величины: 30,6 м². + 2,6 м². = 33,2 м².

Еще бывают помещения со скошенными стенами. В этом случае разбиваем ее так, чтобы получились прямоугольники и треугольник (как на рисунке ниже). Как видите, для данного случая требуется иметь пять размеров. Разбить можно было по-другому, поставив вертикальную, а не горизонтальную черту. Это не важно. Просто требуется набор простых фигур, а способ их выделения произвольный.


Как посчитать площадь комнаты неправильной формы

В этом случае порядок вычислений такой:

  1. Считаем большую прямоугольную часть: 6,4 м * 1,4 м = 8,96 м². Если округлить, получим 9, 0 м².
  2. Высчитываем малый прямоугольник: 2,7 м * 1,9 м = 5,13 м². Округляем, получаем 5,1 м².
  3. Считаем площадь треугольника. Так как он с прямым углом, то равен половине площади прямоугольника с такими же размерами. (1,3 м * 1,9 м) / 2 = 1,235 м². После округления получаем 1,2 кв. м.
  4. Теперь все складываем чтобы найти общую площадь комнаты: 9,0 + 5,1 + 1,2 = 15,3 м².

Планировка помещений может быть очень разнообразной, но общий принцип вы поняли: делим на простые фигуры, измеряем все требуемые размеры, высчитываем квадратуру каждого фрагмента, потом все складываем.


Формулы расчета площади и периметра простых геометрических фигур

Еще одно важное замечание: площадь комнаты, пола и потолка — это все одинаковые величины. Отличия могут быть если есть какие-то полу-колоны, не доходящие до потолка. Тогда из общей квадратуры вычитается квадратура этих элементов. В результате получаем площадь пола.

Как рассчитать квадратуру стен

Определение площади стен часто требуется при закупке отделочных материалов — обоев, штукатурки и т.п. Для этого расчета нужны дополнительные измерения. К имеющимся уже ширине и длине комнаты нужны будут:

  • высота потолков;
  • высота и ширина дверных проемов;
  • высота и ширина оконных проемов.

Все измерения — в метрах, так как квадратуру стен тоже принято измерять в квадратных метрах.


Удобнее всего размеры наносить на план

Так как стены прямоугольные, то и площадь считается как для прямоугольника: длину умножаем на ширину. Таким же образом вычисляем размеры окон и дверных проемов, их габариты вычитаем. Для примера рассчитаем площадь стен, изображенных на схеме выше.

  1. Стена с дверью:
    • 2,5 м * 5,6 м = 14 м². — общая площадь длинной стены
    • сколько занимает дверной проем: 2,1 м *0,9 м = 1,89 м².
    • стена без учета дверного проема — 14 кв.м — 1,89 м² = 12,11 м²
  2. Стена с окном:
    1. квадратура маленьких стен: 2,5 м * 3,2 м = 8 м².
    2. сколько занимает окно: 1,3 м * 1,42 м = 1,846 м², округляем, получаем 1,75 м².
    3. стена без оконного проема: 8 кв. м — 1,75 м² = 6,25 м².

Найти общую площадь стен не составит труда. Складываем все четыре цифры: 14 м² + 12,11 м². + 8 м² + 6,25 м². = 40,36 м².

Объем комнаты


Формула расчета объема комнаты

Для некоторых расчетов требуется объем комнаты. В этом случае перемножаются три величины: ширина, длинна и высота помещения. Измеряется данная величина в кубических метрах (кубометрах), называется еще кубатурой. Для примера используем данные из предыдущего пункта:

  • длинна — 5,6 м;
  • ширина — 3,2 м;
  • высота — 2,5 м.

Если все перемножить, получаем: 5,6 м * 3,2 м * 2,5 м = 44,8 м³. Итак, объем помещения 44,8 куба.

Расчетная область | SkillsYouNeed

Площадь - это мера того, сколько места внутри фигуры. Вычисление площади формы или поверхности может быть полезно в повседневной жизни - например, вам может потребоваться знать, сколько краски нужно купить, чтобы покрыть стену, или сколько семян травы вам нужно, чтобы засеять газон.

На этой странице описаны основные сведения, которые необходимо знать для понимания и расчета площадей общих форм, включая квадраты и прямоугольники, треугольники и круги.

Расчет площади методом сетки

Когда фигура рисуется на масштабированной сетке, вы можете найти площадь, подсчитав количество квадратов сетки внутри фигуры.

В этом примере внутри прямоугольника 10 квадратов сетки.


Чтобы найти значение площади с использованием метода сетки, нам нужно знать размер, который представляет квадрат сетки.

В этом примере используются сантиметры, но тот же метод применяется к любой единице длины или расстояния.Например, вы можете использовать дюймы, метры, мили, футы и т. Д.

В этом примере каждый квадрат сетки имеет ширину 1 см и высоту 1 см. Другими словами, каждый квадрат сетки равен одному квадратному сантиметру.

Подсчитайте квадраты сетки внутри большого квадрата, чтобы найти его площадь.

Есть 16 маленьких квадратов, поэтому площадь большого квадрата составляет 16 квадратных сантиметров.

В математике мы сокращаем «квадратные сантиметры» до 2 . 2 означает «квадрат».

Каждый квадрат сетки равен 1 см 2 .

Площадь большого квадрата 16см 2 .


Подсчет квадратов на сетке для определения площади работает для всех форм - если известны размеры сетки. Однако этот метод становится более сложным, когда формы не точно соответствуют сетке или когда вам нужно подсчитать доли квадратов сетки.

В этом примере квадрат не точно помещается на сетке.

Мы все еще можем вычислить площадь, считая квадраты сетки.

  • Имеется 25 полных квадратов сетки (заштрихованы синим).
  • 10 квадратов половинной сетки (заштрихованы желтым цветом) - 10 полуквадратов равны 5 полным квадратам.
  • Также есть 1 четверть квадрата (заштрихована зеленым) - (или 0,25 целого квадрата).
  • Сложите целые квадраты и дроби вместе: 25 + 5 + 0,25 = 30,25.

Следовательно, площадь этого квадрата составляет 30,25 см 2 .

Вы также можете записать это как 30¼см 2 .


Хотя использование сетки и подсчет квадратов внутри фигуры - это очень простой способ изучения понятий площади, он менее полезен для нахождения точных областей с более сложными формами, когда может потребоваться сложение многих долей квадратов сетки.

Площадь можно вычислить с помощью простых формул, в зависимости от типа фигуры, с которой вы работаете.

Оставшаяся часть этой страницы объясняет и дает примеры того, как вычислить площадь фигуры без использования системы сеток.


Площади простых четырехугольников:
квадратов, прямоугольников и параллелограммов

Простейшие (и наиболее часто используемые) вычисления площади выполняются для квадратов и прямоугольников.

Чтобы найти площадь прямоугольника, умножьте его высоту на ширину.

Для квадрата вам нужно только найти длину одной из сторон (так как каждая сторона имеет одинаковую длину), а затем умножить это на себя, чтобы найти площадь. Это то же самое, что сказать длину 2 или длину в квадрате.

Рекомендуется проверять, действительно ли фигура является квадратом, измеряя две стороны. Например, стена в комнате может выглядеть как квадрат, но когда вы ее измеряете, вы обнаруживаете, что на самом деле это прямоугольник.

Часто в реальной жизни формы могут быть более сложными. Например, представьте, что вы хотите найти площадь пола, чтобы заказать нужное количество ковра.

Типовой план помещения не может состоять из простого прямоугольника или квадрата:

В этом примере и других подобных примерах фокус состоит в том, чтобы разделить фигуру на несколько прямоугольников (или квадратов).Неважно, как вы разделите фигуру - любое из трех решений даст один и тот же ответ.

Для решений 1 и 2 необходимо создать две фигуры и сложить их площади, чтобы найти общую площадь.

Для решения 3 вы создаете большую форму (A) и вычитаете из нее меньшую форму (B), чтобы найти площадь.


Другая распространенная проблема - найти область границы - фигуру внутри другой фигуры.

В этом примере показана дорожка вокруг поля - ширина дорожки 2 м.

Опять же, в этом примере есть несколько способов определить площадь пути.

Вы можете просмотреть путь как четыре отдельных прямоугольника, вычислить их размеры, а затем их площадь и, наконец, сложить области, чтобы получить итог.

Более быстрый способ - вычислить площадь всей формы и площадь внутреннего прямоугольника. Вычтите внутреннюю площадь прямоугольника из всей, оставив область пути.

  • Площадь всей формы составляет 16 м × 10 м = 160 м 2 .
  • Мы можем определить размеры средней секции, потому что знаем, что дорожка по краю имеет ширину 2 метра.
  • Ширина всей формы составляет 16 м, а ширина пути по всей форме - 4 м (2 м слева от формы и 2 м справа). 16 м - 4 м = 12 м
  • То же самое можно сделать для высоты: 10м - 2м - 2м = 6м
  • Итак, мы подсчитали, что средний прямоугольник имеет размер 12 × 6 м.
  • Таким образом, площадь среднего прямоугольника составляет: 12 м × 6 м = 72 м 2 .
  • Наконец, мы убираем область среднего прямоугольника из области всей формы. 160 - 72 = 88м 2 .

Площадь тропы 88м 2 .


Параллелограмм - это четырехгранная форма с двумя парами сторон равной длины - по определению прямоугольник - это разновидность параллелограмма. Однако большинство людей склонны думать о параллелограммах как о четырехсторонних фигурах с наклонными линиями, как показано здесь.

Площадь параллелограмма рассчитывается так же, как и для прямоугольника (высота × ширина), но важно понимать, что высота означает не длину вертикальных (или отклоненных от вертикали) сторон, а расстояние между сторонами.

Из диаграммы видно, что высота - это расстояние между верхней и нижней сторонами фигуры, а не длина стороны.

Представьте себе воображаемую линию под прямым углом между верхней и нижней сторонами. Это высота.


Области треугольников

Может быть полезно думать о треугольнике как о половине квадрата или параллелограмма.

Если вы знаете (или можете измерить) размеры треугольника, то вы можете быстро определить его площадь.

Площадь треугольника (высота × ширина) ÷ 2.

Другими словами, вы можете вычислить площадь треугольника так же, как площадь квадрата или параллелограмма, а затем просто разделите свой ответ на 2.

Высота треугольника измеряется по прямой линии от нижней линии (основания) до «вершины» (верхней точки) треугольника.

Вот несколько примеров:

Площадь трех треугольников на диаграмме выше одинакова.

Каждый треугольник имеет ширину и высоту 3 см.

Площадь рассчитана:

(высота × ширина) ÷ 2

3 × 3 = 9

9 ÷ 2 = 4,5

Площадь каждого треугольника составляет 4,5 см 2 .


В реальных ситуациях вы можете столкнуться с проблемой, которая требует от вас найти площадь треугольника, например:

Вы хотите покрасить фронтальный конец сарая. Вам нужно посетить магазин украшений только один раз, чтобы получить нужное количество краски.Вы знаете, что литр краски покроет 10 м 2 стены. Сколько краски нужно для покрытия фронтона?

Вам нужно три измерения:

A - Общая высота до вершины крыши.

B - Высота вертикальных стен.

C - Ширина здания.

В этом примере измерения:

A - 12,4 м

B - 6,6 м

C - 11,6 м

Следующий этап требует дополнительных расчетов.Представьте себе здание как две формы: прямоугольник и треугольник. По имеющимся у вас измерениям вы можете рассчитать дополнительное измерение, необходимое для определения площади фронтона.

Размер D = 12,4 - 6,6

D = 5,8 м

Теперь вы можете определить площадь двух частей стены:

Площадь прямоугольной части стены: 6,6 × 11,6 = 76,56 м 2

Площадь треугольной части стены: (5.8 × 11,6) ÷ 2 = 33,64 м 2

Сложите эти две области вместе, чтобы получить общую площадь:

76,56 + 33,64 = 110,2 м 2

Как вы знаете, один литр краски покрывает 10 м 2 стены, поэтому мы можем определить, сколько литров нам нужно купить:

110,2 ÷ 10 = 11,02 л.

На самом деле вы можете обнаружить, что краска продается только в 5-литровых или 1-литровых канистрах, результат - чуть более 11 литров. У вас может возникнуть соблазн округлить до 11 литров, но, если мы не будем разбавлять краску водой, этого будет недостаточно.Таким образом, вы, вероятно, округлите до следующего целого литра и купите две 5-литровые банки и две 1-литровые банки, что в сумме составит 12 литров краски. Это позволит избежать любых потерь и оставит большую часть литра для подкраски позднее. И не забывайте, что если вам нужно нанести более одного слоя краски, вы должны умножить количество краски для одного слоя на необходимое количество слоев!


Области кругов

Чтобы вычислить площадь круга, вам необходимо знать его диаметр или радиус .

Диаметр круга - это длина прямой линии от одной стороны круга до другой, проходящей через центральную точку круга. Диаметр в два раза больше длины радиуса (диаметр = радиус × 2)

Радиус круга - это длина прямой линии от центральной точки круга до его края. Радиус составляет половину диаметра. (радиус = диаметр ÷ 2)

Вы можете измерить диаметр или радиус в любой точке окружности - важно измерять с помощью прямой линии, проходящей через (диаметр) или заканчивающейся в (радиусе) центра окружности.

На практике при измерении окружностей часто проще измерить диаметр, а затем разделить на 2, чтобы найти радиус.

Радиус нужен для вычисления площади круга, формула:

площадь круга = πR 2 .

Это означает:

π = Pi - постоянная, равная 3,142.

R = радиус окружности.

R 2 (радиус в квадрате) означает радиус × радиус.


Следовательно, круг с радиусом 5 см имеет площадь:

3.142 × 5 × 5 = 78,55 см 2 .

Круг диаметром 3 м имеет площадь:

Сначала прорабатываем радиус (3м ÷ 2 = 1,5м)

Затем примените формулу:

πR 2

3,142 × 1,5 × 1,5 = 7,0695.

Площадь круга диаметром 3 м составляет 7,0695 м 2 .


Последний пример

Этот пример использует большую часть содержимого этой страницы для решения простых задач с областями.

Это дом Рубена М. Бенджамина в Блумингтоне, штат Иллинойс, внесенный в Национальный реестр исторических мест США (номер записи: 376599).

Этот пример включает поиск области фасада дома, деревянной решетчатой ​​части - исключая дверь и окна. Вам нужны следующие размеры:

A - 9,7 м B - 7,6 м
C - 8,8 м D - 4,5 м
E - 2.3 мес F - 2,7 м
G - 1,2 м H - 1,0 м

Примечания:

  • Все размеры являются приблизительными.
  • Не стоит беспокоиться о границе вокруг дома - она ​​не учтена в измерениях.
  • Мы предполагаем, что все прямоугольные окна одинакового размера.
  • Размер круглого окна - это диаметр окна.
  • Размер двери включает ступеньки.

Какова площадь деревянной реечной части дома?

Работы и ответы ниже:



Ответы на приведенный выше пример

Сначала определите площадь основной формы дома - прямоугольника и треугольника, составляющих форму.

Главный прямоугольник (B × C) 7,6 × 8,8 = 66,88 м 2 .

Высота треугольника (A - B) 9,7 - 7,6 = 2,1.

Следовательно, площадь треугольника равна (2.1 × C) ÷ 2.
2,1 × 8,8 = 18,48. 18,48 ÷ 2 = 9,24 м 2 .

Общая площадь фасада дома равна сумме площадей прямоугольника и треугольника:

66,88 + 9,24 = 76,12 м 2 .

Затем проработайте площади окон и дверей, чтобы их можно было вычесть из всей площади.

Площадь двери и ступеней составляет (Д × В) 4,5 × 2,3 = 10,35 м 2 .

Площадь одного прямоугольного окна составляет (G × F) 1.2 × 2,7 = 3,24 м 2 .

Есть пять прямоугольных окон. Умножьте площадь одного окна на 5.

3,24 × 5 = 16,2 м2. (общая площадь прямоугольных окон).

Круглое окно имеет диаметр 1 м и радиус 0,5 м.

Используя πR 2 , определите площадь круглого окна: 3,142 × 0,5 × 0,5 =. 0,7855м 2 .

Затем сложите площади двери и окон.

(зона двери) 10,35 + (прямоугольная зона окон) 16.2 + (площадь круглого окна) 0,7855 = 27,3355

Наконец, вычтите общую площадь окон и дверей из всей площади.

76,12 - 27,3355 = 48,7845

Площадь деревянного реечного фасада дома и ответ на проблему: 48,7845м 2 .

Вы можете округлить ответ до 48,8 м 2 или 49 м 2 .

См. Нашу страницу на Оценка, приближение и округление .
.Калькулятор

квадратных метров

Расчет площади прямоугольника

Использование калькулятора

Используйте этот калькулятор, чтобы найти квадратные метры, квадратные метры, квадратные метры или акры для здания, дома, сада или строительного объекта. Рассчитайте квадратные метры, метры, метры и акры для проектов ландшафта, пола, ковра или плитки, чтобы оценить площадь и количество материала, которое вам понадобится.Также рассчитайте стоимость материалов, когда вы вводите цену за квадратный фут, цену за квадратный ярд или цену за квадратный метр.

Цена вводится в поля, например, как
$ цена: 3.00 за: 1 квадратная единица: фут (ft²)
означает 3 доллара США за 1 квадратный фут.
или
$ цена: 25.00 за: 1000 квадратная единица: фут (ft²)
означает 25 долларов.00 за 1000 квадратных футов
и т.д ....

Если вы хотите рассчитать объем сыпучих материалов, таких как мульча или гравий, воспользуйтесь нашим калькулятор кубометров и кубометров.

Введите размеры в единицах США или метрических единицах. Вычислите площадь по вашим измерениям в дюймах (дюймах), футах (футах), ярдах (ярдах), миллиметрах (мм), сантиметрах (см) или метрах (м). Вы также можете вводить десятичные значения.Например, если у вас есть одно измерение, которое составляет 7 футов 3 дюйма, вы можете ввести его как 7,25 фута (3 дюйма / 12 дюймов = 0,25 фута). Если у вас размер 245 см, вы также можете ввести его как 2,45 м.

Как рассчитать квадратные метры

Квадратный метр - это площадь, выраженная в квадратных футах. Точно так же квадратный метр - это площадь, выраженная в квадратных ярдах. Квадратные метры - тоже общепринятая мера площади.

Предположим, у вас есть прямоугольная область, такая как комната, и, например, вы хотите рассчитать площадь в квадратных футах для пола или ковра.

Прямоугольную площадь можно рассчитать, измерив длину и ширину вашей области, а затем умножив эти два числа вместе, чтобы получить площадь в квадратных футах (футы 2 ). Если у вас есть область необычной формы, например L-образная, разделите ее на квадратные или прямоугольные секции и рассматривайте их как две отдельные области. Вычислите площадь каждой секции, затем сложите их и получите общую сумму. Если ваши измерения даны в разных единицах, например, в футах и ​​дюймах, вы можете сначала преобразовать эти значения в футы, а затем умножить их вместе, чтобы получить квадратные метры площади.

Размер

  • Измерьте стороны вашего участка

Преобразуйте все ваши измерения в футы

  • Если вы измеряли в футах, перейдите к разделу «Вычислить площадь в квадратных футах»
  • Если вы измеряли в футах и ​​дюймах, разделите дюймы на 12 и прибавьте это к своей стопе, чтобы получить общее количество футов
  • Если вы измеряете в другой единице измерения, выполните следующие действия, чтобы преобразовать в футы
    - дюймы: разделите на 12, и это ваше измерение в футах
    - ярды: умножьте на 3, и это ваше измерение в футах
    - сантиметры: умножить на 0.03281 конвертировать в футы
    - метры: умножьте на 3,281, чтобы преобразовать в футы

Вычислить площадь как квадратные метры

  • Если вы измеряете площадь квадрата или прямоугольника, умножьте длину на ширину; Длина x Ширина = Площадь.
  • Для других форм площади см. Формулы ниже, чтобы вычислить площадь (футы 2 ) = квадратные метры.

Преобразование из квадратных дюймов, квадратных футов, квадратных ярдов и квадратных метров

Вы можете, например, выполнить все свои измерения в дюймах или сантиметрах, вычислить площадь в квадратных дюймах или квадратных сантиметрах, а затем преобразовать окончательный ответ в нужные вам единицы, такие как квадратные футы или квадратные метры.

Для преобразования квадратных футов, ярдов и метров используйте следующие коэффициенты преобразования. Для других единиц используйте наш калькулятор для преобразование площади.

  • квадратных футов в квадратные ярды
    • Умножьте 2 футов на 0,11111, чтобы получить ярдов 2
  • квадратных футов в квадратных метров
    • умножить 2 футов на 0.092903 получить м 2
  • квадратных ярдов в квадратных футов
    • умножьте ярды 2 на 9, чтобы получить футы 2
  • Квадратные ярды в Квадратные метры
    • умножьте ярд 2 на 0,836127, чтобы получить m 2
  • квадратных метров в квадратных футов
    • умножить m 2 на 10.7639, чтобы получить ft 2
  • квадратных метров в квадратных ярдов
    • умножьте m 2 на 1.19599, чтобы получить ярд 2

Формулы квадратных метров и изображения для различных областей

Площадь

Рассчитать площадь в квадратных футах для квадратная площадь

Используя измерения в футах:

Площадь (футы 2 ) = длина стороны x длина стороны

Площадь прямоугольника

.

Как рассчитать площадь правильного восьмиугольника

  1. Образование
  2. Математика
  3. Геометрия
  4. Как рассчитать площадь правильного восьмиугольника

Марк Райан

Вы можете рассчитать площадь правильного восьмиугольника со стандартным методом правильного многоугольника, но есть отличный альтернативный метод, основанный на том факте, что правильный восьмиугольник - это квадрат с обрезанными четырьмя углами. Например, вот как вы найдете площадь EIGHTPLU на рисунке ниже, учитывая, что это правильный восьмиугольник со сторонами длиной 6.

Четыре угла (как треугольник SUE на рисунке), которые вы отрезаете от квадрата, чтобы превратить его в восьмиугольник, представляют собой треугольники 45 ° - 45 ° - 90 ° (вы можете доказать это себе, если захотите). Итак, все, что вам нужно сделать, чтобы получить площадь восьмиугольника, - это вычислить площадь квадрата, а затем вычесть четыре угловых треугольника. Кусок торта.

Но сначала вот два отличных совета для решения этой и других проблем.

  • Для задач, связанных с правильными восьмиугольниками, могут пригодиться треугольники 45 ° - 45 ° - 90 °.Добавьте сегменты на диаграмму, чтобы получить один или несколько треугольников 45 ° - 45 ° - 90 °, а также несколько квадратов и прямоугольников, которые помогут решить проблему.

  • Мыслите нестандартно. Легко выработать привычку смотреть только внутрь фигуры, потому что этого достаточно для подавляющего большинства задач. Но иногда (как в этой задаче) вам нужно вырваться из этой колеи и смотреть за пределы периметра фигуры.

Хорошо, вот что вы делаете.Вам дано, что стороны восьмиугольника имеют длину 6. Рассмотрим сторону EU .

Не просто вычислить площадь квадрата, а площадь единственного углового треугольника:

Чтобы закончить, вычтите общую площадь четырех угловых треугольников из площади квадрата:

.

Расчет площади, длины и других геометрических свойств - Справка

Инструмент «Расчет геометрии» позволяет получить доступ к геометрии пространственных объектов в слое. Инструмент может вычислять значения координат, длины и площади в зависимости от геометрии входного слоя. Вы можете рассчитать площадь, длину или периметр объектов только в том случае, если используемая система координат проецируется. Имейте в виду, что разные проекции имеют разные пространственные свойства и искажения. Если система координат источника данных и фрейма данных не совпадают, вы можете получить другой результат при вычислении геометрии с использованием системы координат фрейма данных, чем при вычислении с использованием системы координат источника данных.При расчете площадей рекомендуется использовать проекцию равной площади.

Если вы хотите вычислить Xmin, Xmax, Ymin или Ymax, вы можете сделать это с помощью Python с калькулятором поля; см. Примеры вычислений поля.

Вы можете использовать диалоговое окно «Рассчитать геометрию» для обновления площади, длины или периметра объектов в шейп-файлах, поскольку эти свойства не обновляются автоматически при редактировании объектов в шейп-файлах.

Вы можете вычислить значения координаты z или трехмерные измерения, только если объект поддерживает z.Значения Z-координаты и трехмерные измерения могут быть рассчитаны независимо от выбранной системы координат. Единицы, перечисленные для вычислений z и 3D, являются планарными (мили, метры и т. Д.), Если для слоя определена вертикальная система координат. Если для данных не определена вертикальная система координат, единицы отображаются как неизвестные. Для получения дополнительной информации о z-значениях и типах геометрии пространственных объектов см. Основы классов пространственных объектов.

.Алгоритм

- Как я могу рассчитать среднюю плотность точек на карте для определенного региона?

Переполнение стека
  1. Около
  2. Продукты
  3. Для команд
  1. Переполнение стека Общественные вопросы и ответы
  2. Переполнение стека для команд Где разработчики и технологи делятся частными знаниями с коллегами
  3. Вакансии Программирование и связанные с ним технические возможности карьерного роста
  4. Талант Нанимайте технических специалистов и создавайте свой бренд работодателя
  5. Реклама Обратитесь к разработчикам и технологам со всего мира
  6. Або
.

Калькулятор объема

Ниже приводится список калькуляторов объема для нескольких распространенных форм. Заполните соответствующие поля и нажмите кнопку «Рассчитать».

Калькулятор объема сферы


Калькулятор объема конуса


Калькулятор объема куба


Калькулятор объема цилиндра


Калькулятор объема прямоугольного резервуара


Калькулятор объема капсулы


Калькулятор объема сферической крышки

Для расчета укажите любые два значения ниже.


Калькулятор объема конической ствола


Калькулятор объема эллипсоида


Калькулятор объема квадратной пирамиды


Калькулятор объема трубки


Калькулятор площади сопутствующих поверхностей | Калькулятор площади

Объем - это количественная оценка трехмерного пространства, которое занимает вещество.Единицей измерения объема в системе СИ является кубический метр, или м 3 . Обычно объем контейнера определяется его вместимостью и тем, сколько жидкости он может вместить, а не объемом пространства, которое фактически вытесняет контейнер. Объемы многих форм можно рассчитать с помощью четко определенных формул. В некоторых случаях более сложные формы могут быть разбиты на более простые совокупные формы, а сумма их объемов используется для определения общего объема. Объемы других, еще более сложных фигур можно рассчитать с помощью интегрального исчисления, если существует формула для границы фигуры.Помимо этого, формы, которые нельзя описать известными уравнениями, можно оценить с помощью математических методов, таких как метод конечных элементов. В качестве альтернативы, если плотность вещества известна и однородна, объем можно рассчитать, используя его вес. Этот калькулятор вычисляет объемы для некоторых наиболее распространенных простых форм.

Сфера

Сфера - это трехмерный аналог двумерного круга. Это идеально круглый геометрический объект, который математически представляет собой набор точек, которые равноудалены от данной точки в ее центре, где расстояние между центром и любой точкой на сфере составляет радиус r .Вероятно, самый известный сферический объект - это идеально круглый шар. В математике существует различие между шаром и сферой, где шар представляет собой пространство, ограниченное сферой. Независимо от этого различия, шар и сфера имеют одинаковый радиус, центр и диаметр, и расчет их объемов одинаков. Как и в случае с кругом, самый длинный отрезок, соединяющий две точки сферы через ее центр, называется диаметром d . Уравнение для расчета объема шара приведено ниже:

EX: Клэр хочет заполнить идеально сферический воздушный шар с радиусом 0.15 футов с уксусом, чтобы использовать его в борьбе с ее заклятым врагом Хильдой на воздушных шарах в ближайшие выходные. Необходимый объем уксуса можно рассчитать с помощью приведенного ниже уравнения:

объем = 4/3 × π × 0,15 3 = 0,141 фута 3

Конус

Конус - это трехмерная форма, которая плавно сужается от своего обычно круглого основания к общей точке, называемой вершиной (или вершиной). Математически конус образован так же, как круг, набором отрезков прямых, соединенных с общей центральной точкой, за исключением того, что центральная точка не входит в плоскость, содержащую круг (или другую основу).На этой странице рассматривается только случай конечного правого кругового конуса. Конусы, состоящие из полукруглых линий, некруглых оснований и т. Д., Которые простираются бесконечно, не рассматриваются. Уравнение для расчета объема конуса выглядит следующим образом:

, где r - радиус, а h - высота конуса

EX: Би полна решимости выйти из магазина мороженого, не зря потратив свои с трудом заработанные 5 долларов. Хотя она предпочитает обычные сахарные рожки, вафельные рожки, несомненно, больше.Она определяет, что на 15% предпочитает обычные сахарные рожки вафельным рожкам, и ей нужно определить, превышает ли потенциальный объем вафельного рожка на ≥ 15% больше, чем у сахарного рожка. Объем вафельного рожка с круглым основанием радиусом 1,5 дюйма и высотой 5 дюймов можно рассчитать с помощью следующего уравнения:

объем = 1/3 × π × 1,5 2 × 5 = 11,781 дюйм 3

Беа также вычисляет объем сахарного рожка и обнаруживает, что разница составляет <15%, и решает купить сахарный рожок.Теперь все, что ей нужно сделать, это использовать свой ангельский детский призыв, чтобы заставить посох выливать мороженое из контейнеров в ее конус.

Куб

Куб является трехмерным аналогом квадрата и представляет собой объект, ограниченный шестью квадратными гранями, три из которых встречаются в каждой из его вершин, и все они перпендикулярны своим соответствующим смежным граням. Куб - это частный случай многих классификаций геометрических фигур, в том числе квадратный параллелепипед, равносторонний кубоид и правый ромбоэдр.Ниже приведено уравнение для расчета объема куба:

объем = 3
где a - длина ребра куба

EX: Боб, который родился в Вайоминге (и никогда не покидал штат), недавно посетил свою исконную родину, Небраску. Пораженный великолепием Небраски и окружающей средой, непохожей на какие-либо другие, с которыми он когда-либо сталкивался, Боб знал, что должен привезти с собой домой часть Небраски. У Боба есть чемодан кубической формы с длиной по краям 2 фута, и он рассчитывает объем почвы, который он может унести с собой домой, следующим образом:

объем = 2 3 = 8 футов 3

Цилиндр

Цилиндр в его простейшей форме определяется как поверхность, образованная точками на фиксированном расстоянии от данной прямой оси.В обычном использовании, однако, «цилиндр» относится к правильному круговому цилиндру, где основания цилиндра представляют собой окружности, соединенные через их центры осью, перпендикулярной плоскостям его оснований, с заданной высотой h и радиусом r . Уравнение для расчета объема цилиндра показано ниже:

объем = πr 2 ч
где r - радиус, а h - высота резервуара

EX: Кэлум хочет построить замок из песка в гостиной своего дома.Поскольку он является твердым сторонником рециркуляции, он извлек три цилиндрических бочки с незаконной свалки и очистил бочки от химических отходов, используя средство для мытья посуды и воду. Каждая бочка имеет радиус 3 фута и высоту 4 фута, и Кэлум определяет объем песка, который каждая может вместить, используя следующее уравнение:

объем = π × 3 2 × 4 = 113.097 футов 3

Он успешно построил замок из песка в своем доме и в качестве дополнительного бонуса ему удалось сэкономить электроэнергию на ночном освещении, так как его замок из песка светится ярко-зеленым в темноте.

Прямоугольный бак

Прямоугольный резервуар - это обобщенная форма куба, стороны которого могут иметь различную длину. Он ограничен шестью гранями, три из которых пересекаются в его вершинах, и все они перпендикулярны своим соответствующим смежным граням. Уравнение для расчета объема прямоугольника показано ниже:

объем = длина × ширина × высота

EX: Дарби любит торт. Она ходит в спортзал по 4 часа в день, каждый день, чтобы компенсировать свою любовь к торту.Она планирует отправиться в поход по тропе Калалау на Кауаи, и, хотя она в очень хорошей форме, Дарби беспокоится о своей способности пройти этот маршрут из-за отсутствия торта. Она решает упаковать только самое необходимое и хочет набить свою идеально прямоугольную упаковку длиной, шириной и высотой 4 фута, 3 фута и 2 фута соответственно тортом. Точный объем торта, который она поместит в свою упаковку, рассчитан ниже:

объем = 2 × 3 × 4 = 24 фута 3

Капсула

Капсула - это трехмерная геометрическая форма, состоящая из цилиндра и двух полусферических концов, где полусфера - это полусфера.Отсюда следует, что объем капсулы можно рассчитать, объединив уравнения объема для сферы и правого кругового цилиндра:

объем = πr 2 ч + πr 3 = πr 2 ( р + з)

, где r - радиус, а h - высота цилиндрической части

EX: Имея капсулу с радиусом 1,5 фута и высотой 3 фута, определите объем растопленного молочного шоколада, который Джо может унести в капсуле времени, которую он хочет похоронить для будущих поколений на пути к самопознанию. Гималаи:

объем = π × 1.5 2 × 3 + 4/3 × π × 1,5 3 = 35,343 фута 3

Сферический колпачок

Сферический колпачок - это часть сферы, которая отделена от остальной сферы плоскостью. Если плоскость проходит через центр сферы, сферическая крышка называется полусферой. Существуют и другие различия, включая сферический сегмент, где сфера сегментируется двумя параллельными плоскостями и двумя разными радиусами, где плоскости проходят через сферу. Уравнение для вычисления объема сферической крышки выводится из уравнения для сферического сегмента, где второй радиус равен 0.Относительно сферической крышки, указанной в калькуляторе:

Имея два значения, калькулятор вычисляет третье значение и объем. Уравнения для преобразования между высотой и радиусом показаны ниже:

Для r и R : h = R ± √R 2 - r 2

Для R и h : r = √2Rh - h 2
где r - радиус основания, R - радиус сферы, а h - высота сферической крышки.

EX: Джек действительно хочет победить своего друга Джеймса в игре в гольф, чтобы произвести впечатление на Джилл, и вместо того, чтобы тренироваться, решает саботировать мяч для гольфа Джеймса.Он отрезает идеальную сферическую крышку от верхней части мяча для гольфа Джеймса и должен рассчитать объем материала, необходимый для замены сферической крышки и перекоса веса мяча для гольфа Джеймса. Учитывая, что мяч для гольфа Джеймса имеет радиус 1,68 дюйма, а высота сферической крышки, которую срезал Джек, составляет 0,3 дюйма, объем можно рассчитать следующим образом:

объем = 1/3 × π × 0,3 2 (3 × 1,68 - 0,3) = 0,447 дюйма 3

К несчастью для Джека, за день до игры Джеймс получил новую партию мячей, и все усилия Джека были напрасны.

Коническая Frustum

Усеченный конус - это часть твердого тела, которая остается, когда конус рассекается двумя параллельными плоскостями. Этот калькулятор рассчитывает объем специально для правильного кругового конуса. Типичные конические усики, встречающиеся в повседневной жизни, включают абажуры, ведра и некоторые стаканы для питья. Объем усеченного правого конуса рассчитывается по следующей формуле:

объем = πh (r 2 + rR + R 2 )

где r и R - радиусы оснований, h - высота усеченного конуса

EX: Би успешно приобрела мороженое в сахарном рожке и только что съела его так, что мороженое остается упакованным внутри рожка, а поверхность мороженого находится на уровне и параллельно плоскости отверстия рожка.Она собирается начать есть свой рожок и оставшееся мороженое, когда ее брат хватает ее рожок и откусывает часть дна ее рожка, которая идеально параллельна ранее единственному отверстию. У Би теперь остается конусообразная усеченная вершина, из которой вытекает мороженое, и ей необходимо рассчитать объем мороженого, который она должна быстро съесть, учитывая высоту усеченной кости 4 дюйма с радиусом 1,5 дюйма и 0,2 дюйма:

объем = 1/3 × π × 4 (0,2 2 + 0,2 × 1,5 + 1,5 2 ) = 10.849 из 3

Эллипсоид

Эллипсоид является трехмерным аналогом эллипса и представляет собой поверхность, которую можно описать как деформацию сферы посредством масштабирования элементов направления. Центр эллипсоида - это точка, в которой пересекаются три попарно перпендикулярные оси симметрии, а отрезки прямых, ограничивающие эти оси симметрии, называются главными осями. Если все три имеют разную длину, эллипсоид обычно называют трехосным.Уравнение для расчета объема эллипсоида выглядит следующим образом:

, где a , b и c - длины осей

EX: Хабат любит есть только мясо, но его мать настаивает на том, что он ест слишком много, и позволяет ему есть столько мяса, сколько он может уместить в булочке в форме эллипса. Таким образом, Хабат выдалбливает булочку, чтобы максимально увеличить объем мяса, который он может уместить в своем сэндвиче. Учитывая, что его булочка имеет длину оси 1,5 дюйма, 2 дюйма и 5 дюймов, Хабат рассчитывает объем мяса, который он может уместить в каждой полой булочке, следующим образом:

объем = 4/3 × π × 1.5 × 2 × 5 = 62,832 дюйма 3

Квадратная пирамида

Пирамида в геометрии - это трехмерное твердое тело, образованное путем соединения многоугольного основания с точкой, называемой его вершиной, где многоугольник - это форма на плоскости, ограниченная конечным числом отрезков прямой. Существует много возможных многоугольных оснований пирамиды, но квадратная пирамида - это пирамида, в которой основание представляет собой квадрат. Другое отличие пирамид заключается в расположении вершины. У правых пирамид есть вершина, которая находится прямо над центром тяжести ее основания.Независимо от того, где находится вершина пирамиды, если ее высота измеряется как перпендикулярное расстояние от плоскости, содержащей основание, до ее вершины, объем пирамиды может быть записан как:

Объем обобщенной пирамиды:

.

Смотрите также

Сделать заказ

Пожалуйста, введите Ваше имя
Пожалуйста, введите Ваш номер телефона
Пожалуйста, введите Ваше сообщение