Комплексные поставки запорной арматуры
и деталей трубопроводов →

Тел: +7 (3522) 55-48-26

Эталонные образцы цемент


Стандартизированные пробы цемента | nii-cement.com

Эталонные образцы цемента важны в современном строительстве, так как бетон представляет собой незаменимый компонент любого строительства. Заказать необходимые процедуры подтверждения заявленных качеств и характеристик позволяет компания Акционерное общество «Научно-исследовательский институт цементной промышленности «НИИЦемент» АО «НИИЦЕМЕНТ», она специализируется на изучении изделий для установления соответствия смеси и заявленных параметров.

Испытание эталонных кубиков производиться при помощи различного специализированного оборудования по уникальным методикам. Один из подходов заключается в следующем. Гидравлические компоненты сжимают изделие, оказывая воздействие на объект. Благодаря прибору происходит измерение силы влияния, и это дает возможность произвести классификацию по определенному признаку. Образцы подвергают нагрузке до момента разрушения или деформации. При этом образцы бетона должны быть установлены с соблюдением некоторых важных правил.

·        Испытание эталонного образца цемента задействует нагрузку на заданные области;

·        Центральная часть кубика должна совмещаться с соответствующим местом гидравлических стержней;

·        При испытаниях необходимо использовать защитный экран, который будет защищать от летящих осколков;

·        При исследованиях должно быть задействовано большое количество испытуемого материала.

Важно еще учитывать то, как создаются образцы бетона. И в этом вопросе многих интересует снижение расходов производства цемента. Все производители этого строительного материала обязаны от каждой крупной партии отделить несколько проб и отправить их на изучение. Существенным минусом является то, что результаты можно получить не сразу, ведь анализ производится не в тот момент, когда материалы получены. Определенное время уходит на то, чтобы произошло застывание и образование какой-то степени прочности.

После успешных испытаний полученные образчики требуют документального подтверждения. Для этого предусмотрена процедура аттестации эталонных образцов цемента

Вы хотите заказать необходимые исследования? Тогда компания Акционерное общество «Научно-исследовательский институт цементной промышленности «НИИЦемент» АО «НИИЦЕМЕНТ» поможет вам. Вы получите всю нужную вам информацию и уточните детали по номеру телефона +7 (495) 502-79-04. Вы можете доверять нашим квалифицированным специалистам, которые имеют богатый опыт в проведении подобного рода исследований.

виды, марки, технические характеристики, технология производства

Дата: 23 января 2019

Просмотров: 4808

Коментариев: 0

Невозможно представить производство строительных работ без вяжущих материалов, соединяющих в монолитную конструкцию блоки, плиты, кирпич. Самым распространенным и востребованным в данной категории материалов является портландцемент.

Смешиваясь с водой или растворами различных солей, цемент образует эластичную массу, которая в процессе высыхания преобразуется в цементный камень. Без применения растворов на основе портландцемента невозможно изготовление железобетонных конструкций, монолитных сооружений, высококачественных смесей для каменных кладок и отделочных мероприятий.

Портландцемент получают путем соединения мелкоизмельченного клинкера с небольшим объемом гипса, который ускоряет процесс схватывания смеси. При производстве, в зависимости от предъявляемых к смеси требований, добавляются различные добавки, повышающие устойчивость материала к воздействиям негативных факторов.

Один из наиболее распространенных видов вяжущего вещества для бетонных смесей – портландцемент

Виды

Для придания готовому изделию определенных свойств, портландцемент обогащают минеральными добавками – белитом, алитом, целитом, браунмиллеритом. В зависимости от используемых минеральных составляющих портландцемент делится на следующие виды:

  • Характеризующийся средней скоростью схватывания.
  • Быстротвердеющий состав.
  • Пластифицированный.
  • Устойчивый к влаге, гидрофобный.
  • С повышенной тепловой отдачей.
  • Особо стойкий по отношению к химическим реагентам.
  • Декоративный (цветной или белый), применяемый при отделочных работах.

Марки цемента

Опираясь на требования нормативной документации, предъявляемые к цементному образцу, подвергающемуся испытаниям на сжатие и изгиб, можно выделить основные марки портландцемента:

  • М700 – особо прочный состав. Область применения ограничена изготовлением бетона с увеличенными прочностными характеристиками для возведения напряженных конструкций. Цена такого цемента высока, что делает его нерентабельным при ведении обычных строительных мероприятий;

Любой вид портландцемента марки 400 применяют для создания обычных и стандартных конструкций, не подвергающихся увеличенным нагрузкам

  • М600 – состав увеличенной прочности. Область применения – производство ответственных железобетонных изделий и конструкций;
  • М500 – цемент, обладающий достаточно хорошими прочностными показателями, что позволяет использовать его при реконструкции зданий и сооружений после аварий, возведении военно-технических объектов, укладке дорожного покрытия;
  • М400 – самая доступная и широко используемая марка. Объясняется это тем, что заложенные показатели морозоустойчивости, влагостойкости позволяют применять его при возведении объектов любого назначения.

Предприятия-изготовители выпускают портландцемент марок М200 и М300, но в довольно ограниченном количестве. Такое ограничение закономерно, поскольку спрос на эти марки невелик.

Цифровой индекс, указанный в маркировке портландцемента, обозначает величину давления, которую способен воспринять эталонный образец материала. Например, портландцемент, маркируемый М500, воспринимает давление, превышающее 500 кг/см².

Используемое основное сырье

При изготовлении портландцемента используют известковые и глинистые породы в определенной пропорции, обеспечивающей требуемый химический состав для обжига.

Все виды портландцемента (ПЦ) изготавливают из разного сырья, общим компонентом для всех является только цементный клинкер

Из известковых пород наиболее часто применяют:

  • Известняк, не содержащий включений кремния. Плотная порода с мелкокристаллической структурой.
  • Мергель – переходная от известняковых к глинистым порода. Включает в свой состав мелкие частицы солей кальция с примесью полевого шпата, доломита и пр.
  • Мел – податливая, легко измельчаемая осадочная порода.
  • Ракушечный известняк.

К глинистой составляющей относятся:

  • Глинистые сланцы. Благодаря своей слоистой структуре легко раскалываются, что значительно облегчает обработку.
  • Лесс. Рыхлая мелкозернистая порода, содержащая большое количество карбоната кальция.
  • Глина. Представляет собой смесь основного глинистого вещества – гидроалюмосиликата с соединениями железа, магния и других элементов.
  • Суглинки. Отличаются от глины увеличенным содержанием песка.

Для экономии природных сырьевых ресурсов и удешевления производства цемента все чаще используются отходы металлургической промышленности (шлам, зола).

Минеральные составляющие клинкера

Для получения основного компонента портландцемента – клинкера, проводится обжиг сырьевой смеси (известняк + глина). В результате этой операции образуются минеральные соединения, процентное содержание которых не должно превышать допустимые значения.

В большинстве случаев клинкер получают из искусственных смесей, потому что в природе сырье, содержащее примерно 75% карбоната кальция и 25% глины, встречается довольно редко

К основным минералам, определяющим свойства получаемого клинкера относятся:

  • быстро твердеющий алит. Этот компонент отвечает за скорость твердения состава и нарастание эксплуатационной прочности. Его количество регламентировано в пределах 45-60 процентов;
  • медленно твердеющий белит. Его присутствие позволяет цементным составам достигать высоких прочностных показателей при длительном твердении. Чтобы белит не потерял вяжущих свойств, клинкер максимально быстро охлаждают. Количество минерала выдерживается в рамках 20-35 процентов, что позволяет достичь оптимальных сроков твердения;
  • быстро гидратирующий трехкальциевый алюминат, ускоряет процесс гидратации, но параллельно с этим снижает прочностные характеристики и увеличивает возможность появления коррозии. Поэтому содержание ограничено 4-10 процентами;
  • образующийся на определенной фазе обжига алюмоферрит, значительно не влияет на процессы твердения и тепловыделения. Его содержание в клинкере находится в пределе 10-18 процентов.

Поскольку портланд цемент получают из разного по химическому и минералогическому составу сырья, то на выходе получают цемент, отличающийся свойствами. Используя испытанные технологии производства, придерживаясь разработанных рекомендаций по процентному содержанию минеральных включений, предприятия-изготовители получат на выходе качественный продукт, отвечающий требуемым параметрам.

Технология производства

Споры по поводу, какой метод производства цементного состава лучше, не утихают долгие годы. Существует мнение, что, используя неоднородное по составу сырье повышенной влажности, предпочтительно воспользоваться мокрым способом. Параллельно с этим отстаивается позиция о применении сухого метода, как более экономически целесообразного, если предварительно подготовить должным образом шихту.

Клинкерную смесь обжигают при высоких температурах (до 1500°С), получая на выходе гранулы, которые потом измельчаются

Попытаемся разобраться в основных различиях существующих способов изготовления клинкера, из которого получают портландцемент. Известны три варианта получения смеси для обжига:

  • Мокрый. Изначально проводят измельчение компонентов до нужной величины (известняк – размер частиц 8-10 мм, глина – куски до 10 см). Глину отмачивают до приобретения 70% влажности и отправляют в мельницы с известняком, где происходит смешивание.
  • Сухой. Технология позволяет при уменьшенных затратах изготавливать портландцемент по сокращенному методу. Это обусловлено совмещением технологических стадий, обеспечивающих возможность одновременного выполнения сушки ингредиентов и их помола в специальных мельницах, в которые поступают горячие газы. Полученный шихтовый материал характеризуется порошкообразным составом.
  • Полусухой (комбинированный). В данном методе совмещаются элементы сухой и мокрой технологии изготовления, которые используют производители цементных смесей. Допускается уменьшать влажность шихтового материала, произведенного мокрым методом, и получать шихтовой состав, влажность которого не превышает 18%. Согласно второму способу, готовится сухая смесь, которая насыщается водой до 14-процентной влажности, подвергается гранулированию и обжигается.

Свойства состава

Портландцемент обладает комплексом положительных характеристик, обеспечивающих его широкое применение в жилищном строительстве, при возведении промышленных конструкций. Главными характеристиками являются:

  • удельный вес, зависящий от степени уплотнения состава. Для насыпных смесей составляет 1100 кг/м3, для уплотненных достигает величины 1600 кг/м3;
  • гранулометрический состав, характеризующий тонкость цементной фракции и качество помола. Параметры влияют на эксплуатационные характеристики, интенсивность твердения раствора. Усредненный размер частиц цемента составляет порядка 40 микрон, что обеспечивает необходимую прочность и время твердения;

  • потребление воды, влияющее на способность массива впитывать определенный объем жидкости. Недостаток влаги снижает прочность, а излишек – вызывает расслоение цементной массы. Согласно проверенной рецептуре, для замеса вводится 25-28 процентов воды от общего объема смеси;
  • продолжительность схватывания, регламентированная стандартом, составляющая до 45 минут после смешивания с водой. Продолжительность окончательного твердения зависит от температурного режима и замедляется в зимний период;
  • высокие прочностные характеристики, позволяющие воспринимать сжимающие нагрузки, что отражается в обозначении портландцемента.

Заключение

Представленная в статье информация о распространенном в строительной отрасли портландцементе знакомит с особенностями производства, свойствами, маркировкой и технологическими особенностями изготовления. Застройщики подтверждают, что это прочный материал, обеспечивающий высокий ресурс эксплуатации конструкций и сооружений.

Повышенные рабочие характеристики обеспечивают широкую сферу применения популярного материала.

На сайте: Автор и редактор статей на сайте pobetony.ru
Образование и опыт работы: Высшее техническое образование. Опыт работы на различных производствах и стройках – 12 лет, из них 8 лет – за рубежом.
Другие умения и навыки: Имеет 4-ю группу допуска по электробезопасности. Выполнение расчетов с использованием больших массивов данных.
Текущая занятость: Последние 4 года выступает в роли независимого консультанта в ряде строительных компаний.

Как определяется марка бетона

Дата: 27 ноября 2018

Просмотров: 5322

Коментариев: 1

Строительство объектов любого типа, независимо от материалов, из которых они изготавливаются, производится с применением бетона. У застройщиков возникает множество вопросов, связанных с определением характеристик смеси. Главные показатели бетонного состава – марка бетона и его класс. Это основные параметры, на которые обращают внимание заказчики, приобретая раствор.

Разбираясь в характеристиках, можно избежать проблемных ситуаций, связанных с финансовыми затратами и конфликтов с поставщиком раствора. Ведь надежной базой любой постройки является прочное основание, которое не осядет, не вызовет появления трещин.

Определение марки бетона позволяет принять решение об эффективности применения смеси. Лабораторные методы контроля обладают высокой точностью. Замеры производят специализированные лаборатории. Выполнение замеров актуально, когда смесь доставляется на стройплощадку. Тогда необходимо определить, какими характеристиками она будет обладать после того, как превратится в монолит. Рассмотрим особенности определения качественных характеристик.

Подготовка образцов

Стандарт регламентирует определение предела прочности бетонного состава на сжатие путем контроля отлитых кубических образцов.

Значение класса бетона по прочности является его основной характеристикой, которую используют при расчете конструкций

Подготовку эталонов выполняйте в следующем порядке:

  • подготовьте из древесины порядка пяти специальных форм кубической формы, обеспечив размер стороны 10, 15 или 20 сантиметров в зависимости от лабораторного оборудования, на котором будет осуществляться проверка;
  • увлажните внутреннюю поверхность деревянного ящика, смочив его водой или нанеся специальную смазку. Это обеспечит нормальное протекание гидратации, позволит легко извлечь образцы;
  • залейте в группу форм смесь, применяя методику послойной укладки состава;
  • удалите воздушные полости, тщательно проштыковав раствор, уплотнив его. Образец выдерживайте на протяжении 28 суток.

Выбирая для выполнения строительства необходимый раствор, ориентируйтесь на его класс и марку, характеризующие прочность.

Изменение прочности

Образцы, по которым определяется марка состава, предохраняйте от повреждений, храните при положительной температуре (20 градусов Цельсия), влажности порядка 90%. Прочность – характеристика, которая изменяется в процессе затвердевания. Помните, что она увеличивается с течением времени следующим образом:

  • Спустя 7 дней после заливки прочность достигает 70 процентов проектного значения. Ускоренный метод контроля позволяет предварительно определить прочность образцов-эталонов через неделю после заливки. Например, предварительное значение средней прочности для бетона марки М200 составляет 140 кг/см ².
  • Эксплуатационные характеристики материал приобретает после затвердевания через 4 недели.
  • Процесс приобретения окончательной твердости исчисляется годами.

Марка и класс бетона характеризуют его прочность на сжатие

Классификация бетонных составов

Марка бетона характеризует предел прочности образца на сжатие, измеряется в килограммах на сантиметр квадратный. Причём эталон должен на протяжении 4 недель пройти выдержку. Цифровой индекс, указанный в марке бетонной смеси, характеризует усредненное значение параметра, зависит от объемной доли цемента в составе. Диапазон изменения марок состава расположен в интервале от М50 до М1000. Область использования бетона изменяется в зависимости от маркировки, характеризующей прочность:

  • Работы, связанные с бетонированием, подготовка фундаментных лент, установка бордюров производится составом М100, соответствующим классу В7,5.
  • Заливка полов, подготовка фундаментов малоответственных объектов, выполнение стяжек, бетонирование площадок производится с помощью товарного раствора класса B12,5, соответствующего марке М150.
  • Подготовка фундаментов объектов, бетонирование лестниц, выполнение отмосток, опорных стенок осуществляется раствором М200 и М250 (классы В15 и В20).
  • Индивидуальное жилищное строительство, постройка промышленных объектов, заливка монолитных конструкций выполняется на базе смесей М300 (В22,5)-М350 (В25), которые имеют наибольшее распространение.
  • Постройка объектов гидротехнического назначения, специальных сооружений банковской сферы, конструкций, к которым предъявляются особые требования, выполняется прочным бетоном М 400.
  • Возведение специальных объектов, требующих сверхпрочного состава, производится с использованием смесей маркировкой 500 и выше.

Требования к бетону в нормативных документах указываются именно в классах, но при заказе бетона строительными компаниями бетон обычно заказывается в марках

Окончательное представление о прочностных характеристиках бетонного массива позволяет получить классификация по классам. Класс смеси учитывает допустимое значение погрешности качества раствора, характеризует реальную твердость массива.

Класс бетона обозначается заглавной буквой «В» и цифровым индексом, находящимся в интервале от 3,5 до 80. Наиболее распространённым диапазоном смеси по классам является интервал от В7,5 до В40.

Прочностной показатель состава характеризуют результаты испытаний эталонного образца. Значение параметра определяется:

  • объемом и маркой вяжущих компонентов в растворе;
  • удельным весом смеси;
  • типом применяемого наполнителя.

Таблица соотношения классов и марок бетона

Современный строительный рынок предлагает смеси различных марок. Например, состав с маркировкой М150 отличается гарантированным запасом прочности на сжатие, равным 150 кг/см².

Методы контроля

Все известные методы определения прочностных характеристик бетона делятся на следующие виды:

  • Способы контроля, базирующиеся на неразрушающих методиках проверки на сжатие. Они основываются на результатах косвенных замеров приборов, регистрирующих значение погружения бойка инструмента в поверхность массива.

Разница между классом и маркой бетона по прочности проявляется на этапе обработки результатов испытаний

  • Технологии проверки, включающие ультразвуковой способ контроля характеристик. Основываясь на зависимости твердости состава, интенсивности ультразвуковых колебаний в бетонном массиве, методика с высокой точностью позволяет определить прочность.
  • Разрушающий контроль параметров, осуществляемый на специальных прессах, деформирующий до полного разрушения эталонные образцы.
  • Самостоятельные способы ориентировочного определения прочностных характеристик, базирующиеся на глубине проникновения рабочего инструмента под воздействием ударных нагрузок.

Рассмотрим более детально наиболее распространённые способы контроля.

Неразрушающие способы

Механический контроль параметров бетона при использовании неразрушающих методик позволяет сохранить целостность образца и использовать специальное лабораторное оборудование, фиксирующее:

  • значение величины отскока;
  • ударную величину импульса;
  • отрывание;
  • откалывание;
  • значение мягкой деформации;
  • результат комбинированного воздействия отрыва одновременно с откалыванием.

Прочность имеет изменчивый характер (с течением времени раствор твердеет и крепчает) и набирает свою нормальную (проектную) силу только через 28 ней

В зависимости от изменения глубины погружения бойка в массив делается заключение о прочностных характеристиках. Применяются специальные лабораторные молотки, с помощью которых производится пластическая деформация бетонной поверхности. В результате ударного воздействия образуется лунка, по диаметру которой рассчитываются прочностные параметры. Производя замер по данной методике, выполняйте работы в следующей очередности:

  • Очистите поверхность от краски, штукатурки, слоя шпатлевки.
  • Выполните на контролируемом участке порядка 10 ударов средней силы, соблюдая интервал между отпечатками порядка 5 сантиметров.
  • Проконтролируйте, используя штангенциркуль, размеры лунок, соблюдая точность до одной десятой доли миллиметра.
  • Определите среднее арифметическое диаметра отпечатка.
  • Используйте тарировочную кривую, построенную на результатах замеров эталонных образцов, и в соответствии с полученным средним диаметром определите параметр прочности.

Существуют другие методы неразрушающего контроля, формирующие два отпечатка, один из которых – на контролируемой поверхности, а второй – на эталоне. Метод определения прочностных параметров предусматривает сопоставление размеров отпечатков с тарировочной диаграммой.

При отсутствии проб и необходимости получить информацию о процентных характеристиках используется неразрушающий контроль с помощью специальных приборов – склерометров, которые используют принцип упругого отскакивания. Применяются, также, пистолеты, рабочим органом которых является стержневой ударник. Шкала прибора показывает цифровое значение, основанное на реакции бойка.

Чем выше культура производства у конкретного производителя, тем ближе реальные значения класса бетона приближаются к его марке

При контроле комбинированным методом, предусматривающим отрыв одновременно со скалыванием, в бетонном массиве крепится предварительно установленное специальное анкерное устройство. Прибор воздействует на контролируемый участок, показывает его прочность.

Ультразвуковая методика

Востребованы, также, ультразвуковые способы контроля, позволяющие сохранить целостность бетонного массива. Метод предполагает использование ультразвукового преобразователя, который прикладывается к контролируемой конструкции, обеспечивает надежный акустический контакт. По скорости распространения ультразвуковых колебаний в массиве определяется его прочность.

Технология предполагает следующее виды прозвучивания:

  • сквозное, применяемое для колонн, балок, при котором датчики устанавливаются с противоположных сторон конструкции;
  • поперечное, используемое для панелей, плит перекрытий, при которых волновой преобразователь находится со стороны зоны контроля.

Оборудование для контроля с помощью ультразвука включает в себя специальные датчики и электронный модуль.

Марка бетона по прочности – это средний показатель прочности, а класс бетона – это показатель гарантированной прочности

На скорость движение ультразвуковой волны влияют:

  • Плотность массива.
  • Однородность состава.
  • Упругость.
  • Наличие полостей, трещин, локальных дефектов.

Прибор преобразует ультразвуковые колебания в цифровые значения характеристик.

Разрушающие методы проверки

Традиционно марка бетона определяется в лабораторных условиях на специальной гидравлической машине, производящей сжатие эталонов. Значительная величина усилия, составляющего десятки тонн, позволяет испытать любые виды бетонных составов. Бетонный куб подвергается постоянно возрастающему давлению, при максимальном значении которого образец разрушается. Этот показатель давления характеризует марку бетона.

Способы самостоятельной проверки

Имеется возможность самостоятельно произвести определение марки бетона. Ведь не всегда есть возможность воспользоваться услугами независимой лаборатории. Применяя обычный молоток массой 0,3-0,4 килограмма и заточенное зубило, можно, нанося удары по зубилу, примерно оценить марку бетона.

При погружении зубила под воздействием ударов в бетонный массив на глубину 5 мм можно судить о прочности бетонного состава, соответствующей М100–М150. При большем значении погружения – материал мягкий и прочность его меньше 75 (класс В5). При наличии откалывания мелких фрагментов или не погружения зубила в массив можно сделать заключение о твердости на уровне М200-250 килограмм на сантиметр квадратный, соответствующей классу В15-В25.

Применение указанного метода не требует затрат денежных средств. Однако если необходимо получить точные значения, рекомендуем воспользоваться услугами специализированных лабораторий.

Заключение

Применение любого из указанных методов позволяет определить марку бетонного состава и принять решение о его соответствии требованиям выполняемых задач по строительству объектов.

На сайте: Автор и редактор статей на сайте pobetony.ru
Образование и опыт работы: Высшее техническое образование. Опыт работы на различных производствах и стройках – 12 лет, из них 8 лет – за рубежом.
Другие умения и навыки: Имеет 4-ю группу допуска по электробезопасности. Выполнение расчетов с использованием больших массивов данных.
Текущая занятость: Последние 4 года выступает в роли независимого консультанта в ряде строительных компаний.

Подтверждение эталонности цементных образцов | nii-cement.com

Для документального подтверждения определенных свойств материалов осуществляется аттестация эталонных образцов цемента, позволяющая утвердить их характеристики как идеальные. Такую процедуру можно заказать на выгодных условиях, которые предоставляет компания «Акционерное общество «Научно-исследовательский институт цементной промышленности «НИИЦемент» АО «НИИЦЕМЕНТ».

Преимущества сотрудничества:

  • подтверждение проводится в специальной лаборатории;
  • испытания организовываются на основании существующих ГОСТов;
  • для аттестации эталонных образцов цемента применяется определенная схема, которая дает возможность в сжатые сроки и с высокой точностью выяснить соответствие необходимым критериям;
  • после всех процедур наши сотрудники выдают оформленные документы, где указываются результаты исследований.

В государственном стандарте прописан последовательный алгоритм действий, для которого требуется современное оснащение, устройства, использование прогрессивных и эффективных методик проверок. Мы располагаем полностью оборудованной лабораторией, где все процедуры выполняются быстро и на высоком профессиональном уровне. Прохождение перечисленных этапов позволяет выяснить конкретные физико-химические показатели материала, которые будут считаться идеальными. В дальнейшем он будет выступать в качестве стандарта для сравнения с продукцией, относящейся к такому же типу. Это помогает в разы сократить время на испытание смесей, определять их марку и качественные характеристики. Благодаря проверенному материалу можно контролировать качество остальных материалов. Таким образом, будет сведен к минимуму риск появления несоответствий в процессе изготовления. Производителю удастся гарантировать соблюдение норм и высокое качество изделий. Прохождение описанной выше процедуры рекомендуется для всех марок смесей по отдельности. Также вы можете получить у наших специалистов прогноз развития цементной промышленности с учетом действующих тенденций в отрасли. Мы предлагает воспользоваться подтверждающими качество услугами и купить нужную документацию, для этого компания «Акционерное общество «Научно-исследовательский институт цементной промышленности «НИИЦемент» АО «НИИЦЕМЕНТ» приглашает связаться с сотрудниками по телефонному номеру +7 (495) 502-79-04.

что это такое, состав и свойства, разновидности и марки по ГОСТ, сульфатостойкий пуццолановый портландцемент

Для изготовления бетона применяются неорганические вяжущие вещества, которые при смешивании с водой образуют тестообразный раствор, набирающий прочность по мере застывания. Разновидностью такого вяжущего состава является портландцемент.

Особенности и изготовление

О портландцементе нередко ведут разговор, когда речь заходит о необходимости прочного и устойчивого к негативным воздействиям среды раствора. Портландцемент представляет собой разновидность вяжущего вещества для бетонных растворов.

Он является сухой смесью, которую разводят водой. Спустя определенное время происходит схватывание продукта при взаимодействии с воздухом.

Портландцемент в основе имеет мелко смолотый клинкер, а также гипс, ускоряющий схватывание смеси. В зависимости от вида и марки изделия его формула может включать те или иные добавки и примеси.

Смесь была изобретена еще в 1824 году американским каменщиком, а своим названием обязана внешнему сходству с известняком Портленда, который добывался в одном из английских графств.

Для получения данного состава используются карбонатные горные породы (известняк, мел, глинозем и кремнезем), а также мергелий (смесь карбонатных пород и глины, переходная порода от известняковых к глинистым). Процесс производства начинается с тщательного измельчения сырья и смешивания его в определенных пропорциях. Следующий этап – обжиг сырья в печах при температуре 1300-1400°С. Результатом оплавления становится материал, называемый клинкером.

Клинкер вновь измельчается и смешивается с гипсом. При необходимости добавляются прочие элементы, повышающие эксплуатационные характеристики готового продукта. Данная смесь проходит контроль качества и при соответствии принятым стандартам получает сертификат соответствия.

Существует несколько вариантов обжига сырья:

  • Мокрый. Сначала происходит измельчение компонентов, затем глина замачивается до тех пор, пока показатель влажности не достигнет 70%. После этого она в мельницах смешивается с известняком.
  • Сухой. Процесс перемалывания и сушки смеси происходит одновременно, что позволяет сократить трудозатраты и расходы производства. В результате обработки в мельницах получают порошкообразное сырье.
  • Комбинированный. При данной технологии совмещаются 2 типа производства – сухой и мокрый. Влагонасыщение сырья поднимается до 14%, после чего продукция измельчается и высушивается в специальных мельницах.

Состав и свойства

Как уже говорилось, портландцемент состоит из клинкера. В природе готовые гранулы встречаются достаточно редко, поэтому клинкерную крошку получают искусственным методом путем смешивания и обжига карбоновых и глинистых смесей.

Готовый клинкер смешивают с гипсом, содержание которого в составе не превышает 5%. Его вводят для того, чтобы обеспечить подвижность раствора в течение 45 минут, что необходимо при формовке изделий или выполнении некоторых видов работ.

Состав и процентное содержание компонентов смеси регулирует ГОСТ 10178 85 «Портландцемент и шлакопортландцемент». Именно соблюдение гостребований при производстве гарантирует высокие технические и эксплуатационные характеристики продукта.

На его упаковке обязательно должно быть указание на производство по ГОСТу. При отсутствии последнего имеется ввиду, что портландцемент изготовлен в соответствии с ТУ (технические условия), а это значит, что его свойства отличаются от принятых.

Для придания портландцементу определенных технических характеристик, в состав вводят минеральные добавки, содержание которых не превышает 20-25%.

Наиболее востребованными являются следующие:

  • Алюминат увеличивает сроки схватывания цемента, но имеет невысокие показатели прочности (возможное содержание в портландцементе – не более 15%).
  • Алюмоферрит имеет те же свойства, что и предыдущая добавка, однако его содержание в готовом продукте уменьшается до 10-18%.
  • Белит оказывает вяжущее действие, способствует увеличению времени затвердевания, однако чрезмерное содержание способно негативным образом сказываться на прочностных характеристиках состава (допустимое содержание – не более 15-37%).
  • Алит широко используется (процентное соотношение может достигать 60%) в составах высоких марок, поскольку обеспечивает быстрое их отвердение.

Свойства портландцемента определяются его составом. Основными критериями, по которым производится оценка качества продукта, являются следующие:

  • Период схватывания. Схватывание смеси при соблюдении технических требований ее разведения должно происходить спустя 40-45 минут. Минералогический состав, тонкость помола и температура, при которой ведутся работы – именно эти факторы в первую очередь влияют на скорость схватывания изделия.
  • Водопотребность. Под данным термином понимается количество воды, требуемое для получения густого, подходящего для работы цементного теста. Обычно влага не должна превышать 25% от состава смеси. С целью снижения требуемого количества воды применяется сульфитно-дрожжевая бражка или пластификаторы.
  • Водоотделение. Данный термин обозначает отжим воды в готовом растворе, возникновение которого обусловлено оседанием более тяжелых цементных частиц. Снизить этот показатель позволяют минеральные добавки.
  • Морозостойкость – способность продукта переносить определенное количество циклов заморозки и разморозки без потери своих эксплуатационных характеристик.

Для повышения морозостойкости в состав добавляют абиетат натрия или смыленный древесный пек.

  • Коррозийная стойкость. Данная характеристика связана с тонкостью помола смеси и степенью пористости готового бетона.
  • Тепловыделение. Имеется в виду способность бетона выделять тепло в процессе затвердения. Стремительно отдающий тепло состав оптимизируют путем добавления в него активных минеральных компонентов.

Характеристики

Портландцемент имеет более высокие прочностные характеристики по сравнению с другими видами цемента, что обусловлено особенностями состава. Те или иные добавки могут вступать в реакции, изменяя технические свойства материала. Последние же связаны с его механической стойкостью и возможностями эксплуатации.

Нельзя говорить о том, что одна из технических характеристик является более приоритетной. Так, например, прочный, но слишком медленно застывающий портландцемент может увеличить сроки строительства. А морозостойкий, но подверженный коррозии состав может применяться лишь для решения узкого круга задач.

Сегодня производители стремятся создавать универсальные составы, в которых одинаково сильно проявляются наиболее важные для цемента свойства.

В то же время существуют специализированные составы, имеющие особое назначение. Таковым можно считать пуццолановый портландцемент, имеющий максимальные показатели коррозийной стойкости и влагопрочности, но достаточно низкие показатели прочности на начальных этапах работы (в первые дни схватывания).

Технические

Среди технических характеристик следует выделить:

  • Удельный вес продукта – 1100 кг/м³ для насыпных смесей, 1600 кг/м³ для уплотненных.
  • Тонкость помола в среднем составляет 40 микрон (определяется способностью смеси проходить через сито № 008), что обеспечивает необходимую прочность цемента и время его отвердения, а также влияет на его эксплуатационные качества.
  • Потребление воды, оптимальное содержание жидкости в составе не должно превышать 25-28%, поскольку этот показатель влияет на прочность состава (при излишках происходит расслаивание бетонного теста, при недостатке на готовом изделии появляются трещины).
  • Плотность зависит от марки и наличия определенных добавок в составе. В рыхлом состоянии смесь имеет плотность 1,1 т/м³, в уплотненном – 1,5-1,7 т/м³.
  • Продолжительность схватывания после смешивания с водой не превышает 40-45 минут, дальнейшее отвердение зависит от особенностей состава и условий среды (в зимнее время процесс замедляется), но не превышает 10-12 часов (измеряется с помощью прибора Вика).
  • Изменение объема при застывании означает уменьшение цементного тела в объеме на 0,5-1 мм/м на открытом воздухе и его набухание до 0,5 мм/м в воде. Важным моментом является равномерность изменений по всему объему раствора.

Физические

  • Антикоррозийная устойчивость достигается благодаря введению в состав гидроактивных материалов, препятствующих химической активности солей, а также добавлению примесей, уменьшающих пористость бетона.
  • Длительность хранения составляет не более 12 месяцев при условии сохранения заводской упаковки (3-4-х слойные, герметично закрытые бумажные мешки), поскольку уже через 3 месяца хранения теряется до 20% активности состава, через год – до 40%. Вернуть такому цементу былые качества можно только путем вторичного перемалывания.
  • Прочность на сжатие. В соответствии с данной характеристикой выделяют 4 класса прочности – 22,5; 42,5; 42,5; 52,5. Этот показатель напрямую связан со скоростью схватывания раствора.

Механические

Показатели механической прочности портландцемента составляют не менее 42,5 мПа на 28 сутки после заливки. Определение проводится в лабораторных условиях на примере образца. В соответствии с полученными результатами цемент маркируется (например, М 500). Коэффициент при этом указывает на то, какое давление способен выдержать образец (измеряется в кг/см³).

Чем выше данный коэффициент, тем больше прочностные показатели состава. Прочностные характеристики зависят от степени помола (чем она мельче, тем большей активностью обладает раствор), наличия присадок и добавок.

Показатели прочности, в свою очередь, влияют на степень схватывания раствора (определяется с помощью иглы Вика).

Отличия от простого цемента

Портландцементом считается разновидность цемента, который чаще всего используется при заливке бетона. Последний, в свою очередь, используется в монолитном и железобетонном строительстве, при возведении объектов, к которым предъявляются повышенные прочностные характеристики.

Благодаря наличию клинкерных гранул и прочих добавок, портландцемент обладает большим запасом прочности, имеет более высокие показатели морозостойкости, устойчивости к воздействию агрессивных сред. Это делает портландцемент востребованным материалом при строительстве объектов нефтяной и газовой отраслей.

Он подходит для возведения фундамента на сложных неустойчивых грунтах, в таком случае рекомендуется применять сульфатостойкую смесь. Такой состав почти не дает усадки зданий, на его поверхности не образуются трещины.

Вопрос о различиях между цементом и портландцементом несколько некорректен, поскольку последний является разновидностью цемента. Иначе говоря, цемент – это общее название, портландцемент является его разновидностью с определенным набором прочности.

Различия логичнее проводить, опираясь на марочную прочность цементов. Так, например, портландцемент М 400 уступает в своей прочности цементу М 600. Сам по себе портландцемент мало отличим от цемента (по способу монтажа, технологии схватывания, особенностям использования), разница тех или иных отличительных характеристик обусловлена присутствием добавок.

Виды

Все виды цемента делятся на бездобавочные и добавочные. Бездобавочный состав не содержит минеральных добавок, помимо гипса. Он подходит для надземных, подземных и подводных объектов монолитного характера, а также сборных бетонных и железобетонных конструкций, которые эксплуатируются в условиях отсутствия агрессивной среды.

Наличие минеральных добавок улучшает технические свойства портландцементов, благодаря чему их можно применять в агрессивных условиях, при длительном контакте конструкции с водой. Среди наиболее распространенных добавок минерального происхождения выделяют: доменный шлак, активные минеральные добавки и природные активные миндобавки.

За счет введения той или иной добавки происходит улучшение таких показателей, как водонепроницаемость, коррозийная стойкость, однако их присутствие способствует снижению морозостойкости.

В зависимости от особенностей состава выделяют следующие разновидности портландцемента:

  • Быстросохнущий. Отвердение смеси происходит уже в первые 3 дня заливки благодаря входящим в состав шлакам и специальным минералам. Немаловажно, чтобы степень помола смеси была минимальной. Выпускается в марке М400 и М500. Использование данного состава позволяет снизить время выдержки смеси в опалубке и существенно увеличить темпы строительных работ.

Применяется в основном для быстровозводимых и железобетонных объектов.

  • Нормальноотвердевающий. Он не содержит специальных добавок, не столь требователен к степени помола смеси. Выпускается в соответствии с ГОСТом 31108-2003.
  • Гидрофобный вариант характеризуется способностью не впитывать влагу и уменьшенным временем схватывания. Подобные свойства обеспечивают входящие в раствор мылонафты, асидолы. Находит применение при возведении объектов, эксплуатируемых в условиях повышенной влажности, а также расположенных на подтопляемых участках.
  • Пластифицированный. Характерной особенностью продукта является наличие в нем пластификаторов, обеспечивающих необходимую подвижность, снижение водопоглощения, термостойкость. Пластификаторы закладываются при помоле смеси, благодаря чему они словно обволакивают частицы цемента, предотвращая их склеивание. В результате получается подвижный, удобный в нанесении состав, который широко применяется для возведения сложных по форме архитектурных конструкций.
  • Тампонажный. Обладает способностью тампонировать, то есть защищать скважины от воздействия грунтовых вод. Широко используется в нефтяной и газовой отраслях, поскольку не зависит от давления и температуры и надежно удерживает колонны в скважинах даже на начальных этапах застывания. Существует еще одна разновидность данного вида цемента – тампонажный облегченный портландцемен, имеющий в составе «облегченные» добавки.
  • Расширяющийся. Подобные смеси могут иметь различный состав, но все их объединяет способность увеличиваться в объеме при замешивании раствора. Это обусловлено тем, что между основным и добавочным компонентами начинается химическая реакция, которая и дает приращение объема.

Как правило, такие составы применяются для заполнения швов и трещин на поверхностях, подверженных воздействию повышенной влажности.

  • Сульфатостойкий. Такой бетон противостоит воздействию сульфатных вод, вызывающих развитие коррозии. Как правило, сульфатостойким делается морозопрочный цемент марки М300,400, иногда – М 500.

Применяется для создания свайного и других типов фундамента на болотистых и кислых почвах.

  • Шлакопортландцемент. В составе изделия присутствуют доменные шлаки, чем и обусловлено высокое содержание в нем частиц металла. Смесь используется для получения жароустойчивого бетона, а также при сооружении объектов под землей, водой, на высоте. Имеет невысокую морозостойкость.
  • Шлакощелочной состав отличается более высокими, по сравнению с портландцементом, характеристиками. Он устойчив к воздействию агрессивных сред, перепадам температур, имеет высокую морозостойкость и низкий показатель поглощения влаги. Подобные способности достигаются благодаря включению в состав молотого шлака и щелочи, иногда – глины.
  • Белый портландцемент. Сфера применения смеси – отделочные и архитектурные работы, также она выступает в качестве основы для цветных цементов. Белоснежный оттенок получают благодаря изготовлению продукта из чистых известняков и белых глин, а также путем дополнительного охлаждения клинкера водой.
  • Магнезиальный – состав на основе оксидов магния (нагревается до температуры 800С) и 30% водного раствора хлорида магния. Благодаря входящим в него компонентам и особенностям технологии производства удается получать прочную белую массу, которая легко поддается обработке (легко полируется, не подвержена воздействию плесени, грибка).

Материал применяется в качестве отделочного покрытия, а также для создания сложных с точки зрения форм конструкций. Бетон на основе магнезиального цемента, по сути, является разновидностью искусственного камня.

  • Цветной портландцемент также используется для декоративных работ. Получается он путем смешивания белой модификации и пигмента. В качестве последнего могут выступать железный сурик, охра, окись хрома. Главное, чтобы пигменты были свето- и щелочестойкие.
  • ​​​​​​Пуццолановый. В составе смеси находятся цветной портландцемент, гипс и добавки, имеющие вулканическое или осадочное происхождение. Полученный раствор имеет повышенную гидростойкость, он застывает не только в условиях повышенной влажности, но и под водой. Это позволяет применять его при организации гидротехнических сооружений, облицовке бассейнов и прочих резервуаров для хранения воды, поверхностей (в том числе наклонных), контактирующих с морской или хлорированной водой. Застывшая поверхность характеризуется прочностью, химической инертностью, отсутствием высолов.
  • Глинозёмистый состав представляет собой быстротвердеющий и прочный цемент на основе клинкера и расплавленных известняков. Готовая смесь содержит большое количества низко-основных алюминатов кальция.

Для обеспечения качественного сцепления и набора необходимой прочности застывание должно вестись при температуре ниже 25%С. В противном случае теряется до 50% прочности бетона.

Еще одной особенностью глинозёма является недопустимость его смешивания с другими цементами и известью, составами, даже в небольшом количестве содержащими щелочи. Глинозёмный портландцемент подходит для изготовления кислостойких бетонных растворов, заполнения кислостойких пород (гранита, бештаунита). Скорость схватывания – около 8 дней.

Марки

Марка определяется как прочность образца при испытании его на изгиб и сжатие. Для изготовления образца применяются портландцемент и песок, взятые в пропорции 1: 3. Из данного раствора изготавливается образец размером 4х4х16 см, который застывает в течение 28 суток, твердение происходит в условиях повышенной влажности. Для ускорения застывания разрешается прибегать к технике пропаривания образца.

Наиболее распространенными сегодня являются марки портландцемента М 400, 500, 600:

  • М 400 – наиболее востребованная марка цемента. Заложенные в ней технические характеристики (прочности, морозостойкости) подходят для возведения большинства объектов.
  • М 500 – цемент, обладающий несколько большим запасом прочности, что позволяет применять его в работах по реконструкции или восстановлению объектов после аварии, использовать для ремонтно-дорожных работ, строительства объектов военно-технического назначения, сооружений из асбестоцемента.
  • М 600. Состав имеет повышенную прочность, что делает возможным его применение при возведении ответственных железобетонных конструкций, инженерных сооружений.
  • М 700 – портландцемент максимальной прочности, применяемый для бетонной смеси для возведения напряженных конструкций. Использование его при обычном строительстве (например, в частном домовладении) нерационально из-за высокой стоимости.
  • М 900 – сверхпрочный цемент, используемый только для военных объектов, например, для создания бункеров.

Существуют также «промежуточные» марки цемента, например М 550 (по своим техническим характеристикам близки к М500, но отличаются чуть большей прочностью).

В каких случаях не подходит?

Благодаря многообразию составов портландцемента он подходит практически для любого типа строений. Главное – верно определить наиболее важное свойство цемента и подобрать соответствующую добавку. Некоторые из них при совместном использовании нивелируют свойства друг друга. Так происходит, например, при одновременном добавлении компонентов для улучшения влагостойкости и морозоустойчивости. Первые (повышающие влагостойкость) ощутимо снижают морозостойкость состава.

Иначе говоря, портландцементы с добавками не подходят для условий, в которых происходит значительное снижение температуры эксплуатации. В данном случае должны применяться портландцементы без добавок. Для влажных климатов не подходит стандартная смесь портландцементов, лучше выбрать шлакопортландцемент.

Немаловажно учитывать и назначение материала. Так, для возведения монолитных объектов и конструкций гражданского назначения (например, мостов, высоковольтных линий) не подходит портландцемент М400. Для решения указанных задач допустимо применять смесь с марочной прочностью не менее М 500.

Ни один из видов портландцемента не подходит для использования в текучих водах, соленых водоемах, проточных руслах рек, водах с высоким содержанием минералов.

Даже сульфатостойкая разновидность портландцемента, обладающая повышенными показателями влагопрочности, применяется только в статичных умеренных водах. В остальных случаях (например, для организации плотин, дамб и прочих инженерных сооружений) применяют особые виды цемента.

Приставка «портланд» обозначает присутствие в смеси большого количества силикатов кальция, поэтому она не рекомендована для блоков и конструкций специального назначения. Пуццолановый цемент не подходит для эксплуатации в условиях значительного снижения температуры.

О том, как происходит получение портландцемента смотрите в следующем видео.

расшифровка, применение, свойства в таблицах

Цемент – вяжущий порошок, применяемый в строительстве для изготовления строительных смесей и растворов. Изготавливается из карбонатных и глинистых пород, добываемых открытых способом. В зависимости от сырьевого состава имеет различные эксплуатационные характеристики. Для удобного выбора цемент разделен на марки, каждой из которых соответствует вяжущее с определенным составом и свойствами. Маркировка наносится на упаковку, в которую расфасовывается строительный материала, или отображается в сопроводительной документации к партиям вяжущего, поставляемого потребителю навалом.

Расшифровка марок цемента по новому ГОСТу 31108-2003

Актуальным нормативным документом, определяющим правила обозначения цементного вяжущего, является ГОСТ 31108-2003. В соответствии с ним тип материала указывается комбинацией русских букв, римских и арабских чисел.

В начале маркировки указывают полное название продукта, а затем – буквы ЦЕМ, римские цифры и буквы, обозначающие подтипы.

Таблица расшифровки марок цемента и области их применения

Обозначение типа вяжущего Видя вяжущего Примечание Области применения Где не рекомендуется применять
ЦЕМ I Портландцемент Не содержит минеральных добавок Монолитные бетонные и железобетонные конструкции В конструкциях с особыми свойствами
ЦЕМ II Портландцемент с минеральными добавками Буквы А и В обозначают подтип, характеризующий процентное содержание минеральных добавок, которые указываются после подтипа -
ЦЕМ III Шлакопортландцемент Монолитные массивные армированные бетонные конструкции наземного, подземного и подводного размещения Для производства морозоустойчивых бетонов, при строительстве объектов, испытывающих попеременное увлажнение и высыхание
ЦЕМ IV Пуццолановый Монолитные бетонные и ЖБ конструкции подземного и подводного размещения Для производства морозостойких бетонов и бетонных смесей, которые будут твердеть в сухих условиях, при строительстве объектов, испытывающих попеременное увлажнение и высыхание
ЦЕМ V Композитный Имеют различные области применения, в зависимости от состава -

Краткие характеристики цемента разных марок:

  • ЦЕМ I – портландцемент. Отличается высокой скоростью набора прочности на начальных стадиях. Через сутки после укладки в опалубку продукт приобретает примерно 50% от марочной прочности. Количество минеральных добавок в таком вяжущем не превышает 5%.
  • ЦЕМ II – портландцемент с минеральными добавками, количество которых превышает 5% (до 35%). Скорость твердения такой смеси снижается с повышением процентного соотношения присадок.
  • ЦЕМ III – шлакопортландцемент с нормальной скоростью твердения. В состав входит гранулированный шлак, образующийся при производстве чугуна, в количестве 36-65%.
  • ЦЕМ IV – пуццолановый с нормальной скоростью набора марочной прочности. В его составе имеются кремнезем (обозначается буквами «МК» или «М»), зола-унос («З»), пуццоланы («П»). Процентное соотношение добавок – 21-35%.
  • ЦЕМ V – композитное вяжущее с нормальной скоростью набора прочностных характеристик. В его состав входят 11-30% золы-уноса, 11-30% гранулированного шлака, который является отходом производства чугуна.

После указания подтипа (А или В) указывается тип присадки:

  • Ш – шлак, который является отходом металлургической индустрии;
  • И – известняк;
  • З – зола-унос, которая является отходом энергетических предприятий;
  • П – пуццоланы;
  • М, МК – микрокремнезем.

Далее указывается прочность вяжущего, которая в ГОСТе 31108-2003 обозначается классом, а ранее она характеризовалась маркой.

Как определить марку (класс) прочности цемента в лабораторных условиях:

  • изготавливают образцы из цементного раствора размерами, определяемыми ГОСТом;
  • образцы помещают на вибростол и вибрируют в течение трех минут;
  • образцы выдерживают в формах в течение двух суток, затем извлекают их и погружают в воду на 28 суток;
  • насухо вытертые образцы испытывают на сжатие, средняя арифметическая величина сопротивления на сжатие трех образцов и является маркой (классом) прочности.

Какие бывают классы прочности цемента и каким маркам они соответствуют, а также их области применения, указаны в таблице.

Класс Ближайшая марка Прочность на сжатие в возрасте 28 суток, не менее кгс/см2 Области применения
22,5 М300 22,5 Востребован в индивидуальном строительстве для сооружения конструкций, не испытывающих серьезных нагрузок
32,5 М400 32,5 Материал, наиболее популярный в малоэтажном строительстве, востребован для монолитного бетонирования и изготовления ЖБИ
42,5 М500 42,5 Вяжущее, предназначенное для монолитного строительства многоэтажных объектов, изготовления ЖБИ, эксплуатируемых при высоких нагрузках
52,5 М600 52,5 Применяется при строительстве опор мостов, военно-инженерных объектов

После класса прочности в маркировке вяжущего указывают скорость его твердения:

  • Н – нормально твердеющий;
  • Б – быстро твердеющий.

В конце обозначения указывают нормативный документ, которому соответствуют характеристики материала.

 

Пример маркировки. Нормально твердеющий портландцемент с минеральными добавками до 5% классом прочности 32,5 (марка М400) обозначается следующим образом: «Портландцемент ЦЕМ I 32,5Н ГОСТ 31108-2003».

Маркировка цемента по ГОСТу 10178-85

Наряду с обозначениями, установленными ГОСТом 31108-2003, производители часто указывают маркировку по ГОСТу 10178-85, поскольку она является для рядового потребителя более привычной и понятной. В обозначении старого образца указывают:

  • Сокращенное название продукции. ПЦ – портландцемент, ШПЦ – шлакопортландцемент, ССПЦ – сульфатостойкий портландцемент, ППЦ – пуццолановый портландцемент.
  • Марку прочности – М300, М400, М500, М600, которая определяет прочность на сжатие цементного продукта в возрасте 28 суток.
  • Процентное соотношение присадок – буква «Д» и проценты. Например, Д0 – миндобавки отсутствуют или их количество не превышает 5%, Д20 – 20% минеральных добавок.
  • Буквенное обозначение особого свойства вяжущего. «Б» – быстро твердеющий, «Г» – гидрофобный.
  • ГОСТ, в соответствии с которым изготовлен продукт.

 

Пример обозначения быстро твердеющего портландцемента без минеральных добавок марки прочности М400 в соответствии с устаревшим нормативом: ПЦ 400-Д0-Б ГОСТ 10178-85.

Марки цемента по морозостойкости не определяются. Этот показатель устанавливается для продукта, изготовленного на базе цемента, – цементно-песчаного раствора или бетона. Морозостойкость затвердевших цементно-песчаных растворов и бетонов во многом зависит от характеристик мелкого заполнителя (песка) и крупного заполнителя (щебня), а также применяемых присадок.

Цементирование - PetroWiki

Цемент используется для удержания обсадной колонны на месте и предотвращения миграции жидкости между подземными формациями. Операции по цементированию можно разделить на две большие категории: первичное цементирование и восстановительное цементирование.

Первичное цементирование

Целью первичного цементирования является изоляция зон. Цементирование - это процесс смешивания суспензии из цемента, добавок к цементу и воды и закачки ее вниз через обсадную колонну в критические точки в кольцевом пространстве вокруг обсадной колонны или в открытом стволе под обсадной колонной.Две основные функции процесса цементирования:

  • Для ограничения движения жидкости между пластами
  • Для крепления и поддержки обсадной колонны

Если это будет достигнуто эффективно, будут выполнены другие требования, предъявляемые в течение срока службы скважины, в том числе:

  • Экономический
  • Ответственность
  • Безопасность
  • Постановления правительства

Зональная изоляция

Зональная изоляция напрямую не связана с производством; однако эта необходимая задача должна выполняться эффективно, чтобы можно было проводить операции по добыче или стимуляции.Успех колодца зависит от этой основной операции. Помимо изоляции зон нефте-, газо- и водоотдачи, цемент также способствует

  • Защита корпуса от коррозии
  • Предотвращение выбросов за счет быстрого образования уплотнения
  • Защита обсадной колонны от ударных нагрузок при более глубоком бурении
  • Герметизация зон потери циркуляции или зоны поглощения

Восстановительное цементирование

Восстановительное цементирование обычно выполняется для устранения проблем, связанных с первичным цементированием.Самый успешный и экономичный подход к восстановительному цементированию - избежать его путем тщательного планирования, проектирования и выполнения всех операций бурения, первичного цементирования и заканчивания. Необходимость восстановительного цементирования для восстановления работы скважины указывает на то, что первичное оперативное планирование и выполнение были неэффективными, что привело к дорогостоящим ремонтным работам. Операции восстановительного цементирования делятся на две большие категории:

Процедуры укладки цемента

В целом, для успешной укладки цемента и достижения поставленных целей требуется пять шагов.

  1. Проанализировать параметры скважины; определить потребности скважины, а затем разработать методы размещения и жидкости для удовлетворения потребностей в течение срока службы скважины. Свойства жидкости, механика жидкости и химический состав влияют на конструкцию скважины.
  2. Рассчитайте состав жидкости (суспензии) и проведите лабораторные испытания жидкостей, разработанных на этапе Step 1 , чтобы убедиться, что они соответствуют потребностям.
  3. Используйте необходимое оборудование для реализации проекта в Step 1 ; рассчитать объем перекачиваемой жидкости (шлама); и смешивать, смешивать и закачивать жидкости в затрубное пространство.
  4. Наблюдать за лечением в реальном времени; сравните с Шаг 1 и при необходимости внесите изменения.
  5. Оцените результаты; сравните с проектом Step 1 и внесите необходимые изменения для будущих работ.

Параметры скважины

Наряду с опорой обсадной колонны в стволе скважины, цемент предназначен для изоляции зон, что означает, что он предотвращает сообщение каждой из зон проникновения и их флюидов с другими зонами. Чтобы сохранить изолированные зоны, очень важно учитывать ствол скважины и его свойства при проектировании цементных работ.

Глубина

Глубина скважины влияет на конструкцию цементного раствора, так как она влияет на следующие факторы:

Количество задействованных скважинных флюидов Объем скважинных флюидов Давления трения Гидростатические давления Температура

Глубина ствола скважины также определяет размер ствола и обсадной колонны. Очень глубокие скважины имеют свои собственные проблемы проектирования из-за:

  • Высокие температуры
  • Высокое давление
  • Коррозионные жидкости

Геометрия ствола скважины

Геометрия ствола скважины важна для определения количества цемента, необходимого для операции цементирования.Размеры отверстия можно измерить различными методами, в том числе:

  • Штангенциркуль
  • Штангенциркуль с электроприводом
  • Штангенциркуль

Геометрия открытого ствола может указывать на неблагоприятные (нежелательные) условия, такие как размывы. Геометрия ствола скважины и размеры обсадной колонны определяют кольцевой объем и необходимое количество жидкости.

Форма отверстия также определяет зазор между обсадной колонной и стволом скважины. Это кольцевое пространство влияет на эффективность вытеснения бурового раствора.Рекомендуется минимальное кольцевое пространство от 0,75 до 1,5 дюйма (диаметр отверстия на 2–3 дюйма больше диаметра обсадной колонны). Меньшие кольцевые зазоры ограничивают характеристики потока и, как правило, затрудняют вытеснение жидкости.

Другой аспект геометрии отверстия - угол отклонения. Угол отклонения влияет на истинную вертикальную глубину и температуру. Сильно наклоненные стволы скважины могут быть проблематичными, поскольку обсадная колонна вряд ли будет центрирована в стволе скважины, и вытеснение жидкости становится затруднительным.

Проблемы, связанные с изменением геометрии, можно решить, добавив центраторы в обсадную колонну. Центраторы помогают центрировать обсадную колонну внутри отверстия, оставляя равное кольцевое пространство вокруг обсадной колонны.

Температура

Температура ствола скважины имеет решающее значение при проектировании цементных работ. Следует учитывать три основных температуры:

  • Забойная температура циркуляции (BHCT)
  • Статическая температура забоя (BHST)
  • Разница температур (разница температур между верхом и низом укладки цемента)

BHCT - это температура, которой будет подвергаться цемент, когда он циркулирует мимо нижней части обсадной колонны.BHCT контролирует время, необходимое для схватывания цемента (время загустевания). BHCT можно измерить с помощью датчиков температуры, циркулирующих с буровым раствором. Если фактическая температура в стволе скважины не может быть определена, BHCT можно оценить с помощью температурных графиков American Petroleum Inst. (API) RP10B.1 BHST учитывает неподвижное состояние, при котором жидкости не циркулируют и не охлаждают ствол скважины. BHST играет жизненно важную роль в развитии прочности затвердевшего цемента.

Разница температур становится существенным фактором, когда цемент размещается на большом интервале и есть значительная разница температур между верхним и нижним местоположениями цемента. Обычно из-за разных температур могут быть разработаны два разных цементных раствора, чтобы лучше приспособиться к разнице температур.

Температура циркуляции забоя влияет на следующее:

  • Время загустения суспензии
  • Реология
  • Потеря жидкости
  • Устойчивость (оседание)
  • Время схватывания

BHST влияет на увеличение прочности на сжатие и целостность цемента в течение всего срока службы скважины.Знание фактической температуры, с которой цемент столкнется во время укладки, позволяет операторам оптимизировать конструкцию раствора. Тенденция к завышению оценки количества материалов, необходимых для поддержания цемента в жидком состоянии для перекачивания, и количества времени, необходимого для перекачивания, часто приводит к ненужным затратам и проблемам с контролем скважины. Большинство цементных работ выполняются менее чем за 90 минут.

Для оптимизации затрат и эффективности вытеснения рекомендуются следующие рекомендации.

  • Спроектируйте работу на основе фактических циркуляционных температур в стволе скважины.
  • Дополнительный регистратор температуры в скважине может использоваться для измерения температуры циркуляции в скважине. Дополнительный регистратор - это записывающее устройство с памятью, которое можно либо опустить на кабеле, либо опустить в бурильную трубу, и оно измеряет температуру в скважине во время операции циркуляции перед цементированием. Затем запоминающее устройство извлекается из бурильной трубы и измеряется BHCT.Это позволяет точно определять скважинную температуру.
  • Если определение фактической температуры циркуляции в стволе скважины невозможно, используйте API RP10B для оценки BHCT. [1]
  • Не допускайте «затухания» фактических измеренных скважинных температур и не превышайте количество диспергаторов, замедлителей схватывания и т.д., рекомендованное для температуры ствола скважины. При определении количества замедлителя схватывания, необходимого для конкретного применения, учитывайте скорость, с которой будет нагреваться суспензия.

Давление пласта

При бурении скважины естественное состояние пластов нарушается. Ствол скважины создает нарушение там, где раньше существовали только пласты и их естественные силы. На этапах планирования цементных работ необходимо знать определенную информацию о формации:

Обычно эти факторы определяются во время бурения. Плотность буровых растворов при правильно сбалансированной операции бурения может быть хорошим показателем ограничений ствола скважины.

Для поддержания целостности ствола скважины гидростатическое давление, оказываемое цементом, буровым раствором и т. Д., Не должно превышать давление гидроразрыва самого слабого пласта. Давление разрыва - это верхнее безопасное ограничение давления в пласте до разрушения пласта (давление, необходимое для расширения трещин в пласте). Гидростатические давления флюидов в стволе скважины, наряду с давлениями трения, создаваемыми движением флюидов, не могут превышать давление гидроразрыва, иначе формация разрушится.Если формация разрушается, формация больше не контролируется, и возникает потеря циркуляции. Для успешного первичного цементирования необходимо контролировать потерю циркуляции или потерю жидкости. Давление, испытываемое в стволе скважины, также влияет на рост прочности цемента.

Характеристики пласта

Состав формаций может вызвать проблемы совместимости. Сланцевые образования чувствительны к пресной воде и могут отслоиться, если не будут приняты специальные меры, такие как повышение солености воды.Следует принимать во внимание другие факторы образования и химического состава, такие как набухающие глины и жидкости с высоким pH. Некоторые формации могут также содержать такие элементы, как:

  • Текущие жидкости
  • Жидкости высокого давления
  • Агрессивные газы
  • Другие сложные функции, требующие особого внимания

Ссылки

  1. ↑ API RP 10B, Рекомендуемая практика для испытания цемента для скважин, 22-е издание. 1997. Вашингтон, округ Колумбия: API.

Интересные статьи в OnePetro

Интернет-мультимедиа

Стайлз, Дэвид.2012. Проблемы с оценкой цемента: что мы знаем и чего не знаем. https://webevents.spe.org/products/challenges-with-cement-evaluation-what-we-know-and-what-we-don’t

Внешние ссылки

См. Также

Проект размещения первичного цементирования

Время контакта при цементировании

Восстановительное цементирование

PEH: Цементирование

.

Образцы смешанного цемента 77 и 78

Испытания портландцемента

Испытания портландцемента Д-р Кимберли Куртис Школа гражданского строительства Технологический институт Джорджии Атланта, Джорджия Состав Химическое название Силикат трикальция Химическая формула 3CaO SiO 2 Сокращение

Дополнительная информация

Рабочий лист ограничивающего реагента №1

Рабочий лист ограничивающего реагента №1 1.Учитывая следующую реакцию: (Сначала сбалансируйте уравнение!) C 3 H 8 + O 2 -------> CO 2 + H 2 O a) Если вы начнете с 14,8 г C 3 H 8 и 3,44 г O 2, определить

Дополнительная информация

Обзор стехиометрии

Обзор стехиометрии В этом обзоре 20 задач. Ответы, включая постановку задачи, можно найти во второй половине этого документа. 1. N 2 (г) + 3H 2 (г) --------> 2NH 3 (г) а.азот

Дополнительная информация

Ключ с ответами на листе молярной массы

Таблица с ответами на молярную массу Рассчитайте молярные массы следующих химикатов: 1) Cl 2 71 г / моль 2) KOH 56,1 г / моль 3) BeCl 2 80 г / моль 4) FeCl 3 162,3 г / моль 5) BF 3 67,8 г / моль 6) CCl 2 F 2 121 г / моль

Дополнительная информация

Химические пропорции в соединениях

Глава 6 Химические пропорции соединений. Растворы для практических задач Учебник для учащихся, стр. 201 1.Проблема Анализируется образец соединения и обнаруживается, что он содержит 0,90 г кальция и 1,60 г

. Дополнительная информация

IB Химия. Обзор химии DP

DP Chemistry Review Тема 1: Количественная химия 1.1 Концепция молей и константа Авогадро Заявление об оценке Примените концепцию молей к веществам. Определите количество частиц и количество

Дополнительная информация

ПЕРИОДИЧЕСКАЯ ТАБЛИЦА ЭЛЕМЕНТОВ

ПЕРИОДИЧЕСКАЯ ТАБЛИЦА ЭЛЕМЕНТОВ Периодическая таблица: расположение элементов в горизонтальных рядах (периоды) и вертикальных столбцах (группах) демонстрирует периодическое повторение свойств Первая периодическая таблица: обнаружено

Дополнительная информация

Раздел 6 Концепция крота

Химическая форма 3 Page 62 Ms.Р. Буттигиг Раздел 6 Концепция родинки См. Раздел «Химия для вас», глава 28 стр. 352-363 См. Главу 5 по химии GCSE, стр. 70-79 6.1 Относительная атомная масса. Относительная атомная масса

Дополнительная информация

Обозначение соединений Раздаточный ключ

Именование соединений с раздаточным текстом стр. 2 Назовите каждый из следующих одноатомных катионов: Li + = ион лития Ag + = ион серебра Cd +2 = ион кадмия Cu +2 = ион меди (II) Al +3 = ион алюминия Mg +2 = ион магния

Дополнительная информация

ДОБЫЧА МЕТАЛЛОВ

1 ДОБЫЧА МЕТАЛЛОВ Руды некоторых металлов очень распространены (железо, алюминий), другие встречаются только в ограниченных количествах на отдельных участках, руды необходимо очистить перед восстановлением до металла Дополнительная информация

ПРИЛОЖЕНИЕ B: УПРАЖНЕНИЯ

ПРИЛОЖЕНИЕ B: УПРАЖНЕНИЯ Молекулярная масса, моль и массовый процент Относительная атомная и молекулярная масса Относительная атомная масса (A r) - это константа, которая выражает соотношение

Дополнительная информация

Практические занятия Лабораторное руководство SM-1

ЭКСПЕРИМЕНТ 4: Разделение смеси твердых тел. Прочтите весь эксперимент и определите время, материалы и рабочее пространство перед началом.Не забывайте просматривать разделы по технике безопасности и при необходимости надевать защитные очки.

Дополнительная информация

Разложение. Сочинение

Разложение 1. Твердый карбонат аммония нагревают. 2. Твердый карбонат кальция нагревают. 3. Твердый сульфит кальция нагревают в вакууме. Состав 1. Оксид бария добавлен в дистиллированную воду. 2. Фосфор

Дополнительная информация

Решение проблем.Процент доходности

Таблица навыков Решение проблем Процент выхода Хотя мы можем написать идеально сбалансированные уравнения для представления идеальных реакций, сами по себе реакции часто не идеальны. А реакция не

Дополнительная информация

Учебное пособие к главе 7

Имя: Класс: Дата: ID: Учебное пособие по главе 7 «Множественный выбор». Определите вариант, который лучше всего завершает утверждение или отвечает на вопрос.1. Число атомов в моль любого чистого вещества

Дополнительная информация

Стандарт испытательного материала

Прочность на сжатие AAC (EN 679) Плотность AAC в сухом состоянии (EN 678) Стандарт испытательного материала Усадка при высыхании AAC (EN 680) Кислоторастворимые сульфаты (EN 1744-1 12) Щелочная реакционная способность заполнителя (Раствор

Дополнительная информация

НАПИСАНИЕ ХИМИЧЕСКОЙ ФОРМУЛЫ

НАПИСАНИЕ ХИМИЧЕСКОЙ ФОРМУЛЫ Для ионных соединений должна быть разработана химическая формула.У вас больше не будет списка ионов на экзамене (как на GCSE). Вместо этого вы должны выучить одни и отработать другие.

Дополнительная информация

РАСЧЕТ МОЛЕКУЛЯРНОГО ВЕСА

РАСЧЕТ МОЛЕКУЛЯРНОГО ВЕСА Расчет веса формулы; Значимые числа Page 2 Процентный состав соединения 18 Экспоненциальная запись; Число Авогадро; Моль 28 Расчет эмпирических формул

Дополнительная информация

Блок 10A Примечания по стехиометрии

Блок 10А. Примечания к стехиометрии. Стехиометрия - это громкое слово для процесса, который химики используют для расчета количеств в реакциях.Он использует соотношение коэффициентов, установленное уравнениями сбалансированной реакции

Дополнительная информация

КАРБОКСИМЕТИЛ ЦЕЛЛЮЛОЗА НАТРИЯ

КАРБОКСИМЕТИЛЦЕЛЛЮЛОЗА НАТРИЯ Получена на 28-м заседании JECFA (1984), опубликована в FNP 31/2 (1984) и в FNP 52 (1992). Спецификации на металлы и мышьяк пересмотрены на 55-м заседании JECFA (2000 г.). ADI не указан

Дополнительная информация

нейтроны присутствуют?

Рабочий лист AP Chem Summer Assignment №1 Атомная структура 1.а) Для иона 39 K + укажите, сколько электронов, сколько протонов и сколько 19 нейтронов присутствует? б) Какая из этих частиц имеет наименьшее

Дополнительная информация

W1 МАСТЕРСКАЯ ПО ​​СТОХИОМЕТРИИ

ВВЕДЕНИЕ W1 СЕМИНАР ПО СТОХИОМЕТРИИ Эти заметки и упражнения разработаны, чтобы познакомить вас с основными концепциями, необходимыми для понимания химической формулы или уравнения. Относительные атомные массы

Дополнительная информация

ХИМИЧЕСКИЕ НАЗВАНИЯ И ФОРМУЛЫ

9 ХИМИЧЕСКИЕ НАЗВАНИЯ И ФОРМУЛЫ РАЗДЕЛ 9.1 НАЗВАНИЕ ИОНОВ (страницы 253 258) В этом разделе объясняется использование периодической таблицы для определения заряда иона. Он также определяет многоатомный ион и дает

Дополнительная информация

ХИМИЯ ЦЕМЕНТА И ВИДЫ ЦЕМЕНТА

ХИМИЯ ЦЕМЕНТА И ВИДЫ ЦЕМЕНТА Цемент - это гидравлическое вяжущее, то есть неорганическое неметаллическое тонкоизмельченное вещество, которое после смешивания с водой само схватывается и затвердевает в результате

Дополнительная информация

КАТАЛОГ СПРАВОЧНЫЕ МАТЕРИАЛЫ

ИПТ Институт технологических исследований КАТАЛОГ СПРАВОЧНЫХ МАТЕРИАЛОВ 2014 Лаборатория метрологических справок Стандартные образцы ИПТ www.ipt.br/nmr.htm Av. Проф. Алмейда Прадо № 532 Предио 31 Сидаде

Дополнительная информация

РАСЧЕТ МОЛЕЙ И МОЛЕЙ

35 МОЛЕЙ И МОЛЕВОЙ КУКУЛЬЦИИ ВВЕДЕНИЕ Цель этого раздела - представить некоторые методы расчета количества каждого реагента, используемого в химической реакции, и количества каждого продукта

Дополнительная информация .

PEH: Цементирование - PetroWiki


Добавки, используемые для изменения свойств цементных растворов для использования в приложениях для цементирования нефтяных скважин, делятся на следующие широкие категории: ускорители, замедлители схватывания, расширители, утяжелители, диспергенты, средства контроля водоотдачи, средства против потери циркуляции, прочность -редители ретрогрессии, контроль свободной воды / свободной жидкости, расширительные агенты и специальные добавки.

Спрос на новые присадки с особыми свойствами и улучшенными характеристиками продолжает расти.Эти требования включают такие факторы, как диапазон плотности нанесения, температурная стабильность, экономичность, диапазон вязкости, особая функция, многофункциональность, скорость растворимости, синергизм с дополнительными добавками и устойчивость к изменчивости цемента.

Ускорители

Ускорители ускоряют или сокращают время реакции, необходимое для того, чтобы цементный раствор превратился в затвердевшую массу. В случае нефтесодержащих цементных растворов это указывает на сокращение времени загустевания и / или увеличение скорости развития прочности на сжатие раствора.Ускорение особенно полезно в случаях, когда требуется цементный раствор с низкой плотностью (например, с высоким содержанием воды) или где встречаются низкотемпературные образования.

Хлорид кальция (CaCl 2 ). Из хлоридных солей наиболее широко используется CaCl 2 , и в большинстве случаев он также является наиболее экономичным. Исключением являются водорастворимые полимеры, такие как агенты, снижающие водоотдачу.Основные преимущества использования CaCl 2 заключаются в значительном сокращении времени загустевания и в том, что независимо от концентрации он всегда действует как ускоритель. Нормальный диапазон использования CaCl 2 составляет от 1 до 4% от веса цемента (BWOC). При концентрации BWOC выше 6% результаты станут непредсказуемыми и может произойти гелеобразование.

Хлорид натрия (NaCl). NaCl - вторая наиболее широко используемая хлоридная соль.Поваренная поваренная соль NaCl является наиболее универсальной из хлоридных солей. В зависимости от концентрации использования NaCl может действовать как ускоритель или замедлитель, и он действует как мягкий диспергатор во всех концентрациях. Некоторые дополнительные применения NaCl включают улучшение сцепления с трубой, стабилизацию реактивных пластов (например, глинистых сланцев и гумбо), улучшение сцепления с солевыми пластами, снижение проницаемости затвердевшего цемента, повышение долговечности затвердевшего цемента при контакте с пластами, содержащими соленую воду, и увеличить плотность суспензии без использования диспергаторов или снижения содержания воды.Как правило, NaCl действует как ускоритель при концентрациях от 1 до 10% от массы воды (BWOW), хотя наиболее часто используемая концентрация NaCl в качестве ускорителя составляет 3% BWOW.

Хлорид калия (KCl). Ускорение KCl аналогично ускорению NaCl. KCl имеет два преимущества по сравнению с другими ускорителями: его стабилизирующий эффект на сланцы или активные глиносодержащие пласты и его минимальное влияние на характеристики водоотдающих добавок. В качестве ускорителя можно использовать KCl в концентрациях до 5% BWOW; для стабилизации пласта эффективны концентрации 3% BWOW.

Силикат натрия (Na 2 SiO 3 ). Силикат натрия обычно считается химическим наполнителем, хотя он также действует как ускоритель. Эффективность зависит от концентрации и молекулярной массы. Низкомолекулярная форма может использоваться при концентрациях 1% BWOC или менее для ускорения получения суспензий нормальной плотности.Высокомолекулярная форма является эффективным ускорителем при концентрациях до 4% BWOC. Мета-силикат натрия также обеспечивает отличный контроль потери циркуляции при использовании с цементом или рассолами CaCl 2 .

Морская вода. Морская вода - это встречающаяся в природе смесь хлоридных солей щелочных металлов, включая хлорид магния. Состав морской воды во всем мире сильно различается. Например, эквивалентное содержание хлоридной соли может варьироваться от 2,7 до 3,8% BWOW.

Гидроксиды щелочных металлов [ Ca (OH) 2 , NaOH ] . Гидроксиды щелочных металлов обычно используются в пуццолановых цементах. Они ускоряют как пуццолановый, так и цементный компоненты, изменяя химический состав воды.

Монокальциевый алюминат (CaO Al 2 O 3 = CA ).Алюминат кальция используется в качестве ускорителя в пуццолановых и гипсовых цементах.

Ретардеры

Обычно в скважинах используются цементы API класса A, C, G и H. Эти цементы, произведенные в соответствии с API Spec. 10A, [8] , не имеют достаточно длительного срока службы жидкости (времени загустевания) для скважинных применений при BHCT выше 38 ° C (100 ° F). Чтобы продлить время загустевания сверх времени, полученного с чистым (цемент и вода без добавок или минералов) цементным раствором API-класса, требуются добавки, известные как замедлители схватывания.

Лигносульфонаты. Из химических соединений, которые были идентифицированы как замедлители схватывания, лигносульфонаты являются наиболее широко используемыми. Лигносульфонат представляет собой соль сульфоната металла, полученную из лигнина, полученного при переработке древесных отходов. Обычными лигносульфонатами являются лигносульфонат кальция и натрия.

Три сорта лигносульфоната доступны для замедления образования цементных растворов. Каждый сорт доступен в виде солей кальция / натрия или натрия. Три сорта фильтруются, очищаются и модифицируются.

Отфильтрованная кальциевая или натриевая соль обычно используется при температуре 200 ° F BHCT или ниже при концентрации 0,6% BWOC или ниже. Его можно использовать при более высоких температурах, но обычно это ограничивается экономическими соображениями. Очищенный сорт представляет собой класс лигносульфонатов с пониженным содержанием сахара. Соль кальция / натрия обычно используется при BHCT 200 ° F или ниже и при концентрации 0,5% BWOC или меньше.

Модифицированный сорт представляет лигносульфонаты, которые были смешаны или прореагировали со вторым компонентом.Соединения, наиболее часто используемые в качестве компонентов смеси, представляют собой борную кислоту и гидроксикарбоновые кислоты или их соли. Смешанные материалы доступны в виде солей кальция или натрия. Модифицированные лигносульфонаты обычно используются при BHCT 200 ° F или выше. Они более эффективны, чем очищенный сорт, при температурах выше 250 ° F. Преимуществами, будь то смесь или прореагировавший продукт, являются их улучшенная высокотемпературная стабильность выше 300 ° F BHCT, повышенная диспергирующая активность и синергизм с добавками, снижающими водоотдачу.

Производные целлюлозы. Два полимера целлюлозы используются при цементировании скважин. Это гидроксиэтилцеллюлоза (HEC) и карбоксиметилгидроксиэтилцеллюлоза (CMHEC). ГЭЦ обычно считают добавкой, снижающей водоотдачу. Хотя в качестве возможного варианта стоит отметить, что при BHCT 125 ° F или меньше время загустевания в пресноводной суспензии можно увеличить примерно на два часа. Традиционно единственной целлюлозой, которая считается замедлителем схватывания, является CMHEC.Это в значительной степени связано с тем, что он действует как замедлитель схватывания при температуре BHCT примерно до 230 ° F при тех же концентрациях, что и лигносульфонат кальция, но он также обеспечивает хороший контроль потери жидкости.

Гидроксикарбоновые кислоты. Гидроксикарбоновые кислоты хорошо известны своими антиоксидантными и связывающими свойствами, которые улучшают характеристики цементного раствора. Антиоксидантные свойства улучшают температурную стабильность растворимых соединений, таких как добавки, снижающие водоотдачу. Обычно используемые гидроксикарбоновые кислоты и их производные представляют собой лимонную кислоту, винную кислоту, глюконовую кислоту, глюкогептонат и глюконо-дельта-лактон.Обычно используемые гидроксикарбоновые кислоты обычно получают из сахаров природного происхождения.

Фосфатыорганические. Органофосфонаты, за некоторыми исключениями, являются наиболее мощными замедлителями схватывания, используемыми в цементе. Эти материалы не получили широкого распространения при цементировании скважин из-за необходимой низкой концентрации, сложности точных измерений и чувствительности к концентрации. Преимущество фосфорорганических замедлителей схватывания заключается в их эффективности в сверхвысокотемпературных скважинах ( > 450 ° F) или там, где требуется увеличенное время загустения до 24 часов или больше.

Синтетические замедлители схватывания. Термин «синтетический замедлитель схватывания» является неправильным, поскольку все ранее упомянутые замедлители схватывания фактически созданы человеком. Однако термин «синтетический замедлитель схватывания» применялся к семейству низкомолекулярных сополимеров. Эти замедлители схватывания основаны на тех же функциональных группах, что и обычные замедлители схватывания (например, сульфонат, карбоновая кислота или ароматическое соединение). Двумя распространенными синтетическими замедлителями схватывания являются сополимеры малеинового ангидрида и 2-акриламидо-2-метилпропансульфоновой кислоты (AMPS).

Неорганические соединения. Механизм замедления гидратации цемента неорганическими соединениями отличается от такового для ранее рассмотренных замедлителей схватывания. Неорганические соединения, обычно используемые в качестве замедлителей схватывания цемента, - это бура (Na 2 B 4 O 7 • 10H 2 ) и другие бораты, такие как борная кислота (H 3 BO 3 ) и ее натрий. соль и оксид цинка (ZnO).

Бораты обычно используются в качестве замедлителя схватывания для высокотемпературных замедлителей схватывания при BHCT 300 ° F (149 ° C) и выше.При более высоких температурах борат является менее мощным замедлителем схватывания, чем при более низких температурах; однако он оказывает синергетический эффект с другими замедлителями схватывания, такими как лигносульфонаты, в результате чего комбинация обеспечивает лучшее замедление схватывания, чем любой из замедлителей по отдельности. ZnO является сильным замедлителем схватывания при использовании отдельно. Обычно он используется для замедления образования химически расширенных цементов.

Соль как замедлитель схватывания. Вода, содержащая соли с концентрацией более 20% BWOW, оказывает замедляющее действие на цемент.Гелеобразование проявляется в профиле вязкости насыщенных солевых суспензий во время загустевания по внезапному увеличению единиц консистенции Бердена, которые затем выравниваются перед схватыванием. Насыщенные солевые растворы полезны для цементирования через соляные купола. Они также помогают защитить сланцевые секции от оседания и вспучивания во время цементирования и помогают предотвратить образование кольцевых перемычек и возможную потерю циркуляции. Насыщенные солевые цементы также диспергированы, и соль снижает эффективность добавок, снижающих водоотдачу.

Легкие добавки / наполнители

Чистые цементные растворы, приготовленные из цементов API классов A, C, G или H с использованием количества воды, рекомендованного в API Spec. 10A [8] будет иметь массу суспензии более 15 фунтов / галлон. Во многих частях мира обычны сильная потеря циркуляции и слабые пласты с низким градиентом трещиноватости. Эти ситуации требуют использования цементных систем низкой плотности, которые снижают гидростатическое давление столба жидкости во время укладки цемента.Следовательно, для снижения веса суспензии используются легкие добавки (также известные как наполнители). Можно использовать несколько различных типов материалов. К ним относятся физические наполнители (глины и органические вещества), пуццолановые наполнители, химические наполнители и газы.

Любой материал с удельным весом ниже, чем у цемента, будет действовать как наполнитель. Эти материалы, как правило, снижают плотность цементных растворов одним из трех способов. Пуццолановые и инертные органические материалы имеют более низкую плотность, чем цемент, и могут использоваться для частичной замены цемента, тем самым снижая плотность твердого материала в суспензии.В случае физических и химических наполнителей они не только имеют более низкую плотность, но также поглощают воду, что позволяет добавлять больше воды к суспензии без образования свободной жидкости или разделения частиц. Газы ведут себя по-разному, поскольку они используются для производства вспененного цемента, который имеет исключительно низкую плотность и приемлемую прочность на сжатие.

Во многих легких суспензиях обычно используется комбинация различных типов материалов. Например, пуццолановые и химические наполнители используются или могут использоваться с физическими наполнителями и / или газами.Конструкции пуццолановой суспензии почти всегда содержат бентонит, а газы обычно содержат химический наполнитель для стабилизации пены. Легкие добавки также увеличивают выход суспензии и могут привести к получению экономичной суспензии.

Физические расширители. Это сыпучие материалы, которые действуют как расширители цемента, увеличивая потребность в воде или уменьшая средний удельный вес сухой смеси. В эту категорию попадают два основных класса материалов: глины и инертные органические материалы.Наиболее часто используемый глинистый материал - бентонит, хотя также используется аттапульгит. Обычно используемые инертные органические материалы - это перлит, гильсонит, молотый уголь и молотый каучук.

Бентонит (гель). Этот наполнитель представляет собой коллоидный глинистый минерал, состоящий преимущественно из монтмориллонита натрия. [ NaAl 2 (AlSi 3 O 10 ) • 2OH] . Содержание монтмориллонита в бентоните является определяющим фактором его эффективности в качестве наполнителя; следовательно, это один из двух расширителей, на которые распространяется спецификация API.Бентонит может быть добавлен к цементу любого класса API и обычно используется в сочетании с другими наполнителями. Бентонит используется для предотвращения отделения твердых частиц, уменьшения количества свободной воды, уменьшения потерь жидкости и увеличения выхода суспензии.

Бентонит обычно используется при концентрациях от 1 до 16% BWOC. Он может быть смешан с цементом в сухом виде или предварительно гидратирован в воде для замешивания. При предварительной гидратации эффект предварительно гидратированного 1% BWOC приблизительно равен 3,5% BWOC в сухом виде, но предел текучести намного выше.Для достижения наилучших результатов предварительно гидратированную смесь бентонита и воды следует использовать для смешивания цементного раствора вскоре после завершения предварительной гидратации. Рекомендуется проводить лабораторные испытания для определения надлежащей концентрации геля и процедуры смешивания для предварительно гидратированного бентонита. Бентонит для цемента не должен заменять технический или «грязевой гель». Лигносульфонат обычно используется в качестве диспергатора и замедлителя схватывания в цементах с высоким содержанием геля для снижения вязкости суспензии.

Аттапульгит (солевой гель). Это более эффективный наполнитель, чем бентонит, в морской воде или растворах с высоким содержанием соли, но он не регулируется или не имеет спецификации. Аттапульгит, (Mg, Al) 2 (OH / Si 4 O 10 ) • 12H 2 O, состоит из скоплений волокнистых иголок, которые требуют высокого усилия сдвига для диспергирования в воде. Он производит многие из тех же эффектов, что и бентонит, за исключением того, что он не снижает потери жидкости. Недостатком аттапульгита является то, что из-за сходства волокон с волокнами асбеста его использование запрещено в некоторых странах.Доступны гранулированные формы, которые могут быть разрешены в качестве замены.

вспученный перлит. Expanded Perlite - это кремнистое вулканическое стекло, которое подвергается термообработке с образованием пористой частицы, содержащей увлеченный воздух. Это продукт с высокой плавучестью, который требует добавления от 2 до 6% бентонита BWOC для предотвращения отделения от шлама. Из-за его низкой прочности на раздавливание потребность в воде для перлитсодержащих суспензий должна быть увеличена, чтобы обеспечить сжимаемость суспензии в скважинных условиях.Потеря объема также должна учитываться при расчете объема заполнения.

Гильсонит. Это асфальтовый материал или твердый углеводород, который встречается только в Юте и Колорадо. Это один из самых чистых битумов природного происхождения. Гильсонит можно использовать с плотностью суспензии всего 11 фунтов / галлон при нормальной концентрации от 5 до 25 фунтов / мешок (sk) цемента, и он закупорит поплавковое оборудование и перекрывает герметичные кольцевые зазоры. Низкая плотность гильсонита является результатом его низкой плотности (1.07 г / см 3 ). Поскольку гильсонит является органическим материалом, он обладает высокой плавучестью и будет всплывать из суспензии, если не будет ингибирован. Бентонит обычно добавляют в концентрации от 2 до 6% для предотвращения образования перемычек в стволе скважины.

Угольный щебень. Дробленый уголь используется для тех же целей, что и гильсонит (т. Е. Для уменьшения веса и контроля потери циркуляции). Обычно он используется при концентрациях до 50 фунтов / куб.м цемента. Его плотность немного выше (1,3 г / см 3 ), что требует небольшого увеличения содержания воды.Добавление бентонита для предотвращения расслоения обычно не требуется.

Шлифованная резина. Это недорогая альтернатива гильсониту, которую можно использовать в аналогичных целях. Плотность резиновой смеси немного выше (1,14 г / см 3 ). Физические свойства более изменчивы, чем у гильсонита, и зависят от источника материала. Одним из основных преимуществ измельченной резины является ее низкая стоимость. В настоящее время нет никаких проблем с окружающей средой при использовании резиновой смеси в цементной системе.

Пуццолановые расширители

Ряд пуццолановых материалов доступен для использования в производстве легких цементных растворов. Они могут быть как естественными, так и искусственными и включают зольную пыль, ДЭ, микрокремнезем, метакаолин и гранулированный доменный шлак. По сравнению с другими добавками, пуццолановые материалы обычно добавляют в больших объемах. Летучая зола, например, может быть смешана с цементом при соотношении летучей золы к цементу в диапазоне от 20:80 до 80:20, исходя из «эквивалентного веса мешка» (то есть, когда мешок с летучей золой имеет такое же абсолютный объем, как у мешка с цементом).Пуццолановые материалы имеют более низкий удельный вес, чем у цемента, и именно этот более низкий удельный вес дает пуццоланово-портландцементный раствор более низкой плотности, чем портландцементный раствор аналогичной консистенции. В зависимости от плотности пуццолановые цементы также имеют тенденцию давать затвердевший цемент, более устойчивый к воздействию пластовых вод.

Летучая зола. Зола-унос - безусловно, самый широко используемый из пуццолановых материалов. Согласно стандарту ASTM C618, , [9] существует два типа летучей золы: класс F и класс C; Класс N относится к натуральным пуццолановым материалам.Однако существует потребность в третьей категории, основанной на характеристиках летучей золы. Стандарт ASTM C618 , [9] классифицирует летучую золу на основе комбинированного процентного содержания SiO 2 + Al 2 O 3 + Fe 2 O 3 —Класс F, имеющий минимум> 90% и класс C 50%. На самом деле, существует гораздо большая взаимосвязь между содержанием CaO и характеристиками. Содержание CaO колеблется от 2 или 3% до 30% от массы летучей золы.«Настоящая» зола-унос класса F имеет содержание CaO менее 10%, тогда как «истинная» зола класса C имеет содержание CaO более 20%. Летучая зола с содержанием CaO от 10 до 20% ведет себя несколько иначе, чем у истинного класса F или класса C. Летучая зола обычно состоит из аморфных стекловидных частиц сферической формы.

Зола-унос ASTM класса F наиболее часто используется при цементировании нефтяных скважин. Именно на эту летучую золу распространяются спецификации API. Основными преимуществами золы-уноса класса F являются ее низкая стоимость и ее распространение во всем мире.Рабочие характеристики летучей золы класса F мало различаются от партии к партии из определенного источника. Однако различия между источниками могут быть значительными, поскольку состав может варьироваться от истинно низкого содержания CaO до 10-20% CaO. Это приводит к значительным отклонениям в эксплуатационных характеристиках, и по этой причине перед использованием необходимо тестировать различные источники летучей золы класса F. Также необходимо определить удельный вес. Некоторые электростанции производят летучую золу класса F с высоким содержанием углерода из-за плохого горения.Их следует избегать при цементировании нефтяных скважин, поскольку они могут вызвать серьезные проблемы гелеобразования. Использование летучей золы класса C в качестве наполнителя для цементирования скважин относительно ограничено. Частично это связано с ограниченной доступностью золы-уноса класса C и значительной вариабельностью, которая существует не только между источниками, но и в значительной степени между партиями из данного источника.

Микросферы. Микросферы используются, когда требуется плотность суспензии от 8,5 до 11 фунтов / галлон.Это полые сферы, получаемые как побочный продукт на электростанциях или специально разработанные. Микросферы побочного продукта представляют собой полые стеклянные сферы из летучей золы. Обычно они присутствуют в летучей золе класса F, но обычно в небольших количествах. Однако они получаются в значительных количествах, когда избыток летучей золы удаляется в отстойники для отходов. Полые сферы низкой плотности всплывают наверх и разделяются флотационным процессом. Эти полые сферы состоят из алюмосиликатных стекол с высоким содержанием кремнезема, типичных для летучей золы, и обычно заполнены смесью дымовых газов, таких как CO 2 , NO x и SO x .Синтетические полые сферы производятся из натриево-известково-боросиликатного стекла и имеют формулу, обеспечивающую высокое отношение прочности к массе - они обычно заполнены азотом. Синтезированные микросферы обеспечивают более однородный состав и демонстрируют лучшую устойчивость к механическому сдвигу и гидравлическому давлению. Основным недостатком большинства микросфер является их склонность к раздавливанию при смешивании и перекачивании, а также при воздействии гидростатического давления, превышающего средний предел прочности на раздавливание.Это может привести к увеличению плотности суспензии, увеличению вязкости суспензии, уменьшению объема суспензии и преждевременной дегидратации суспензии.

Однако эффект измельчения можно свести к минимуму за счет подходящего выбора микросфер. Эти эффекты можно спрогнозировать и учесть при расчетах конструкции шлама для получения шлама, имеющего требуемые характеристики для условий скважины. Легкие системы, включающие микросферы, могут обеспечить отличное увеличение прочности и могут помочь контролировать потерю жидкости, осаждение и свободную воду.

Microsilica. Микродиоксид кремния, также известный как микрокремнезем, представляет собой мелкодисперсный диоксид кремния с большой площадью поверхности, который может быть получен в виде жидкости или порошка. В виде порошка он может быть в исходном состоянии, уплотнен или гранулирован. Насыпная плотность уплотненного микрокремнезема составляет от 400 до 500 кг / м 3 . Microsilica обычно имеет удельный вес около 2,2.

Микрокремнезем состоит в основном из стекловидного кремнезема и имеет содержание SiO 2 от 85 до 95%, что делает его значительно чище, чем другие пуццолановые материалы.Также считается, что частицы микрокремнезема придают суспензии полезные физические свойства. Считается, что из-за своей крупности они заполняют пустоты между более крупными частицами цемента, что приводит к образованию плотной твердой матрицы даже до того, как произойдет какая-либо химическая реакция между частицами цемента. Реологические свойства обычно улучшаются при добавлении микрокремнезема, потому что крошечные сферы могут действовать как очень маленькие шарикоподшипники и / или они вытесняют часть воды, присутствующей между флокулированными зернами цемента, тем самым увеличивая количество доступной жидкости.Концентрация микрокремнезема может составлять от 3 до 30% BWOC, в зависимости от требуемой суспензии и свойств.

Физические и химические свойства микрокремнезема делают его очень полезным для множества применений, кроме как в качестве наполнителя. К ним относятся повышение прочности на сжатие для низкотемпературного легкого цемента, тиксотропные свойства для цементирования под давлением, потеря циркуляции, миграция газа и степень контроля водоотдачи.

Недостатком микрокремнезема является его стоимость.Первоначально рассматриваемый как отходы, с его увеличившимся использованием в строительной индустрии за последнее десятилетие, он стал больше специализированным химическим веществом. Кроме того, при колебаниях спроса и предложения возникает вопрос о том, чтобы иметь постоянные поставки хорошего источника продукта.

Диатомовая земля. DE - природный пуццолан, состоящий из скелетов микроорганизмов (диатомовых водорослей), отложившихся в пресной или морской воде.

Химические расширители

Некоторые материалы эффективны в качестве химических наполнителей.В общем, любой материал, который может предсказуемо ускорять и увеличивать концентрацию исходных продуктов гидратации, эффективен как химический наполнитель.

Силикат натрия. Это наиболее часто используемый химический наполнитель для цементных растворов. Силикат натрия в пять-шесть раз эффективнее бентонита при эквивалентной концентрации. В отличие от физических или пуццолановых наполнителей силикат натрия обладает высокой реакционной способностью по отношению к цементу.

Силикат натрия доступен как в сухом, так и в жидком виде, что делает его легко адаптируемым для применения на суше и на море.Твердая форма представляет собой метасиликат натрия (Na 2 SiO 3 ), и он обычно смешивается в сухом виде с цементом в концентрации от 1 до 3,5% BWOC при плотностях от 14,2 до 11,5 фунт / галлон. Он не так эффективен, если растворяется непосредственно в воде для смешивания, если только CaCl 2 не растворяется в воде первым. Если желательна жидкая система, лучше использовать жидкую форму. Жидкий силикат натрия обычно используется в морской воде с концентрацией от 0,1 до 0,8 галлона / ск цемента при плотности 14.От 2 до 11,5 фунт / галлон. Двумя основными преимуществами силикатов натрия в качестве наполнителей являются их высокий выход и низкая концентрация использования.

Гипс. Полугидратная форма сульфата кальция (CaSO 4 • 0,5H 2 O) обычно используется в качестве наполнителя. Обычно он используется при концентрациях 15% BWOC или менее для приготовления тиксотропных суспензий для использования в приложениях, где существуют серьезные проблемы потери циркуляции или где желательны свойства расширения для улучшения сцепления.Типичные составы суспензий для борьбы с потерей циркуляции, BHCT ≤ 125 ° F (52 ° C), содержат от 8 до 12% гипса BWOC с хорошими характеристиками расширения (от 0,2 до 0,4%). Для улучшенного склеивания, где требуется повышенное расширение (от 0,4 до 1%), используется NaCl (≥ 10% BWOW).

Вспененный цемент

Можно приготовить растворы плотностью от 4 до 18 фунтов / галлон с использованием вспененного цемента. Пеноцемент - это смесь цементного раствора, пенообразователя и газа. Вспененный цемент образуется, когда газ, обычно азот, нагнетается под высоким давлением в базовый раствор, содержащий пенообразователь и стабилизатор пены.Газообразный азот можно рассматривать как инертный, он не вступает в реакцию и не изменяет образование продукта гидратации цемента. В особых случаях вместо азота можно использовать сжатый воздух для создания вспененного цемента. В целом, из-за давления, скорости и объемов газа азотное насосное оборудование обеспечивает более надежную подачу газа. В результате образуется чрезвычайно устойчивая легкая суспензия, напоминающая серую пену для бритья. Когда вспененные суспензии правильно перемешиваются и измельчаются, они содержат крошечные дискретные пузырьки, которые не сливаются или не мигрируют.Поскольку образующиеся пузырьки не связаны между собой, они образуют цементную матрицу низкой плотности с низкой проницаемостью и относительно высокой прочностью.

Практически любая работа по цементированию нефтяных скважин может рассматриваться как кандидат на применение вспененного цементирования, включая функции первичного и восстановительного цементирования на суше и на море, а также в вертикальных или горизонтальных скважинах. Несмотря на то, что его конструкция и выполнение могут быть более сложными, чем стандартные работы, вспененный цемент имеет множество преимуществ, позволяющих преодолеть эти проблемы. Вспененный цемент легкий, обеспечивает отличное соотношение прочности и плотности, пластичен, улучшает удаление бурового раствора, расширяется, помогает предотвратить миграцию газа, улучшает зональную изоляцию, обеспечивает контроль водоотдачи, применим для сжатия и закупоривания, изолирует, стабилизирует при высоких значениях температур, совместим с непортландцементами, упрощает логистику добавок, увеличивает объем, имеет низкую проницаемость, устойчив к перетоку и создает синергетический эффект с некоторыми добавками, что улучшает свойства добавки.Недостатком вспененного цемента является необходимость в специализированном цементировочном оборудовании как для полевого применения, так и для лабораторных испытаний.

Утяжелители

Утяжелители или тяжеловесные добавки используются для увеличения плотности суспензии для контроля скважин с высоким давлением. Утяжелители обычно требуются при плотностях более 17 фунтов / галлон, когда диспергаторы или диоксид кремния больше не эффективны. Основные требования к утяжелителям заключаются в том, чтобы удельный вес был больше, чем у цемента, распределение частиц по размерам было постоянным, они имели низкую потребность в воде, они были химически инертными в цементном растворе и не мешали работе каротажных инструментов.

Гематит (Fe 2 O 3 ). Это наиболее часто используемый утяжелитель. Гематит - это природный минерал кирпично-красного цвета с тусклым металлическим блеском. Он содержит около 70% железа. Удельный вес гематита колеблется от 4,9 до 5,3, в зависимости от чистоты, и он имеет твердость по Моосу приблизительно 6.

Ильменит (FeO TiO 2 ). Он не так часто используется, как гематит, хотя имеет некоторые преимущества перед гематитом. Ильменит - это природный минерал от черного до темно-коричневато-черного цвета с субметаллическим блеском, содержащий примерно 37% железа. По внешнему виду он напоминает магнетит, но имеет лишь слабые магнитные свойства. Удельный вес колеблется от 4,5 до 5, в зависимости от чистоты, и твердость по шкале Мооса от 5 до 6.

Хаусманнит (Mn 3 O 4 ). Хаусманнит все чаще используется из-за его уникальных свойств, устраняющих многие недостатки, присущие другим утяжелителям. Хаусманнит - это темно-коричнево-черный материал, который является побочным продуктом перерабатывающей промышленности. Диапазон удельного веса или твердости по Моосу точно не установлен. Благодаря своему размеру частиц и уникальным характеристикам смачивания, материал может суспендироваться в воде для смешивания с концентрацией до 40 мас.% При минимальном перемешивании, обеспечивая жидкий утяжелитель.Поскольку средний размер частиц гаусманнита намного меньше, чем у цемента, он позволяет материалу вписываться в матрицу пор цемента, вытесняя увлеченную воду, что приводит к более низкой вязкости и значительно более стабильной суспензии. Основным недостатком является то, что он доступен не во всех географических регионах, поэтому дополнительные расходы на доставку могут сделать его слишком дорогим.

Барит (BaSO 4 ) Барит обычно не используется при цементировании в качестве утяжелителя из-за его большой площади поверхности и высокого водопотребления.Это мягкий светло-серый неметаллический материал природного происхождения. Удельный вес колеблется от 4,0 до 4,5, в зависимости от чистоты, а твердость по шкале Мооса составляет от 2,5 до 3,5.

Диспергенты

Диспергаторы, также известные как уменьшители трения, широко используются в цементных растворах для улучшения реологических свойств, связанных с текучестью раствора. Диспергаторы используются в основном для снижения давления на трение цементных растворов, когда они закачиваются в скважину.Преобразование давления трения суспензии во время закачки снижает скорость закачки, необходимую для получения турбулентного потока для конкретных условий скважины, снижает давление закачки на поверхности и мощность, необходимую для закачки цемента в скважину, и снижает давление, оказываемое на слабые пласты, что может препятствовать циркуляции убытки.

Еще одно преимущество диспергаторов состоит в том, что они позволяют получать суспензии с высоким соотношением твердых веществ и воды, которые обладают хорошими реологическими свойствами. Этот фактор был использован при разработке суспензий с высокой плотностью до примерно 17 фунтов на метр / галлон без необходимости использования утяжеляющей добавки.Эту концепцию также можно использовать для разработки суспензий с низкой плотностью, в которых содержание твердых веществ с высоким содержанием твердых частиц включает легкие наполнители.

Диспергенты тщательно изучены. Принято считать, что диспергаторы минимизируют или предотвращают флокуляцию частиц цемента, поскольку диспергатор адсорбируется на частице гидратационного цемента, вызывая отрицательный заряд поверхности частиц и отталкивание друг друга. Вода, которая в противном случае была бы унесена флокулированной системой, также становится доступной для дополнительной смазки суспензии.

Полисульфированный нафталин (PNS). Это самый распространенный диспергатор; он доступен в виде соли кальция и / или натрия и может быть получен как в твердой, так и в жидкой форме. Коммерческая жидкая форма обычно имеет содержание твердых веществ приблизительно 40%. Преимущество использования PNS заключается в том, что могут быть получены улучшенные реологические свойства, а суспензии могут перекачиваться с пониженным давлением трения. PNS также позволяет создавать суспензии с более высоким соотношением твердых веществ и воды с улучшенными свойствами.

Гидроксикарбоновые кислоты. Эти кислоты, такие как лимонная кислота, могут использоваться в качестве основного диспергатора в пресноводных суспензиях при более высоких температурах (BHCT ≥ 200 ° F). Обычно это выгодно для цементов с высоким содержанием свободной щелочи ( > 0,75%), чтобы компенсировать их замедляющие свойства. Лимонная кислота также используется в качестве диспергатора в цементных растворах с соленой и морской водой. Концентрация использования ограничена желаемой температурой и временем загустения, хотя концентрации равны 0.Обычно достаточно от 5 до 1,0% BWOC.

Добавки для контроля водоотдачи (FLA)

FLA используются для поддержания постоянного объема жидкости в цементном растворе, чтобы гарантировать, что рабочие характеристики раствора остаются в приемлемом диапазоне. Изменчивость каждого из этих параметров зависит от содержания воды в суспензии. Например, если содержание воды больше, чем предполагалось, обычно происходит следующее: время загустевания, потеря жидкости, свободная жидкость, седиментация, проницаемость и пористость будут увеличиваться; а плотность, вязкость и прочность на сжатие будут уменьшены.Если содержание воды меньше заданного, обычно происходит обратное. Величина изменения напрямую связана с количеством жидкости, потерянной из суспензии. Поскольку предсказуемость характеристик обычно является наиболее важным параметром в операции цементирования, значительное внимание было уделено механическому контролю плотности цементного раствора во время смешивания раствора для обеспечения воспроизводимости. Эквивалентное значение имеет плотность суспензии во время вытеснения, которая напрямую связана с контролем потери жидкости.

Цементные суспензии - это коллоидные суспензии, состоящие из различных твердых и жидких фаз. Во время операции цементирования существует несколько возможностей для отделения жидкой фазы от цементного раствора. Это может произойти, когда суспензия проходит через небольшие отверстия или порты внутри кольцевого пространства. Когда суспензия проходит через отверстия, жидкая фаза может ускоряться, что приводит к образованию мостиков между частицами. В кольцевом пространстве ствола скважины жидкость может вытесняться из суспензии, когда она проходит через суженные участки или в пласт, что приводит к увеличению ECD, что может привести к разрыву пласта (потеря циркуляции) или мгновенному схватыванию (дегидратация).После размещения жидкая фаза фильтруется до проницаемых пластов, что приводит к уменьшению объема суспензии и эффективного гидростатического давления, создавая возможность миграции пластовой жидкости в цементный столб и через него. Следовательно, FLA используются для предотвращения сегрегации твердых частиц во время размещения и для управления скоростью утечки жидкости в статическом состоянии.

Чистые цементные растворы обычно показывают неконтролируемую потерю жидкости по API не менее 1500 см. 3 /30 мин.Это значение является чрезмерным для большинства операций по цементированию, где встречаются проницаемые пласты или где будут использоваться длинные колонны цемента. Величина контроля водоотдачи, необходимая для конкретной операции, широко варьируется и во многом зависит от плотности суспензии, содержания воды, свойств пласта и кольцевого зазора.

Некоторые материалы эффективны как FLA. Материалы, которые используются в настоящее время, можно условно разделить на две группы в соответствии с их характеристиками растворимости: водонерастворимые и водорастворимые.За исключением бентонита, нерастворимые в воде материалы представляют собой полимерные смолы. Все нерастворимые в воде материалы действуют как понизители проницаемости. Водорастворимые материалы представляют собой модифицированные природные полимеры, целлюлозы и полимеры на винилиновой основе. Все полимерные материалы, не растворимые в воде или растворимые в воде, являются синтетическими (искусственными) материалами. Действие FLA зависит от их растворимости. Нерастворимые в воде вещества действуют за счет снижения проницаемости образовавшейся фильтровальной корки.

.

Веб-страница не найдена на InspectApedia.com

.

Что делать, если ссылка на веб-страницу на InspectApedia.com приводит к ошибке страницы 404

Это так же просто, как ... ну, выбирая из 1, 2 или 3

  1. Воспользуйтесь окном поиска InspectAPedia в правом верхнем углу нашей веб-страницы, найдите нужный текст или информацию, а затем просмотрите ссылки, которые возвращает наша пользовательская поисковая система Google
  2. Отправьте нам электронное письмо напрямую с просьбой помочь в поиске информации, которую вы искали - просто воспользуйтесь ссылкой СВЯЗАТЬСЯ С НАМИ на любой из наших веб-страниц, включая эту, и мы ответим как можно скорее.
  3. Используйте кнопку НАЗАД вашего веб-браузера или стрелку (обычно в верхнем левом углу экрана браузера рядом с окном, показывающим URL-адрес страницы, на которой вы находитесь), чтобы вернуться к предыдущей статье, которую вы просматривали. Если вы хотите, вы также можете отправить нам электронное письмо с этим именем или URL-адресом веб-страницы и сообщить нам, что не сработало и какая информация вам нужна.

    Если вы действительно хотите нам помочь, используйте в браузере кнопку НАЗАД, затем скопируйте URL-адрес веб-страницы, которую вы пытались загрузить, и используйте нашу ссылку СВЯЗАТЬСЯ С НАМИ (находится как вверху, так и внизу страницы), чтобы отправьте нам эту информацию по электронной почте, чтобы мы могли решить проблему.- Благодаря.

Приносим свои извинения за этот SNAFU и обещаем сделать все возможное, чтобы быстро ответить вам и исправить ошибку.

- Редактор, InspectApedia.com

Задайте вопрос или введите условия поиска в поле поиска InspectApedia чуть ниже.

Мы также предоставляем МАСТЕР-ИНДЕКС по этой теме, или вы можете попробовать верхнюю или нижнюю панель ПОИСКА как быстрый способ найти необходимую информацию.

Зеленые ссылки показывают, где вы находитесь. © Copyright 2017 InspectApedia.com, Все права защищены.

Издатель InspectApedia.com - Дэниел Фридман .

Создание компании по сбыту цемента

Вы заинтересованы в открытии бизнеса по сбыту цемента? Хотите начать покупать и продавать цемент в БОЛЬШОМ МАСШТАБЕ? Вы хотите стать дистрибьютором таких производителей цемента, как Dangote, BUA, IBETO, LAFARGE WAPCO, CCNN и т. Д. ?

Если вы ответили ДА на любой из вышеперечисленных вопросов, обратите внимание на содержимое этой страницы, поскольку я расскажу вам, как начать свой собственный бизнес по продаже цемента, который приносит миллионы найр ежемесячно!

Я знаю, что вы искали, как начать покупать и продавать цемент.Я понимаю. Вы изо всех сил старались стать дистрибьютором Dangote.

Да, несколько человек были обмануты и обмануты мошенниками. Некоторые потеряли свои с трудом заработанные деньги, делая все самостоятельно. Если вы действительно хотите добиться успеха как предприниматель, найдите наставника. Не кто-нибудь, а кто-то с доказанными результатами. Копируйте то, что они делают, а не то, что они вам говорят.

Сегодня стать дистрибьютором Dangote стало очень легко; который считается крупнейшим ( и, возможно, лучшим ) производителем цемента в Западной Африке.Я понимаю, почему вы так уверены, что я заработаю деньги, став дистрибьютором Dangote.

Сомневаться - это нормально. Но знайте: в Африке очень высокий спрос на цемент. В связи с продолжающимся строительством в Африке, вы можете заработать много денег в течение 1 года, став дистрибьютором цемента Dangote.

Два года назад Рональд Нзимора (, топ-копирайтер и стратег по информационному маркетингу ) основал транспортную фирму с двумя грузовиками; сдал его в аренду Данготе и заработал около миллиона найр, ничего не делая ( он все еще зарабатывает миллионы, сдавая свои грузовики в аренду Данготе ).

Если бы он мог заработать около миллиона найр, сдавая свои грузовики в аренду Данготе, тогда скажите мне; сколько вы можете заработать как дистрибьютор? В этом сообщении в блоге я раскрою ИСКЛЮЧИТЕЛЬНЫЕ секреты того, как стать дистрибьютором цемента Dangote, а также дам вам советы о том, как открыть свою фирму по распространению цемента. Все, что мне нужно от вас, - это ваше внимание и готовность действовать согласно инструкциям.

Почему вам следует стать дистрибьютором цемента для Dangote

a. Нигерия и Африка в целом быстро развиваются; просто у населения растет.Инфраструктура возводится, и цемент является основным материалом для строительных работ, таких как мосты, дороги, дома, памятники и т. Д.

b. С огромным населением в Нигерии и Африке в целом, в сочетании с нынешними жилищными проблемами, с которыми сталкивается правительство; это означает, что на цемент есть настоящий и будущий спрос; поскольку государство и частные инвесторы в недвижимость пытаются удовлетворить потребности в жилье.

г. Федеральное правительство Нигерии в настоящее время реализует план, который потребует использования цемента для строительства дорог.Если у вас есть предвидение, вы поймете, что это значит. Помните, что случилось с ценами на муку и маниоку, когда федеральное правительство провело политику, согласно которой мука из маниоки должна быть композитным материалом, используемым для выпечки хлеба, вместо обычной пшеничной муки?

г. Dangote Cement в настоящее время является доминирующей и ведущей цементной компанией в Нигерии. Благодаря деловой хватке ее основателя «Алико Данготе», внушительной команде менеджеров и сильной дистрибьюторской сети ( Dangote в настоящее время имеет более 3000 грузовых автомобилей, зарегистрированных под торговой маркой ).

эл. Для справки, Dangote Cement PLC в настоящее время является крупнейшей цементной компанией в мире, заводы которой расположены по всей Африке; и с

.

Дополнительные цементные материалы

Дополнительные цементирующие материалы (SCM) способствуют улучшению свойств затвердевшего бетона за счет гидравлической или пуццолановой активности. Типичными примерами являются летучая зола, шлаковый цемент (измельченный, гранулированный доменный шлак) и микрокремнезем. Их можно использовать отдельно с портландцементом или цементом с добавками или в различных комбинациях. В бетон часто добавляют дополнительные цементирующие материалы, чтобы сделать бетонные смеси более экономичными, снизить проницаемость, повысить прочность или повлиять на другие свойства бетона.

Летучая зола , пуццолан, наиболее часто используемый в бетоне, является побочным продуктом тепловых электростанций. Коммерчески доступная летучая зола представляет собой тонкоизмельченный остаток, который образуется в результате сгорания пылевидного угля и уносится из камеры сгорания печи с выхлопными газами.

Шлаковый цемент , ранее называвшийся измельченным гранулированным доменным шлаком, представляет собой стекловидный гранулированный материал, образующийся при быстром охлаждении расплавленного железного доменного шлака - обычно путем распыления воды или погружения в воду - и последующего измельчения до мелкости цемента.Шлаковый цемент является гидравлическим и может добавляться в цемент в виде SCM.

Дым кремнезема , также называемый конденсированным дымом кремнезема или микродиоксидом кремния, представляет собой мелкодисперсный остаток, образующийся в результате производства элементарного кремния или ферросиликоновых сплавов, который уносится из печи с отходящими газами. Дым кремнезема, с золой или шлаком или без них, часто используется для изготовления высокопрочного бетона.

.

Смотрите также

Сделать заказ

Пожалуйста, введите Ваше имя
Пожалуйста, введите Ваш номер телефона
Пожалуйста, введите Ваше сообщение