Что такое арболит основная характеристика этого материала
Арболитовые блоки - недостатки, технические характеристики, размеры, состав
Арболит в большинстве источников описывается, как материал, обладающий чудесными свойствами. Рекламные статьи превозносят арболитовые блоки, недостатки материала скромно умалчиваются. Но чудес не бывает, недостатки тоже есть. Чтобы по максимуму использовать положительные качества и нивелировать отрицательные, стоит хорошенько разобраться со свойствами арболита, его характеристиками и особенностями применения.
Состав и производство арболиттовых блоков
Начнем наш материал именно с состава и процесса производства. Все дело в том, что от качества выполнения определенных процессов зависит наличие или отсутствие определенных недостатков материала. А это является очень важным. Арболит позиционируется, как одна из разновидностей крупноячеистых легких бетонов. В качестве наполнителя в нем используется древесная щепа. Щепа связывается в монолитную структуру цементным тестом.
Материал используется в строительстве в нескольких видах:
- крупноформатные кладочные блоки;
- пустотелые блоки;
- теплоизоляционные плиты;
- смеси для заливки ограждающих конструкций по месту.
Кладочные блоки нашли наиболее широкое применение и под понятием «арболит» понимаются, прежде всего, они. Самым распространенным размером арболитовых блоков является 500×300×200 мм. Но в последние время производители стали расширять свои производственные линейки и предлагают арболит в других типоразмерах.
Технология изготовления блоков относительно проста, но как и везде, имеются свои тонкости. Качество будущих изделий зависит от соблюдения нескольких важных производственных моментов. Если производитель использует в наименовании своей продукции термин «арболит», он должен соблюдать требования нормативной документации на такие изделия, это:
- 1. ГОСТ 19222-84 "Арболит и изделия из него. Общие технические условия".
- 2. СН 549-82 "Инструкция по проектированию, изготовлению и применению конструкций и изделий из арболита".
Состав арболитовых блоков
Для изготовления арболитовых блоков используется:
- Древесная щепа;
- Химические добавки;
- Вода;
- Цемент.
#1. Древесная щепа. Итоговая прочность сильно зависит от калибра щепы. Чтобы на выходе был именно арболит, свойства которого строго нормированы, для производства должна использоваться именно щепа. Ее размеры регламентированы. ГОСТ рекомендует максимальный размер частиц 40×10×5 мм (длина/ширина/толщина).
Наилучшие показатели у блоков с размерами щепы из интервалов:
- длина – до 25 мм;
- ширина – 5..10 мм;
- толщина – 3..5 мм.
Опилки, стружки, тырса, костра, солома и все остальное, что пытаются смешивать с цементом для производства арболита, для его изготовления не подходит. Только чистая щепа без коры, листьев, грунта и прочих нежелательных примесей. Считается, что добавление до 10 % коры или 5 % листвы не оказывает серьезного влияния на характеристики арболита. Но лучше когда эти примеси отсутствуют.
Зачастую производства арболитовых блоков, организованы при лесопилках и других деревоперерабатывающих предприятиях. Для них арболит не является профильным направлением. В результате недобросовестные производители, для увеличения рентабельности производства, кроме самой щепы добавляют то, что имеется. Отсюда непредсказуемое качество продукции.
На специализированных предприятиях устанавливают производительные валковые дробилки, откалиброванные под нужный размер щепы.
Для конечного потребителя не имеет большого значения сорт древесины, из которой производится сырье, но технологи должны это учитывать для правильной дозировки минерализаторов и выбора степени уплотнения. Так, щепа лиственницы требует двойного количества добавок относительно других хвойных пород. Чаще других на производство щепы идут сосна, ель, реже лиственные породы.
#2. Химические добавки. Древесный наполнитель содержит сахара, которые препятствуют качественной адгезии цементного теста с поверхностью частичек дерева.
Для решения этой проблемы применяются 2 основные стратегии:
- 1. Высушивание древесного сырья до применения в производстве в течение нескольких месяцев.
- 2. Минерализация поверхности щепы в растворе химических компонентов.
Наилучшие результаты достигаются при комплексном подходе к решению задачи. Снижение содержания сахаров и минерализация сырья позволяет решить и другие важные задачи:
- повышение биологической стойкости материала;
- снижение водопроницаемости при эксплуатации готового изделия.
Для решения всех этих задач, при производстве арболита могут использоваться следующие компоненты: хлорид кальция (ГОСТ 450–77), жидкое стекло (ГОСТ 13078–67), силикат-глыба (ГОСТ 13079–67), сернокислый глинозем (ГОСТ 5155–74), известь (ГОСТ 9179–77).
#3. Вода. Получать арболитовые блоки, характеристики которых соответствуют заданным, можно, следуя определенному порядку технологических операций. Вода с добавлением минерализаторов готовится заранее. Расход компонентов принимается в следующих соотношениях:
Добавка | CaCl2 | Al2(SO4)3 | Al2(SO4)3+ Ca(OH)2 |
---|---|---|---|
Расход на 1м3 арболита, кг | 12 | 12 | 8+4 |
Щепа засыпается в смеситель принудительного действия. Обычные гравитационные бетономешалки не обеспечивают достаточной гомогенизации. Вода с растворенным минерализатором перемешивается и равномерно распределяется по поверхности щепы. Перемешивание происходит на протяжении 20 секунд. На следующей стадии происходит добавление цемента. Перемешивание с цементом длится 3 минуты.
#4.Цемент. Достаточная для применения в строительстве прочность материала достигается только при применении цемента с маркой не ниже 400. Цемент имеет свойство быстро терять марку при хранении. Даже на выходе с завода цемент часто не соответствует заявленным характеристикам. Поэтому лучше когда, арболитовые блоки, технические характеристики которых должны соответствовать требованиям, предъявляемым к конструкционным материалам, изготавливаются из 500-го цемента.
Формование блоков
Формование необходимо завершить в течении ближайших 15 минут после перемешивания. В зависимости от степени механизации последующих процессов различают следующие способы формования:
- ручное формование без вибрирования;
- ручное формование с вибрированием;
- производство на вибростанке;
- производство на вибростанке с пригрузом.
Механизация процессов позволяет получать более высокие по качеству и стабильные по параметрам арболитовые блоки. При этом размеры, геометрия и плотность сохраняются от изделия к изделию.
Выдерживание изделия в опалубке применяют при кустарном производстве, когда снятию опалубки сразу после формования препятствует слишком жидкая консистенция раствора. В общем случае формы снимают без выдержки.
Сырые блоки остаются на съемном днище-поддоне или прямо на полу цеха.
Арболитовые блоки, состав которых одинаков, могут получать различные характеристики в зависимости от способа и степени их уплотнения. Основной целью прессования смеси в форме не является повышение ее плотности. Главная задача – это создание равномерно распределенной по объему структуры из произвольно ориентированной, полностью укрытой цементным тестом, щепы.
Вибрация при уплотнении применяется очень дозировано. Чрезмерное вибрирование приводит к осаждению цементного теста на дне формы. Важно сохранять его равномерное распределение по объему с полным укрытием зерен наполнителя. Даже в арболите высокой плотности щепа не плавает в растворе цемента с водой. Цементное тесто работает, как клей, покрывающий зерна наполнителя. Меняется только концентрация щепы в объеме и толщина покрывающего ее цементного камня.
Уплотнение блоков производится на значения, достаточные для взаимной переориентации зерен наполнителя и увеличения площади их соприкосновения. Сжатия и деформации самой щепы не происходит. Это обеспечивает сохранение размеров блока после снятия уплотняющего усилия.
Необходимость точной дозировки всех компонентов и соблюдения технологии
Точность дозирования компонентов регламентируется ГОСТом. Допустимые отклонения не могут превышать нескольких процентов. В условиях недостатка воды не происходит гидратация всего объема цемента. Ее избыток нежелателен по нескольким причинам:
- Превышение водоцементного соотношения снижает прочность.
- Избыточная пластичность препятствует выниманию сырого блока из формы непосредственно после формования.
- Увеличивается время хранения блока на поддоне до первичного схватывания.
Концентрация минерализаторов щепы, идущей в арболит, важна для прочности и долговечности материала. Дозировки компонентов, приводимые в нормативах, рассчитаны на определенный калибр заполнителя и его влажность на уровне 25 %. Оптимальную дозировку подбирают опытным путем на основе испытаний готовых образцов.
Для протекания процесса гидратации важна температура раствора воды с минерализаторами. Она не должна быть меньше 15 °С. Для набора необходимой температуры в холодное время года воду подогревают или выдерживают в отапливаемом помещении. Возможен также химический нагрев воды при применении в качестве минерализатора CaCl2.
Плотность арболита
По назначению материал условно делят на 2 типа:
- теплоизоляционный;
- конструкционный.
Определяющим фактором является плотность изделия. Считается, что блоки с плотностью до 500 кг/м3 не подходят для использования в составе несущих конструкций. Но они могут применяться для теплоизоляции при возведении наружных стен в строениях, где нагрузка от кровли или перекрытий воспринимается колонами или другими элементами.
Типичными для конструкционных блоков являются значения плотности из интервала от 550 до 700 кг/м3. Но можно купить изделия и с плотностью до 850 кг/м3. Слишком высокие величины указывают на хорошую несущую способность элементов, но уступают более легким в теплоизоляционных качествах. Плотность материала замеряется при установившейся массе, когда блок прекращает терять влагу.
Стены из литого арболита могут иметь плотность порядка 300 кг/м3, но по несущей способности не уступают сложенным из камней с плотностью 550 кг/м3.
Прочность арболитовых блоков
Несущая способность блоков характеризуется их прочностью на сжатие. По результатам испытаний изделиям может присваиваться марка и класс по прочности на сжатие. В общем случае они связаны с плотностью материалов.
Плотность, кг/м3 | Марка | Класс |
---|---|---|
400 - 500 | М 5 | В 0,35 |
450 - 500 | М 10 | В 0,75 |
500 | М 15 | В 1,0 |
500 - 650 | - | В 1,5 |
500 - 700 | М 25 | В 2,0 |
600 - 750 | М 35 | В 2,5 |
700 - 850 | М 50 | В 3,5 |
Как и в случае изделий из тяжелого бетона, марка является средней величиной по результатам испытаний партии образцов. Класс характеризует гарантированную прочность, 95 % образцов должны соответствовать по классности.
Для реальных испытаний с хорошей выборкой зависимость между маркой и классом через переводные коэффициенты не является корректной. В этом случае разрыв между маркой и классом может рассказать о культуре производства на предприятии. Чем меньше разрыв, тем выше организация производства. В отечественной практике изготовления арболитовых блоков это учитывается с помощью коэффициентов вариации. Для изделий 1-ой категории качества допускается значение 18 %, для высшей – 15 %.
В кирпичной кладке мелкий размер изделий делает понятие классности бессмысленным. При покупке крупных кладочных камней, каковыми и являются арболитовые блоки, стоит отдавать предпочтение изделиям с присвоенным классом.
Для возведения несущих стен одноэтажных зданий высотой до 3 м допускается использовать блоки класса от B 1.0. Для более высоких стен нужны элементы класса от B 1.5. Для 2-х - 3-х этажных строений используют блоки классов B 2.0 и B 2.5.
Прочность арболита на сжатие типична для ячеистых бетонов. Важным отличием является прочность блоков на изгиб, которая составляет от 0,7 до 1,0 МПа. Модуль упругости элементов может доходить до 2300 МПа. Такие величины делают арболит особенным среди ячеистых бетонов. Если для пенобетона и газобетона велика вероятность трещинообразования, то для арболита такая проблема не стоит.
Читайте также:
Теплопроводность арболита
Теплопроводность для арболита является одним из ключевых параметров.
Она растет с увеличением его плотности в следующей прогрессии:
Рекомендованная ГОСТом толщина ограждающих конструкций из арболита в умеренных широтах составляет 38 см. Но стены такой толщины возводятся редко. На практике для стен жилых домов блоки 500×300×200 мм кладут плашмя в один ряд. Вместе с внутренней и наружной отделкой этого достаточно для поддержания комфортной температуры в помещениях без появления проблем с выпадением конденсата.
Дополнительная теплоизоляция часто выполняется с помощью теплых штукатурных систем толщиной 1,5-2 см с добавкой перлита. Для не отапливаемых или периодически отапливаемых помещений (бани) нередко применяют кладку блоков на ребро.
Влагопоглощение арболита
В характеристиках арболита указывают величину водопоглощения до 85 % для теплоизоляционных блоков и до 75 % для конструкционных. Эти значения требуют осмысления. Структура блока представляет собой склеенные цементным камнем разрозненные зерна щепы. Они ориентированы относительно друг друга случайным образом.
Вода, наливаемая на поверхность блока, свободно протекает сквозь него. Естественно, что при окунании вода способна вытеснить большой объем содержащегося внутри блока воздуха. Если блок вытащить из воды, вода вытекает, а цементный камень быстро высыхает.
Арболитовые блоки находящиеся в естественной среде, например в стене дома, фактически не накапливают в себе влагу из окружающего воздуха. Это происходит благодаря очень низкой сорбционной влажности материала, т. к. минерализованные щепа и цемент являются негигроскопичными и слабо смачивающимися материалами. Именно это стало причиной популярности использования материала для строительства бань.
Если поливать ничем не закрытую стену из арболита с внешней стороны водой, есть вероятность увидеть ее и внутри. Поэтому материал не используют без фасадной отделки. Для арболита рекомендуют отделку штукатурными растворами или устройство навесных фасадных систем.
Морозостойкость
Постепенное разрушение изделий при замораживании и размораживании происходит в результате расширения замерзающей в пустотах воды. Чем больше воды в них содержится, тем меньше циклов замораживания - размораживания способен выдержать материал без разрушения.
Низкое сорбционное влагопоглощение дает арболиту хорошую стойкость к промерзанию. Минимальное значение составляет F25 и доходит до F50. Защита арболита от прямого воздействия влаги, позволяет повысить реальную морозостойкость материала в конструкции. Кроме этого существуют реальные примеры эксплуатации зданий из арболита на протяжении 7 - 10 лет без повреждений для стен. Причем речь идет о стенах, которые ни чем не защищены от воздействия внешних факторов среды.
Усадка материала
Считается, что арболит совершенно не подвержен усадке. Но небольшие усадочные процессы в первые месяцы все же присутствуют. В основном они прекращаются еще на этапе созревания блока на производстве. Некритичное уменьшение размеров блока (на 0,4 - 0,8 %) возможно уже после укладки блоков в конструкцию.
Некоторое сокращение высоты блоков может происходить и под весом вышележащих элементов, перекрытий и конструкций кровли. Для предотвращения проблем с отделкой не рекомендуется выполнять штукатурные работы в первые 4 месяца после завершения основного комплекса работ.
Огнестойкость арболитовых блоков
По огнестойкости арболитовые блоки имеют следующие параметры:
- группа горючести - Г1, т. е. это трудногорючий материал;
- группа воспламеняемости - В1, трудновоспламеняемый материал;
- по дымообразующей способности - Д1, малодымообразующий материал.
Звукоизоляция
По шумопоглощению арболитовые блоки превосходят такие материалы как кирпич и древесина. Коэффициент шумопоглощения арболитовых блоков составляет 0,17 - 0,6 в акустическом диапазоне от 135 до 2000 Гц.
Паропроницаемость
Арболит это дышащий материал степень его паропроницаемости составляет до 35 %. Именно поэтому в домах построенных из данного материала не бывает сырости, а микроклимат комфортный как в холодное так и в теплое время года.
Недостатки арболитовых блоков
Как бы ни был хорош арболит, недостатки материала все же стоит знать и учитывать.
Поколебать решимость застройщика способны несколько сомнительных моментов:
- 1. Обилие на рынке блоков «гаражного» качества.
Их прочность, сопротивление теплопередаче неведомы даже производителю. Имеются трудности с приобретением заводского арболита в регионах. Выше мы писали про самые важные моменты производства арболитовых блоков. Как вы понимаете выполнить определенные задачи в кустарных условиях просто не возможно.
- 2. Недостаточная точность геометрии.
Точность геометрии арболитовых блоков уступает таковой у других легкобетонных кладочных камней (пенобетона, газобетона). Особенно это характерно для производств с большой долей ручного труда. Отклонения в размерах и взаимном расположении поверхностей заставляют увеличивать толщину швов до 10 - 15 мм. А это влечет промерзание кладки по швам, перерасход материала и снижение скорости кладочных работ.
Производители рекомендуют использовать для кладки теплые перлитовые растворы, но их приготовление обходится дороже. В последнее время для улучшения геометрии блоков начинают применять фрезерование поверхностей.
- 3. Необходимость защиты от прямого воздействия влаги.
Ничем не защищенная кладка в теории может быть проницаемой для больших напоров ветра, но реального подтверждения такого явления не получено. Нанесение на поверхность штукатурных покрытий решает проблемы с проницаемостью.
- 4. Высокая стоимость арболитовых блоков.
Это связано с недостаточными автоматизацией производственных процессов, степенью проработки технологии и скромными объемами производства. В итоге себестоимость пенобетонных и газобетонных блоков ниже в 1,5 раза.
- 5. Наличие ограничений в выборе отделочных материалов.
Для правильной эксплуатации важно сочетать с арболитовой кладкой только «дышащие» варианты отделки.
Достоинства арболитовых блоков
Тех, кто решается на строительство по арболитовой технологии, должны вдохновлять ее многочисленные достоинства:
+ 1. Экологичность материала.
Даже входящие в его состав минерализаторы не выделяют в атмосферу вредных веществ.
+ 2. Высочайшая паропроницаемость.
+ 3. Легкость материала.
Легкость материала и его упругость не требуют устройства мощного и жесткого фундамента. Дополнительным бонусом является сейсмостойкость.
+ 4. Легкость обработки.
+ 5. Простой монтаж крепежа.
В арболит можно вбивать гвозди и вкручивать саморезы, как в дерево.
+ 6. Низкая теплопроводность.
Отличное сопротивление теплопередаче при достаточной для малоэтажного строительства прочности позволяет обходиться без дополнительного утепления и получать однослойную структуру стены.
+ 7. Низкая звукопроницаемость.
+ 8. Отказ от армирования.
Возможность отказаться от армирования кладки и устройства монолитных поясов на небольших объектах.
+ 9. Биологическая стойкость.
+ 10. Негорючесть.
Если вы заметили ошибку, не рабочее видео или ссылку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Блоки из арболита: преимущества и недостатки
Блоки из арболита сегодня используются повсеместно в строительстве несущих стен жилых малоэтажных зданий, в возведении нежилых помещений бытового и хозяйственного назначения, с целью выполнения теплоизоляции зданий из других материалов. Несмотря на широкую популярность материала, далеко не многие мастера знают все его особенности, преимущества и недостатки, что может негативно сказываться на качестве строения.
Ввиду особенностей производства и состава арболитовые блоки обладают небольшим весом, демонстрируют высокие показатели теплоизоляции и просты в монтаже, но требуют правильной защиты от влаги и других воздействий. Без качественной изоляции и учета некоторых нюансов все преимущества материала будут сведены к нулю недостатками, способными сильно повлиять на качество эксплуатации здания, его прочность и надежность, уменьшить срок эксплуатации.

Что такое арболит и его основные свойства
Название материала происходит от французского слова arbre, что переводится как «дерево» (отсюда пошло и другое название блоков «древобетон»).
Изготавливают арболит из трех основных компонентов:- Щепа величиной 1 сантиметр в ширину и 25 сантиметров в длину – измельченная, обычно древесная (бук, сосна, ель), но могут использоваться и костра льна, рисовая солома, древесина хвои, кора, стебли хлопчатника и т.д.
- Цемент в виде вяжущего – марки минимум М300 и выше
- Специальные добавки для повышения адгезии компонентов, степени твердения, пластичности – используют химикаты, чаще всего сернокислый алюминий, нитрат/хлорид кальция, жидкое стекло и т.д.
- Полученный материал должен соответствовать нормативам и показателям, указанным в ГОСТе 19222-84 или ТУ, СН 549-82.

Основные виды арболита по назначению: теплоизоляционный, который применяется в качестве теплоизолятора или для возведения перегородок (плотность около 400-500 кг/м3), и конструкционный для возведения несущих стен (плотность до 850 кг/м3).
Основные формы арболита:- Плиты – от блоков отличаются увеличенными размерами ширины и длины, уменьшенной толщиной. Производятся методом трамбовки и прессования, в большом количестве размеров и вариантов (усиленные/рядовые перемычные блоки, оконные панели, узкие полотна, стеновые и т.д.), могут оснащаться арматурными петлями для крепежа и облицовочным черновым слоем.
- Блоки – обычные для прямых стен или с U-образным проемом (для дверных/оконных перемычек), стандартный размер 50х30х20 сантиметров (но есть разные).
- Монолитный арболит – удешевленный вариант материала с пониженной прочностью.

Основное свойство арболита, которое ценится в строительстве домов – это его теплоизоляционные характеристики, позволяющие создать теплый дом с минимальными вложениями в отделку. Немаловажен и малый вес блоков, благодаря чему построить дом можно быстро и легко самостоятельно, без привлечения спецтехники.
Но особенности, обеспечивающие положительные характеристики материала, одновременно обуславливают и недостатки арболита. Древесная щепа, гарантирующая малый вес и хорошие свойства теплоизоляции, имеет свойство впитывать воду. Поэтому арболит требует обязательного проведения мероприятий по защите, правильно реализованных и продлевающих срок службы.
Точность дозировки компонентов и соблюдение технологии
Арболитовые блоки производятся из древесной щепы, цемента, химических добавок и воды. Древесная щепа должна быть правильного калибра – этот параметр влияет на прочность. Размер щепы по ГОСТу должен быть таким: максимум 40 миллиметров по длине, 10 по ширине и 5 по толщине. Лучшие показатели блоков обеспечивает щепа с размерами: 25 по длине, от 5 до 10 по ширине и от 3 до 5 миллиметров толщины.
Щепа должна быть чистой, без грунта, листьев, коры – тырса, опилки, солома, костра понижают прочностные характеристики. Но если листьев в составе будет не более 5% и коры не больше 10%, существенно на свойствах арболита это не скажется.
Часто арболит производят при деревообрабатывающих предприятиях и лесопилках, утилизируя отходы, но такой вариант обычно приводит к низкому качеству блоков из-за некачественного сырья (в работу отправляют все, что есть). Лучше приобретать арболит производителей, имеющих оборудование и занимающихся созданием арболита в качестве основного вида деятельности.
Технология должна соблюдаться точно и в плане типа щепы. Для производства блоков может использоваться разная древесина, но каждый сорт предполагает свои особенности: лиственница требует удвоенного объема минерализаторов, например. Обычно щепу делают из ели, сосны, лиственные породы используются реже.

- Интенсивная сушка сырья в течение нескольких месяцев до производства.
- Минерализация щепы в специальном растворе.
Лучше всего, когда используются оба метода. В таком случае удается повысить биологическую стойкость материала, понизить водопроницаемость готовой конструкции. Для минерализации применяют жидкое стекло, хлорид кальция, сернокислый глинозем, силикат-глыбу.
Состав арболитовых блоков предполагает правильный объем воды. Щепу засыпают в специальный смеситель принудительного действия, где вода и минерализатор смешиваются, распределяются равномерно по поверхности наполнителя. Мешают около 20 секунд, потом засыпают цемент и смешивают еще 3 минуты.

Цемент берут обычно марки М400, чтобы арболитовые блоки были достаточно прочными. Желательно, чтобы цемент был свежекупленным, так как в процессе хранения он теряет свои свойства. Если же цемент предполагается хранить какое-то время, лучше выбирать марку М500.
Важные нюансы производства:- Точность дозировки регламентирует ГОСТ, отклонения не должны быть более 2-3%.
- Важно, чтобы в составе было достаточно воды: если мало, не пройдет как нужно процесс гидратации вяжущего, если много – блоки получатся менее прочными, будут трудно выниматься из формы, продлится время до первичного схватывания.
- Объем минерализаторов – дозировки высчитываются в соответствии с типом древесины и величиной щепы, влажностью. Оптимальную дозировку желательно подбирать опытным путем.
- Температура смеси воды и минерализатора не должна быть ниже +15 градусов.

Технические характеристики и сравнение с другими строительными блоками
Арболит недостатки и преимущества гарантирует достаточно понятные – единственным неожиданным моментом может быть низкое качество самого материала. Если же блоки сделаны по технологии, из верно подобранных компонентов и с соблюдением пропорции, то все свойства достаточно предсказуемы.
Основные технические характеристики арболита:- Плотность – в пределах 300-850 кг/м3 (зависит от вида, ведь арболит бывает конструкционный и теплоизоляционный): чем более высокий показатель, тем выше несущая способность и ниже показатель теплоизоляции.
- Прочность – зависит от плотности: у арболита плотностью 400-500 кг/м3 равна В0.35, у 700-850 кг/м3 – В3.5. Этого вполне достаточно для возведения несущих конструкций 2-3-этажного здания.
- Теплопроводность – также напрямую зависит от плотности, увеличивается пропорционально: у блоков плотностью 400 кг/м3 показатель равен 0.06 Вт/м К, при 850 кг/м3 коэффициент теплопроводности находится в пределах 0.17.

- Водопоглощение – для теплоизоляционных блоков параметр равен 85%, для конструкционного 75%. Арболит поглощает и отдает влагу при сушке, но использовать его там, где будет отмечена постоянно повышенная влажность не рекомендуют (либо каждую стену из арболита придется тщательно оштукатурить и закрыть изоляторами).
- Огнестойкость – материал считается трудногорючим с показателем Г1 (способен выдерживать открытое пламя на протяжении полутора часов без изменения геометрии).
- Морозостойкость – F50, что равно количеству циклов замораживания/оттаивания.
- Стойкость к растяжениям – при подвижках фундамента демонстрирует подверженность появлению деформаций и трещин на 0.4-0.5%.
- Высокий уровень звукопоглощения.
- Хорошие показатели паропроницаемости – арболит можно использовать для возведения сауны, бани.
Если сравнивать арболитовые блоки с другими строительными материалами, то все преимущества и недостатки становятся более явными. Некоторые параметры указаны в таблице:

- Кирпич – более плотный по структуре, поэтому и более прочный на сжатие. Но арболит лучше сохраняет тепло: показатели стены толщиной в 50 сантиметров равны толщине стены из кирпича в районе 120 сантиметров. При этом, размеры арболита больше, поэтому кладка осуществляется быстрее и проще.

- Дерево – материалы схожи по теплопроводности и плотности, но натуральная древесина намного дороже, сложнее в транспортировке и монтаже, предполагает более тщательный уход. Кроме того, древесина гниет и горит.

- Пенобетон – пеноблок обладает также небольшим весом и плотностью, но из-за пористой структуры предполагает дополнительные расходы на выполнение армирования кладки, делая процесс строительства более длительным и сложным. Теплоизоляция у арболита на 75% выше.

Дополнительно можно посмотреть параметры тут:
Достоинства
Преимущества и недостатки арболита обусловлены материалами, из которых он состоит: плиты и блоки получаются прочными, словно цемент и теплосохраняющими, как дерево. Но, ввиду определенных нюансов процесса производства, арболит предполагает свои особенности.
Главные преимущества арболитных блоков:- Прочность – достаточная для возведения крепкого и надежного дома высотой в 2-3 этажа.
- Теплоизоляционные характеристики – гарантируют максимальную эффективность.
- Морозостойкость и негорючесть, что делает эксплуатацию дома безопасной.
- Экологичность – за исключением некоторых химикатов, материал полностью натуральный: не выделяет опасных токсинов, способствует созданию оптимального микроклимата в доме.
- Биостойкость – арболит не подвержен распространению гнили, плесени, благодаря паропроницаемости.
- Небольшой вес блоков – это позволяет сэкономить на фундаменте (подходят варианты облегченного типа – шведская плита, столбчатый, свайно-винтовой) и привлечении спецтехники в процессе строительства.
- Быстрый и простой монтаж за счет малого веса и идеальной геометрии блоков.
- Долговечность – дома из арболитовых блоков служат более 50 лет.
- Снижение финансовых вложений – за счет простого фундамента, быстрого монтажа, доступной стоимости самого арболита.
Недостатки блоков, сделанных из арболита
Несмотря на то, что материал используется повсеместно в строительстве, многие относятся к нему с некоторой долей предубеждения. С одной стороны, арболит действительно боится воды, с другой же – достаточно его защитить, чтобы избежать негативных последствий.
То же самое касается и других минусов, многие из которых можно нивелировать, но все нужно изучить до начала проектирования и строительства.
Гниет и боится плесени
При условии корректного выполнения гидроизоляции нижних рядов блоков и обустройства нормальной вентиляции в доме арболит не гниет и плесень не появляется даже в помещениях с повышенным уровнем влажности. Благодаря паропроницаемости материала происходит естественный воздухо/влагообмен в помещениях, но только если все не закрыто неверно выполненной изоляцией. Если выход влаге перекрыть и воздухообмена не будет, микроклимат в жилье будет нарушен, могут распространяться микроорганизмы.

Горючий материал
Арболит относится к материалам класса Г1 по горючести и не боится открытого огня, так как: древесина в структуре предварительно пропитана минерализаторами и закрыта цементом, да и арболитовые стены обязательно оштукатуриваются. За час и более пожара арболит обугливается на 30 миллиметров – за это время деревянный дом сгорает.
Химия в арболите
В процессе минерализации из древесной щепы удаляют сахар, не позволяющий цементу набрать полную прочность. Используют абсолютно безопасные «химикаты», часто сульфат алюминия, являющийся пищевой добавкой, которая используется для очищения воды. Также актуален хлористый кальций, применяемый в пищевой промышленности и медицине. Жидкое стекло также абсолютно безопасно для здоровья и жизни.
Низкая прочность
Сделанный по технологии и из качественных компонентов материал обладает достаточной прочностью для возведения дома из двух-трех этажей. Стандартный арболитовый блок выпускается под маркой М25, что говорит о его способности выдерживать давление в 25 килограммов на квадратный сантиметр. Этого вполне достаточно для жилого помещения.
Дом для мышей
Мыши приходят кушать не строительный материал, а запасы. И прогрызть могут все, что угодно, поэтому ни дом из кирпича, ни здание из цементных блоков их не остановят. При этом, арболитовый блок – это не древесина в общепринятом понимании, так как в структуре материала каждая щепка находится в окружении застывшего бетона, поэтому для мышей такой дом примерно то же самое, что здание из железобетонных плит.
Стены продуваются
Блоки действительно хорошо продуваются, но никто не использует их без последующей отделки. В качестве отделочного материала используют специальные паропроницаемые штукатурки, устраняющие этот недостаток, но, в то же время, позволяющие дому дышать.
Некрасивый
Никто не оставляет дом из арболитовых блоков в том виде, в котором строительный материал создан. Дом обязательно отделывается и вот тут фантазия мастера ограничивается лишь наличием материалов в супермаркетах.
В Москве и регионах можно отыскать самые разные отделочные материалы – по фактуре, цвету, структуре и т.д. Отделка выполняется как внутренняя, так и внешняя в обязательном порядке.

Блоки кривые
Качественно сделанные арболитовые блоки заводского производства всегда точно соответствуют геометрии и размерам. Из них легко строить стены и монтировать любые конструкции. А вот кривые и произведенные кустарным образом блоки действительно могут быть неровными и неаккуратными, да еще и эксплуатационные характеристики под вопросом.
Именно поэтому покупать арболитовые блоки стоит лишь у проверенных производителей, четко соблюдающих технологию производства и гарантирующих качество продукции.
Хороших блоков мало
Современный рынок предлагает достаточно большой выбор производителей и реализаторов арболитовых блоков. Если не пытаться сэкономить и искать загодя, вполне возможно найти материал в нужном объеме по приемлемой стоимости, с сертификатами качества и всеми сопроводительными документами.

Формование блоков
Формование материала осуществляется после того, как состав готов и тщательно перемешан. Заливать раствор в формы нужно в течение 15 минут после завершения замеса.
Виды формования арболита:- Ручное без вибрирования
- Ручное с вибрированием
- Заводское производство с использованием вибростанка (с пригрузом или без)
Степень уплотнения – самый важный параметр, влияющий на качество арболита, производится для переориентации зерен щепы, повышения площади соприкосновения их с вяжущим. Основная цель прессования – повышение плотности смеси, чтобы структура была равномерной. Вибрация применяется по ГОСТу, дозированно, чтобы избежать осадки цемента на дне формы. Цементный раствор покрывает щепу, словно клей, в зависимости от концентрации наполнителя смесь может быть разной.
Благодаря механизации удается получать более качественные и прочные, со стабильными параметрами, блоки с сохранностью плотности, геометрии, размеров. После заливки в формы и вибрирования (или без него) опалубку снимают, а блоки сушат с возможной термообработкой.
Блоки из арболита – современный и эффективный строительный материал, который при условии обеспечения нужных мероприятий по защите и отделке способен гарантировать наилучшие эксплуатационные характеристики жилому зданию.
что это такое (как строительный материал)
При возведении малоэтажных жилых зданий используются различные строительные материалы на основе цемента. Застройщику, желающему сэкономить деньги и обеспечить хорошую теплоизоляцию помещений, необходимо знать, что такое арболит и какие существуют виды материала.

Что это такое
Арболит — это строительный материал на основе бетонной смеси и органического наполнителя, предназначенный для возведения перегородок. Преимуществом материала является сниженный вес (по сравнению, например, с силикатным кирпичом или искусственными камнями).
Строительный материал выпускается в виде прямоугольных блоков, размеры и химический состав смеси регламентированы стандартами ГОСТ 19222-84 и 54854-2011. При нарушении технологии материал становится хрупким и разрушается на фрагменты под воздействием собственного веса.
Преимущества и недостатки арболита определяются особенностями производства, которые нужно тщательно изучить.
История арболита и деревобетона
Материал арболит был разработан специалистами нидерландской компании Durisol в 30-е годы прошлого столетия. Блоки использовались для строительства зданий в ряде европейских государств. Теплоизоляционные характеристики и низкая стоимость блоков предопределили распространение арболита и на территории Северной Америки.
Блоки европейского образца имели оболочку из смеси цемента с древесными отходами, в центре находились секции из древесины (для повышения прочности).

Отечественный опыт производства
В начале 60-х годов производство аналогичного материала началось в СССР. Технология и состав смеси были позаимствованы у европейских производителей. Первые годы материал применялся при возведении промышленных зданий и сельскохозяйственных построек.
Строительный материал начал массово применяться в СССР только в начале 80-х годов, когда было построено несколько заводов по выпуску панелей для изготовления стен. Дома из арболита, собранные в 60-70-е годы прошлого века, продолжают эксплуатироваться спустя 50 лет после постройки.
Многие зададут вопрос, панель из арболита — что это такое и как ее установить. Панель изготовлена методом заливки формы цементным раствором, в который введены отходы древесины. Кромки обрабатываются режущим инструментом, для фиксации используются шурупы или цементная смесь.
Полученная панель позволяет установить внутри кабели электрической проводки и смонтировать розетки или выключатели. Но в 90-е годы популярность материала пошла на спад, что привело к закрытию предприятий по выпуску арболитовых панелей.

Зарубежный опыт
Зарубежные изготовители выпускают арболит классического типа, а также материал 3-слойного типа (с жестким центром и гладкими внешними листами). Австрийская компания Velox предлагает стационарную опалубку, состоящую из древесной щепы, цемента и стабилизаторов (жидкое стекло и сульфат алюминия). В японском арболите Пермакс используется наполнитель из продольной стружки и дополнительной щепы.
Существует специальный материал для отделки фасадов зданий, покрытый красками на акриловой основе и синтетическими смолами.
Соблюдение технологии и точной дозировки всех компонентов
Технологический процесс приготовления арболита состоит из следующих этапов:
- Внесение древесного наполнителя в дозирующий прибор. Доля хвои или коры не должна превышать 5% от массы наполнителя.
- Загрузка химических веществ и портландцемента требуемой марки.
- Перемешивание массы с подачей воды до момента формирования однородной массы. Затем смесь распределяется на вибрационном столе по формам, допускается установка внутри ячеек разделительных пластин (для получения брикетов треугольной или трапециевидной конфигурации).
- Принудительное удаление влаги в сушильной камере при температуре, регламентированной стандартом. Время сушки не должно превышать 24 часа.
Состав
В состав арболита входит цемент, древесный наполнитель и дополнительные вещества, стабилизирующие состав. Для обеспечения текучести материала (при формовке или заливке) в состав раствора вводится вода. Пропорции раствора зависят от применяемых реагентов и назначения материала.

Заполнитель
Вес арболита и его свойства (теплопроводность и прочность) зависят от массовой доли наполнителя, которая составляет от 75 до 90% (зависит от марки и изготовителя). В качестве заполнителя используются отходы древесины, дополнительно прошедшие через дробилку.
Применение отходов древесины хвойных пород (за исключением лиственницы) обеспечивает повышение характеристик смеси. Допускается использование перемолотой крошки деревьев, относящихся к твердолиственным породам (например, береза или тополь).
Характеристики арболитовых изделий зависят от влажности и размера щепы. Категорически запрещается использовать в производстве свежесрубленную древесину, поскольку в состав сырья входят вещества, отрицательно влияющие на прочность арболитового блока или листа. Для обеспечения гладкой поверхности в состав смеси вводится стружка или опилки.
Если в качестве заполнителя применяются отходы сельского хозяйства (образующиеся, например, после обработки льна или конопли солома), то полученный материал не является классическим арболитом.

Цементное вяжущее
Для соединения наполнителя используется портландцемент марки М400 или М500. От количества связующего вещества зависит прочность полученной смеси. Количество цемента, необходимого для получения смеси, зависит от состава заполнителя и от марки вяжущего вещества.
Вода
При контакте воды и древесины происходит выделение органических веществ, которые негативно влияют на арболит. Для снижения негативного эффекта древесные отходы выдерживаются в ваннах с водой под открытым небом. Длительность вымачивания доходит до 90 дней, зависит от сорта древесины.
Для ускорения процедуры допускается замена воды водным известковым раствором (срок выдержки составляет 72-96 часов). Дополнительная вода, необходимая для создания цементной связки, вводится при затворении арболитовой смеси.
Химические добавки
Дополнительные реагенты вводят в смесь для нейтрализации органических веществ, которые вымываются из древесины водой. Процесс обработки называется минерализацией, в состав арболита вводится сульфат алюминия или хлористого кальция (допускается применение гашеной извести или сернокислого глинозема).
Существуют 2 технологии введения добавок — путем предварительной обработки щепы или введением в раствор в момент смешивания компонентов. Добавки дополнительно ускоряют процесс затвердевания цементного связующего и повышают прочность материала.

Применение в строительстве
Промышленность выпускает несколько разновидностей арболита:
- Материал конструкционного типа, отличающийся повышенным содержанием портландцемента. За счет введения дополнительного материала повышается плотность вещества (находится в интервале от 500 до 800 кг/м³). Повышенная прочность раствора позволяет делать несущие стены из арболита, что снижает стоимость постройки жилого или промышленного объекта.
- Теплоизоляционный вариант, отличающийся введением в состав увеличенного объема древесных отходов. За счет снижения объема цементного раствора удается сократить плотность до 500 кг/м³. Материал используется при возведении межкомнатных перегородок, для повышения теплоизоляции применяются двойные переборки с воздушным промежутком (или с заполнением минеральной ватой).
- Материал комбинированного типа, используемый как для отделки внутренних частей зданий, так и для возведения внешних несущих стен. Арболит называется конструкционно-теплоизоляционным, обладает плотностью в интервале от 450 до 650 кг/м³.
При строительстве зданий применяются готовые блоки или плиты, изготовленные из кристаллизовавшегося арболита. Допускается заливка конструкций зданий жидким раствором (с использованием опалубки).
Прочность материала считается достаточной для создания 3-этажных жилых конструкций. Материал используется для дополнительной тепловой или звуковой изоляции стен или перекрытий между этажами зданий.

Плюсы и минусы
Преимущества материала:
- Пониженная теплопроводность, что снижает потери тепла из помещения или охлаждение внутреннего объема в зимнее время. Проведенные замеры показали, что стены из арболита удерживают тепло в 3 раза лучше, чем переборки, изготовленные из вспененного бетона с обшивкой из минеральной ватой или полистиролом. Морозостойкость материала зависит от количества впитанной влаги, максимальную устойчивость имеет обезвоженный арболит.
- Материал пропускает пары воды (параметр немного уступает древесине). Арболит не воспламеняется при воздействии открытого огня и не склонен к тлению. При длительном нахождении в пламени материал не выделяет дыма.
- Арболитовые стены и перекрытия допускают растяжение без возникновения трещин или разломов (например, при усадке дома).
- Низкий вес блоков и плит, изготовленных из арболита, позволяет использовать грузоподъемные механизмы с упрощенной конструкцией.
- Для крепления элементов допускается использовать шурупы или гвозди. При соединении деталей не появляются трещины и не возникает срыв резьбы, нарезанной в теле плит шурупами.
Недостатки материала зависят от методики изготовления, соблюдения технологического процесса и из чего был замешан раствор (качество и пропорции исходных ингредиентов). При хранении материала следует учитывать, что арболит не допускает повышения влажности в замкнутом помещении. При отсутствии притока свежего воздуха на поверхности начинает расти грибок, разрушающий древесный наполнитель.
Классический арболит имеет пониженную по сравнению с кирпичом или бетоном прочность, что накладывает ограничения на количество этажей в строящемся здании. Одновременно следует учитывать, что прочность изделий из арболита сопоставима с аналогичными параметрами блоков, изготовленных из газосиликата или пенобетона.
Введение дополнительных примесей позволяет повысить прочностные характеристики, но довести их до соответствия бетонным смесям невозможно.
что это такое? Плюсы и минусы строительного материала, технология его изготовления по ГОСТ, отзывы о производителях

Для малоэтажного строительства создано множество разновидностей материалов. Одни из них используются чаще, другие – реже.
Несмотря на то, что арболит не является новинкой на строительном рынке, многие потребители не знают ничего о его технологии производства, об особенностях, преимуществах и недостатках.
Что это такое?
Арболит – облегченный бетонный материал, изготовленный с применением органических наполнителей. Он легче большинства конструкционных стройматериалов. Например, он обладает более низкой массой по сравнению с классическим кирпичом или искусственным камнем.
Технология производства арболитовых блоков во многом определяет их технические характеристики и эксплуатационные качества. Материал должен выпускаться в строгом соответствии с нормативами ГОСТ.
Однако некоторые производители используют некачественное сырье, в результате чего получают блоки, не отвечающие заявленным характеристикам.
Состав
В арболитовую смесь могут входить различные составляющие. Согласно ГОСТ 19222-84 арболит должен состоять из нескольких компонентов.
Органический наполнитель – щепа. Чтобы получить качественные блоки, должны использоваться древесные частицы с размерами, не превышающими 30, 10 и 5 мм в длину, ширину и толщину соответственно. Помимо этого, в древесине содержание полисахаридов не должно превышать 2%. В органическом наполнителе не должно быть пораженных грибком элементов или различных механических включений. В зависимости от вида арболита содержание щепы колеблется в пределах от 75 до 90%.
Цементное вяжущее. В качестве такого заполнителя должен использоваться портландцемент, имеющий марку не ниже М400. Некоторые производители предлагают блоки, изготовленные на основе морозостойкого цемента. Следует учесть, что при длительном хранении цементные блоки теряют первоначальные характеристики, из-за чего они могут не соответствовать требованиям, заявленным производителем.
Чтобы не столкнуться с такой проблемой, опытные строители рекомендуют покупать арболит из цемента не ниже марки М500.
Компоненты химического происхождения. Арболитовые блоки частично состоят из органических заполнителей, которые имеют свойство гнить. Чтобы избежать поражения щепы грибком, в смесь добавляются различные химические добавки. Это могут быть хлориды кальция или аммония, сульфат алюминия или другие неорганические вещества. Такие компоненты отличаются безвредностью для здоровья человека. Они позволяют не только защитить древесную щепу от преждевременной порчи, но и ускорить процесс адгезии компонентов арболитовой смеси, при этом сократив время высыхания блоков.
Для создания арболита также используется вода. Ее качество регламентируется ГОСТом 23732-79. В воде не должны содержаться жиры и производные липидов, красящие компоненты. Для производства блоков применяется только пресная жидкость.
Перед тем как приступить к технологическому процессу, вода и химические составляющие подвергаются лабораторным исследованиям. Их проводят регулярно для каждой вновь поступившей партии.
Разновидности
Производители выпускают несколько видов такого класса бетона. Речь о них пойдет ниже.
- Строительные блоки. В эту группу входит теплоизоляционный и конструкционный материал. Эти составляющие применяются в различных сферах. Первый обладает небольшой плотностью, благодаря чему он используется для укладки теплоизоляционной основы при возведении межкомнатных перекрытий. Конструкционный вариант имеет плотность, примерно равную 800 кг/куб. м (из-за большего содержания цемента). За счет более высокой прочности такой арболит применяется для сооружения несущих стен и опорных конструкций.
- Арболитовые плиты. Применяются в качестве теплоизоляционного материала. Их плотность не превышает 500 кг/куб. м.
- Блоки с декоративной облицовкой. Такие изделия могут быть отделаны мраморной крошкой или облицовочной плиткой. Эти материалы стоят гораздо дороже обычных блоков. Однако строение, при помощи которых оно возведено, не нуждается в дальнейших работах по декоративной отделке фасадной части.
- Раствор. Он готовится непосредственно на стройплощадке и не подлежит хранению. Раствор применяется для создания монолитных изделий. Чаще всего он используется для утепления жилых помещений, гораздо реже – для возведения небольших сооружений. Помимо этого, из него изготавливается несъемная опалубка для сооружений, чья высота не превышает 3 этажей.
- Гипсовый арболит. Его отличие от обычного – использование при производстве гипса, вместо портландцемента. Он обладает существенными преимуществами: не требует применения химических составляющих и быстро отвердевает.
Как и любые сертифицированные строительные материалы, блочный арболит выпускается в определенных размерах. Самыми «ходовыми» считаются изделия в форме параллелепипеда с параметрами длины, ширины и высоты, равными 500, 300 и 200 мм соответственно.
Технология изготовления
Производство арболита в блоках на крупных предприятиях автоматизировано. Процесс изготовления включает несколько этапов, которые описаны ниже.
- Загрузка органического наполнителя в дозатор. Дозирующее устройство фиксируется на подъемнике, который доставляет компонент в емкость смесительного оборудования.
- Загрузка химических реагентов.
- Добавление портландцемента определенной марки.
- Тщательное перемешивание составляющих смеси до получения однородной массы. Полученный раствор направляется на вибрационный стол с вибропрессовочным устройством.
- Разравнивание массы в формах. На этом этапе происходит сжимание изделий за счет применения пресса. При необходимости получения блоков нестандартных форм в ячейки вручную вставляются специальные пластины. В результате получаются треугольные или трапециевидные изделия.
- Отправка блоков в сушильные камеры. Температура, при которой изделия должны подвергаться сушке, не регламентирована ГОСТом. Однако материалы допускается оставлять в камере не более чем на 24 часа.
Изготовить арболитовые блоки можно и в домашних условиях. Самостоятельное создание материала – сложный процесс. Он потребует тщательной подготовки всех компонентов.
Особое внимание здесь нужно уделить древесной щепе. Из всех пород древесины предпочтительнее будут хвойные породы, такие как пихта или сосна. Присутствие коры или хвои не должно быть более 5% по отношению к общей массе.
При создании блоков в домашних условиях не у каждого строителя под рукой могут оказаться химические добавки. Без них процесс адгезии будет значительно затруднен, а также увеличится время затвердевания изделий (порой на высыхание уходит несколько недель). Самостоятельное изготовление материала высокого качества своими руками маловероятно. Чаще всего в домашних условиях создают блочные изделия для строительства сооружений с низкими эксплуатационными требованиями.
Сфера использования
Арболитовые блоки – строительный материал, который активно применяется в частном строительстве. Из него сооружают дома и коттеджи, различные постройки хозяйственного назначения. Блочные изделия отлично сохраняют тепло, из-за чего их допустимо применять даже в суровых климатических условиях. Помимо этого, материал является довольно прочным, за счет чего он пользуется популярностью в сейсмически активных областях.
В малоэтажном строительстве арболит используется как для возведения построек «с нуля», так и для утепления стеновых конструкций и напольной поверхности. Арболитовые блоки нашли свое применение при сооружении помещений складского, производственного и сельскохозяйственного назначения. Из него получаются теплые гаражи, бани, сараи и различные подсобные строения.
Преимущества
Чтобы решить, стоит ли выбирать арболит в качестве основного строительного материала, следует заранее изучить его свойства, а также плюсы и минусы. Ниже рассмотрены достоинства блочных изделий.
- Экологическая чистота. При производстве материала не используются химические компоненты, которые выделяют вредные для здоровья человека вещества при строительстве или последующей эксплуатации сооружения.
- Высокие показатели прочности на изгиб. При осадке почвы или сезонных движениях грунта большинство стройматериалов трескается, что приводит к образованию трещин внутреннего декоративного покрытия. Арболитовые блоки – иные изделия. Они способны деформироваться, не допуская растрескивания.
- Небольшая масса. Вес 1 куб. м арболита составляет не более 700 кг. Такой же объем кирпича имеет массу 2 тыс. кг. Строителям малый вес материала позволяет отказаться от сооружения массивной фундаментной основы, что экономит время, силы и средства.
- Быстрая кладка. При строительстве сооружений чаще всего отдается предпочтение крупногабаритным блокам (500×300×200 мм). Благодаря большим размерам материала можно создать теплоемкое сооружение за короткий временной отрезок.
- Малый расход песчано-цементной смеси.
- Отличные теплоизоляционные свойства. Арболитовые блоки обладают низкой теплопроводностью, за счет чего они не пропускают холод извне и не отдают тепло, накопленное в помещении.
- Пожаробезопасность. Арболит – практически негорючий материал. Входящие в состав арболитовой смеси химические добавки способствуют повышению огнеупорности блоков до 3 часов. При воздействии пламени огня изделия не выделяют едкого дыма.
- Хорошая паропроницаемость. Арболитовая кладка способна «дышать». Она способствует естественной циркуляции воздуха, что обеспечивает хороший микроклимат в любом помещении.
- Биологическая устойчивость. Возведя сооружение из арболита, можно не бояться, что его перекрытие или стены будут поражены плесенью или другими видами грибка. Это позволяет сохранить деньги на покупку антисептических средств.
- Механическая стойкость. Блоки арболита довольно прочны. Им не страшны удары, падения и другие механические воздействия. Такая устойчивость доказана экспериментально: изделия с трудом разбиваются кувалдой и сохраняют свою целостность при падении с высоты до 18 метров.
- Отличное поглощение шумов. Звукоизоляция материала лучше показателей шумопоглощения древесины или кирпича.
- Возможность обработки. При необходимости блоки можно пилить обычной бензопилой, получая нужный размер изделия.
- Простой монтаж крепежных элементов. В арболитовые блоки без особых усилий вкручиваются саморезы или вбиваются гвозди.
Несмотря на многочисленные преимущества, арболит выбирает не каждый строитель. Причина проста – это недостатки материала. Для одних они являются несущественными, в то время как для других – серьезное основание для отказа от покупки арболитовых блоков.
Недостатки
Арболит имеет много преимуществ, чуть меньше – минусов. К главному недостатку относят высокие риски приобретения модулей кустарного производства. Дело в том, что качественные блоки выпускают на крупных производственных предприятиях, которых не найти в регионе.
В мелких городах и некоторых мегаполисах работают «кустарники» или компании-однодневки. С целью уменьшить себестоимость готовой продукции, они нередко используют дешевое некачественное сырье.
Такие производители не задумываются об эксплуатационных качествах выпускаемых стройматериалов. Они изготавливают модули, нарушая технологический процесс. В результате они реализуют арболит, технические характеристики которого существенно ниже заявленных.
К еще одному минусу относят малую плотность материала. С одной стороны, это положительный момент, поскольку снижается нагрузка на фундамент, а с другой – такие блоки нельзя использовать для возведения многоэтажных сооружений.
Существует ряд других недостатков такого материала.
- Отклонения в размерах. Готовые блоки могут существенно различаться по типоразмерам, прописанным регламентом. Иногда из-за несоответствия параметров строителям приходится увеличивать толщину швов. Это ведет к образованию «мостиков холода» и промерзанию швов в стужи.
- Биологическая неустойчивость. Блоки из арболита – изделия, которые «полюбились» грызунам. Мыши и крысы делают в них многочисленные норки и ходы, что значительно снижает срок службы постройки. Чтобы защитить конструкцию от таких вредителей, потребуется делать бетонный цокольный этаж. А это дополнительные денежные растраты на стройматериалы и наем строительной бригады.
- Необходимость в декоративной отделке фасада. Арболит – эстетически непривлекательный строительный материал (если речь не идет об изделиях с облицовкой). Чтобы улучшить внешний вид строения, не обойтись без финишной отделки. Она повлечет за собой расходы на покупку облицовки и наем рабочей силы.
- Слабая устойчивость к повышенной влажности. Арболитовые блоки способны накапливать влагу, что со временем разрушает материал. Чтобы строение из арболита прослужило как можно дольше, нужно сделать фундаментную основу с хорошей гидроизоляционной оболочкой и произвести оштукатуривание внешней части стены.
- Высокая стоимость. Здесь не идет речь о блоках низкого качества кустарного производства. Изделия, соответствующие нормативам ГОСТ, стоят недешево. Их цена примерно в 1,5 раза выше по сравнению со стоимостью газобетона или пеноблока.
Некоторые недостатки арболита связаны с нарушением технологии его производства или с использованием некачественных составляющих. Чтобы не приобрести блоки, непригодные для строительства, нужно прислушаться к некоторым рекомендациям.
Критерии качественной продукции
Выбор арболита – ответственный процесс, поскольку от него во многом будет зависеть срок службы будущего строения, а также микроклимат внутри него. Опытные строители при покупке материала советуют, в первую очередь, обращать внимание на его стоимость. Маловероятно, что производитель будет работать себе в ущерб и продавать качественные арболитовые блоки ниже их рыночной цены.
Чтобы обезопасить себя от подделки, нужно просить у продавца соответствующие документы на товар (сертификаты качества и соответствия).
Выбирая арболит, важно произвести его визуальную оценку. Ниже приведены показатели качества такого материала.
- Однородность состава. Если арболитовая смесь была неоднородной, готовые блоки со временем будут расслаиваться. Согласно регламенту показатель расслоения должен быть менее 10%.
- Правильная геометрическая форма. Ее нарушения наблюдаются при несоблюдении условий хранения готовых изделий или технологии производства.
- Однородный серый цвет. Неравномерный окрас блоков или посторонние включения говорят о низком качестве изделий. Например, присутствующие зеленые или коричневые оттенки – признак недосушивания изделий. Стоит учесть, что материалы могут иметь различные включения (солому, опилки, хвою, древесную кору), но не более 5%.
- Щепа одинакового размера (наличие частичек с размерами, превышающими установленные нормы, недопустимы). Слишком большие древесные фракции неспособны полностью пропитаться химическими реагентами. Из-за этого они плохо смешиваются с бетоном и снижают прочность готового стройматериала.
Нужно отказаться от приобретения блоков, изготовленных на основе опилок, а не щепы. Такие блоки обладают меньшей прочностью, обусловленной плохой армирующей связкой.
Чтобы точно быть уверенным в качестве арболита, следует договориться с производителем о возможности лабораторной проверки выборочных образцов материала из выпущенной партии.
Отзывы
Узнать о том, какие дома получаются из арболита, помогут отзывы их владельцев. В сети встречаются как положительные, так и отрицательные отклики.
Среди преимуществ покупатели отметили:
- быстроту и легкость возведения строения;
- отличную звуконепроницаемость;
- сохранение тепла зимой и осенью.
Потребители также отметили возможность сохранить деньги на аренде спецтехники при постройке дома, поскольку блоки перемещаются вручную по причине легкого веса.
Судя по откликам, положительно отзываются об арболите лишь те покупатели, которые приобретали материал у крупных и известных производителей. Однако в сети встречаются и отрицательные мнения. Их в большинстве оставляют люди, производящие арболитовые блоки собственноручно. Они отметили следующие негативные факторы:
- сырость и холод внутри помещения;
- неприятный запах, который не выветривается;
- промерзание межблочных швов;
- большой расход штукатурной смеси.
Арболитовые блоки – выбор тех, кто желает быстро и недорого возвести хозяйственную постройку или жилой дом. Чтобы помещение было теплым, сухим и тихим, следует покупать только качественные строительные изделия по реальной рыночной цене.
О плюсах и минусах арболита смотрите в видео ниже.
Блоки из арболита - что это такое, их характеристики, размеры, вес
На гребне популярности блоков из легких бетонов строители вспомнили о материале вековой давности — арболите (от arbre — дерево). Это кладочный материал, состоящий из щепы деревьев хвойных (кроме лиственницы) или лиственных пород, бетона или цемента, воды и присадок, увеличивающих прочность, морозостойкость, устойчивость к биологическому поражению древесины. О качестве материала говорят дома, стоящие более 50 лет.
Характеристики материала продиктованы ГОСТ 19222-84 «Арболит и изделия из него» и СН 549-82 «Инструкция по проектированию, изготовлению и применению конструкций и изделий из арболита».
По назначению арбоблоки подразделяются на 2 типа:
- конструкционный, предназначенный для строительства нагруженных конструкций до 3-х этажей высотой, класс прочности на сжатие В 1,5…3,5;
- теплоизоляционный, используемый в качестве утеплителя, класс прочности на сжатие В 0,35…1,5.
Тип арболита | Применение в строительстве | Класс прочности при сжатии | Прочность, кг/куб.м | Плотность, кг/куб.м |
Теплоизоляционный | Утепление стен | В 0,35-1,5 | М5, М10, М15 | 400-500 |
Конструкционный | Возведение несущих стен | В1,5-В3,5 | М25, М35, М50 | 500-700 |
Также имеет право на существование монолитный арболит.
Арболит допускается использовать при строительстве зданий и помещений с влажностью среды до 60%, при наличии слабо- и среднеагрессивной среды, при условии выполнения защиты от коррозии.
Изделия из арболитобетона (второе название — древобетон, не путать с опилкобетоном!) заводского изготовления имеют четкую геометрию, светло-серый цвет цемента, выраженную структуру измельченной древесной щепы и при этом гладкую поверхность.
Важно!
Качественный блок не имеет трещин, неровностей, сколов.Технические характеристики
Технические характеристики, устанавливаемые ГОСТом — это прочность на сжатие, плотность, теплопроводность, морозостойкость, состав изделий.
Размеры
Размер блоков устанавливает производитель, наиболее востребованный покупателем габарит — 500(l)х300(b)х200(h) мм для конструкционных блоков, но в продаже можно встретить камни размером 500х250х200 и 500х200х200 мм.
Внимание!
Согласно теплотехническому расчету, при кладке стен в Московском регионе необходимая толщина стены из арбоблока D600 — 380 мм.Вот номенклатура одного из производителей:
Теплоизоляционные блоки выпускают значительно большего размера — до 6 м длиной, 1,2 м шириной, 0,1 м толщиной, это уже панели.
Крупноразмерные блоки и панели армируются сварными сетками или отдельными стержнями с антикоррозионной обработкой.
Вес
Вес арбоблоков, как правило, не должен превышать 30 кг, больший вес создает трудности при укладке материала.
Плотность
Плотность арболита напрямую зависит от назначения и от процентного содержания цемента:
- плотность конструкционных каменей — 550…850 кг/м3;
- плотность теплоизоляционных — 300…500 кг/м3.

Состав
Строительные блоки из арболита изготавливают из дробленой древесной щепы размером 25х10х5 мм, причем этот размер был определен опытным путем, цемента с нижней маркой М300 для теплоизоляционных изделий и М 400 для конструкционных, воды и добавок, причем количество компонентов в смеси строго регламентировано:
- Древесная щепа составляет до 90% от объема изделий, допускается добавлять до 5% хвои и до 10% коры.
- Цемент — количество связующего зависит от марки и назначения изделия — чем больше в смеси цемента, тем он тяжелее, прочнее и хуже его теплотехническая характеристика.
- Вода — должна быть очищена от примесей, на деле часто используют водопроводную, из скважин или открытых источников.
- Добавки — для нейтрализации сахаров, которые вызывают гниение древесины при высокой влажности и температуре, в смесь добавляют хлорид кальция, жидкое стекло, сернокислый глинозем или известь в количестве 3-5% от объема цемента.

Достоинства
Арболитовые блоки соединяют в себе достоинства исходных составляющих: они прочны, как цемент и аккумулируют тепло, как дерево:
- Прочность. Камни из древобетона класса В 2,5…3,5 обладают достаточной прочностью для строительства несущих конструкций зданий высотой 2-3 этажа.
- Теплопроводность. Арбоблоки конструкционные имеют коэффициент теплопроводности от 0,105 до 0,17 Вт/м×°С, теплоизоляционные — от 0,07 до 0,095, что позволяет отнести их к группе эффективных строительных материалов.
- Морозостойкость. Морозостойкость соответствует нормативным требованиям к материалам для наружных ограждающих конструкций (F 50).
- Огнестойкость. По группе горючести арбоблоки относятся к трудногорючим материалам — Г1, они выдерживают под действием открытого пламени 1,5 часа без изменения геометрии.
- Биостойкость. Материал не поражает гниль, плесень, к нему не проявляют интереса грызуны, благодаря наличию в составе большого количества древесины стены из древобетона дышат, создавая в доме комфортный микроклимат.
- Малый вес. Невысокая плотность материала уменьшает потребность в подъемно-транспортном оборудовании, снижает затраты на транспортировку, позволяет использовать при строительстве мелкозаглубленные фундаменты облегченного типа — свайно-винтовые, столбчатые, шведскую плиту.
- Экологичность. В составе арболита нет агрессивных или вредных веществ, они экологически безопасны и не оказывают негативного влияния на здоровье людей.
- Долговечность. Здания, сложенные из арбоблоков, стоят более 50 лет.
- Экономичность. При производстве древобетона используются отходы деловой древесины, процесс изготовления блоков не требует больших затрат электроэнергии, благодаря этому снижается стоимость изделий.

Недостатки блоков
Недостатки материала также проистекают из свойств исходных составляющих:
- водопоглощение от 40 до 80% от объема блока, для снижения водопоглощения арболитовые конструкции необходимо защищать оштукатуриванием;
- недобросовестные производители — зачастую арбоблоки изготавливают на лесозаготовительных предприятиях без соблюдения технологии, в результате они не отвечают требованиям стандарта.
- недостаточно точное соблюдение размеров — в блоках с малым содержанием цемента при передозировке водной смеси потери по габаритам могут превышать допустимые нормами.
Внимание!
Из-за способности впитывать влагу в больших количествах, арболит нельзя использовать для кладки цоколя, карниза и парапетов зданий любого назначения.Подробнее о плюсах минусах читайте в этой статье.
Виды арболитовых блоков
Кроме камней стандартной формы параллелепипеда, блоки из древобетона выпускают:
- пазогребневой формы, в основном для перегородок и перемычек,
- пустотелыми с размером пустот до 45% от объема,
- лицевыми — облицованными слоем цветного или неокрашенного бетона с одной или большим количеством сторон.
Сравнение с другими материалами
Газобетонный блок
В сравнении с блоками из газосиликата арболитовые имеют большую прочность на изгиб, а потому не склонны к растрескиванию при неравномерной осадке здания. Отсутствие осадки у арбоблоков (0,4…0,8%) дает возможность выполнения отделочных работ сразу после возведения здания с деревянными перекрытиями и через 4 месяца для зданий с перекрытиями из бетонных плит.
Стена из газоблока при той же плотности должна быть на 100 мм толще стены из арбоблока, и так же потребует отделки снаружи и внутри дома, но при этом потребуется более мощный фундамент.
Крупноформатный керамический блок
Крупноформатные керамические блоки проигрывают арбоблокам в теплоизоляционных качествах: теплопроводность керамики — 0,2…0,36 Вт/(м×К) против 0,11 у арболита, хрупкость керамики не дает возможность забивания гвоздей и вкручивания саморезов. Также керамика обладает большим весом. Выигрывает керамика по морозостойкости (F100) и огнестойкости НГ.
Профилированный брус
Профилированный брус — дорогостоящий экологичный материал, сооружение дома из него обойдется в разы дороже, чем из арболитового камня, при этом нельзя сравнивать материалы по долговечности, биостойкости и пожаробезопасности — по всем этим показателям арболит выигрывает.
Пустотелый и облицованный арболитовый блок
Нормативных документов на пустотелые арбоблоки в РФ нет, их производят соседи — в Беларуси по собственному стандарту СТБ 1105-98*, где указан процент пустот — не более 45%, максимальный вес — до 30 кг. Остальные характеристики соответствуют ГОСТу СССР 84 года.
Лицевые блоки могут иметь от 1 до 4-х облицованных сторон, с отделкой бетоном слоем толщиной 20 мм с наружной и 15 мм с внутренней стороны кладки.
Особенности строительства домов из арболитовых блоков
При выборе проекта для дома из арбоблоков следует учитывать такие требования:
- высота цоколя от уровня земли до кладки из блоков — 50 см;
- запрещено выкладывать из древоблоков цоколь, карниз, парапет;
- кладку из необлицованных блоков снаружи и изнутри постройки необходимо защищать цементно-песчаной штукатуркой или облицовкой влагостойкими материалами;
- для улучшения теплотехнических характеристики кладку предпочтительнее вести на теплых растворах с керамзитовым или перлитовым песком в качестве наполнителя, это позволит избежать мостиков холода.
В остальном правила выполнения кладки из арбоблоков не отличаются от требований к другим кладочным материалам.
Блоки из арбобетона — отличный строительный материал для строительства частных домов и приусадебных строений. Этот материал имеет отличные теплоизоляционные качества при достаточной несущей способности. Сравнивая характеристики различных стеновых материалов, легко сделать выбор в пользу именно арболита, поскольку более высокая цена в сравнении с газоблоками с лихвой окупается экологичностью, легкостью укладки и обработки, малой теплопроводностью и долговечностью материала.
Полезное видео
Ролик о технологии производства блоков:
Отличная статья 2
что это такое, где используются арболитовые блоки, панели, плиты, плюсы и минусы материала
Несмотря на популярность классического бетона, достаточно актуальны арболитовые блоки. Это материал, который состоит из:
- Хвойной или лиственной щепы.
- Бетонного раствора или цемента.
- Воды.
- Добавок для увеличения морозостойкости, прочности, устойчивости к коррозии и других характеристик.
Арболит — что это такое
Основным компонентом являются древесные опилки, к которым предъявляется ряд требований. Среди них:
- Игольчатая форма.
- Ширина в 10-12 мм.
- Толщина в 2-3 мм.
- Длина от 15 до 25 мм.
Панели из арболита можно либо приобретать, либо делать самостоятельно. Процесс изготовления следующий:
- Щепа соединяется с вяжущим веществом, а также добавками для улучшения характеристик и качества готовой продукции.
- Смесь называют деревобетоном, который сразу после получения формуется и уплотняется на вибростоле.
- После 30-40 часов готовые элементы распалубливаются и размещаются в камере нормального твердения. Там они смогут набрать прочность. На это уходит до 30 суток. Только после этого можно использовать материал.
Конечный продукт – это арболитовые блоки.
Если вы самостоятельно хотите сделать арболитовые панели, то нужно после укладки раствора в формы поместить все под пленку и установкой необходимой температуры. Это позволит получить 80% прочности уже через 10 суток. Подробнее о том как сделать арболитовые блоки своими руками мы рассказывали в этой статье.
Технология позволяет создавать абсолютно любые размеры. Применяется арболит как для стен, так и для перегородок. Если говорить о конкретных размерах арболитовых блоков, то при производстве используют следующие параметры:
- Высота – 200-250 мм.
- Ширина – 50-250 мм.
- Длина – до 600 мм.
Существуют еще и «доборные» элементы. По названию понятно, что они применяются для устранения зазоровпри укладке уже первого ряда блоков. Это позволяет обойтись без подгона и обрезки. Благодаря таким элементам, можно подобрать плиты из арболита подходящего объема. Выпускаются в следующих формах:
- Уголки.
- Половинки.
- Элементы неправильной геометрической формы.
Достоинства
Среди главных плюсов арболита можно отметить:
- Арболит несет в себе все положительные черты от исходных компонентов. Он будет прочным как бетон, а также аккумулирующим тепло как древесина.
- Прочность. Блоки из арболита класса В2,5-B3,5 могут прекрасно подойти для строительства 3-этажного здания.
- Теплопроводность. Это эффективный строительный материал, который обладает хорошим коэффициентом теплопроводности.
- Морозостойкость. Арболит можно отнести к классу ограждающих конструкций (F50).
- Огнестойкость. Арболит — это трудногорючий материал, который может выдержать 90 минут под действием огня без изменения формы.
- Стойкость к воздествиям биологического характера. Строительный материал устойчив к воздействию плесени, гнили, жизнедеятельности грызунов.
- В составе присутствует древесина, которая позволяет материалу дышать.
- Небольшой вес, благодаря малой плотности. Это позволяет снижать стоимость из-за малых затрат на перевозку, на грузчиков, на устройство фундамента.
- Экологичность. В состав не входят вредные компоненты, которые будут небезопасны для людей.
- Длительный срок использования. Здания существуют более 50 лет.
- Стоимость. Все компоненты недорогостоящие. В процессе изготовления используются также отходы от древесины, благодаря чему цена падает.
Недостатки блоков
Все недостатки арболита исходят только из свойств его компонентов. Сюда следует отнести:
- Поглощение воды от 40 до 80% массы арболита. Для снижения характеристики этого материала нужно штукатурить готовые конструкции.
- Если производитель недобросовестный, то арболит изготавливается на предприятиях без соблюдения определенной технологии и без применения присадок. В результате этого он не отвечает заявленным стандартам качества.
- Несоблюдение размеров как один из минусов. Отклонения возникают из-за того, что в арболитовом кирпиче содержится малое количество цемента, которое при передозировке водой ведет к потерям по габаритам. Если отклонение не превышает установленные в стандартах значения, то волноваться не нужно. В противном случае применять не рекомендуется.
Виды арболитовых блоков
Арболитовые элементы могут выпускаться в стандартной форме. Это параллелепипед с определенными размерами. Также могут выполняться другие линейные размеры:
- Пазогребневая форма для перемычек и перегородок.
- Пустотелый вариант, где количество пустот может достигать до 45% от общего объёма.
- Лицевые. Обычно они облицовываются слоем бетона с одной или нескольких сторон. Отделка позволяет применять компонент без дальнейшей доработки. Здесь присутствует возможность обшивать готовые конструкции.
Технические характеристики
Среди технических характеристик можно отметить те, которые устанавливаются по ГОСТу. Сюда входят:
- Показатели прочности.
- Плотность.
- Теплопроводность.
- Морозостойкость.
- Состав изделий.
Плотность
Плотность напрямую будет зависеть от количества цемента в смеси. Для конструкционных изделий расход составляет 550-850 кг/м3, а для теплоизоляционных 300-500 кг/м3.
Вес
Вес обычно не превышает 30 кг. Если сделать плиту больше, то возникнут трудности при монтаже и транспортировке.
Размеры
Размеры блоков из арболита устанавливается стандартами и производителем. Наиболее востребованным считается характеристика для конструкционных элементов 500х300х200 мм. В продаже можно встретить 500х250х200 и 500х200х200 мм. Крупноразмерные арболитовые плиты армируется дополнительно сетками или стержнями.
Перед устройством стен из арболита нужно провести теплотехнический расчёт. Он сможет показать, какая толщина стен необходима именно для вашего региона. Например в Москве стены должны иметь толщину в 380 мм.
Состав
Количество компонентов регламентируется стандартом. В составе следует выделить следующие компоненты:

- Строительные блоки из арболита изготавливают из щепы. Она имеет размер 25х10х5 мм. Он определяется при помощи лабораторных испытаний. Щепа для арболита составляет в смеси до 90% от общей массы. Можно добавлять 5% хвойных отходов, а также 10% коры.
- Цементный раствор. Он должен иметь марку М300 для теплоизоляционных изделий, и М400 для конструкционных. Количество цемента зависит от марки, а также от типа изделия. Чем больше цемента, тем тяжелее будет плита, прочнее, но хуже по теплотехническим характеристикам. Также может применяться еще и бетон с заполнителями.
- Вода должна соответствовать стандарту. В ней не должно быть примесей. На практике чаще всего используют водопроводную жидкость, из скважин, а также из открытых источников.
- Добавки. Предназначены для того, чтобы обеспечивать улучшенные характеристики. Можно сюда добавлять жидкое стекло, известь, хлорид кальция и многое другое. Объем введения также определяется по расчёту, но чаще всего принимается в количестве от 3 до 5%.
Формование блоков
Существует несколько способов формования, которые позволяют избавиться от излишков воздуха. Они имеют особенности, которые будут подходить для тех или иных производителей. Среди них:
- Трамбование вручную на напольном покрытии в производственных условиях.
- Трамбование при помощи виброплощадки вручную.
- Вибропрессование механическим способом.
- Уплотнение при помощи вибростанка с пригрузом.
Выбор способа будет зависеть от объема производства.
Сравнение с другими материалами
Если сравнивать виды арболитовых блоков с иными материалами, то будут присутствовать различия. Это обосновывается составом, прочностью на сжатие, а также иными критериями.

Газобетонный блок
Преимущества арболита над газобетоном:
- Больший предел прочности на изгиб. Благодаря такому свойству, арболит с опилками будет меньше растрескиваться, а также не будет неравномерной осадки.
- Возможность проведения отделки сразу же с деревянными перекрытиями, а также через 4 месяца с бетонными.
- Можно использовать меньшую толщину для обеспечения тех же характеристик.
- Менее мощный фундамент можно возводить при строительстве здания, что делает пенобетон вторым.
Крупноформатный керамический блок
Чаще всего керамический материал проигрывает по теплопроводности. Из-за хрупкости, нельзя вкручивать саморезы, вбивать гвозди. Также все керамические элементы будут больше по массе. Но, среди преимуществ этого материала можно отметить высокую морозостойкость и огнестойкость.
Профилированный брус
Брус – это дорогостоящий компонент, который при строительстве могут использовать не все. Но материалы для изготовления раствора ни в коем случае нельзя сравнивать по сроку эксплуатации, стойкости к биоразрушениям, а также по пожарной безопасности. Арболит будет в более выигрышной позиции.
Пустотелый и облицованный арболитовый блок
Нормативов на арболитовый перечень не существует на сегодняшний день в нашей стране. Но в Беларуси есть СТБ – стандарт республиканский, где указано количество пустот и нормируемый вес. Все остальные характеристики можно просмотреть по ГОСТу от 1984 года. Все лицевые элементы могут облицовываться со всех сторон.
Как выбрать арболитовый блок
Когда вы столкнулись с процессом выбора этого легкого материала, то нужно учитывать ряд установленных факторов, которые будут оказывать влияние на дальнейшую эксплуатацию. К ним следует отнести:

- В арболитовом составе должна присутствовать щепа. Лучше всего использовать хвойный компонент, благодаря хорошему составу. Также длина должна в 5 раз превышать толщину.
- Лучший блок состоит из цемента, марка которого равна М500 и больше. Остальные виды будут не подходить из-за малой прочности.
- Технологический процесс. Ручное трамбование не достаточно эффективно для арболитового элемента. Лучше всего пользоваться механическими методиками.
- Отдельное внимание нужно обратить и на выдерживание в опалубке, которое должно по времени быть не менее 24 часов.
- Все грани должны быть однородными.
- Качество должно подтверждаться сертификатами.
- Отдельно внимание обращается на габариты арболитовых блоков. Отклонения не должны превышать отметки в 5 мм по каждой грани.
- Не должно быть белого налета. Он говорит о том, что производилось добавление клея к смеси. А этот параметр не должен присутствовать.
- Арболитовый кирпич по внешней характеристике не должен быть гладким. В противном случае это означает, что в смеси использовалась не щепа, а квадратные опилки.
Как определить качественный арболит и не купить подделку
Среди всех арболитовых элементов часто можно встретить подделку. Именно поэтому лучше заранее определить некоторые критерии, по которым есть возможность определить качество. Сюда можно отнести следующие характеристики арболитовых блоков:
- Низкая стоимость. Если материал качественный, то ни один производитель не станет его реализовывать для возведения несущих стен по цене, которая ниже рыночной. Снижение показателя говорит о том, что в составе присутствуют неприемлемые компоненты. Щепа заменяется на иные компоненты древесных отходов, а полезные добавки на химические смеси.
- Материал не должен расслаиваться по масс более, чем на 10%.
- Нет сертификата качества или он не подлинный. Но не всегда этот параметр будет гарантировать действительность. Сертификат можно без проблем купить.
- Нарушена геометрия. Этот фактор влияет на то, что, либо использовались опилки, либо формование проходило неправильным образом по не той технологии изготовления.
- Природный оттенок арболита – серый.
И только когда вы обратите внимание на все параметры, то сможете приобрести для себя действительно подходящий элемент. Он будет прочен и долговечен, а также без использования химических компонентов.
Какой строительный материал (дерево, сталь, бетон) оказывает наименьшее общее воздействие на окружающую среду? - Обсуждение науки
Дерево - фундаментальная часть строительства. Это универсальный строительный материал, потому что его можно найти везде. Ранние поселенцы в Северной Америке использовали древесину для строительства бревенчатых хижин, поскольку это было более эффективно, чем транспортировка других материалов из Европы. (Росманиц, 2013). Дерево не требовало больших инструментов для производства строительного материала.В то время древесина была самым надежным строительным материалом. Дерево настолько надежно, что дома, построенные более 800 лет назад, все еще стоят сегодня (Hoibo, Hansen, & Nybakk, 2015). С течением времени древесина по-прежнему остается предпочтительным методом строительства домов. Однако через некоторое время стал доступен новый материал. Бетон использовался в нескольких древних цивилизациях, а именно в Риме и Египте, где ресурсы ограничены, а древесина не может быть найдена. Сегодня мы видим, что бетон используется в основном в подвалах, мостах и в крупных промышленных сооружениях, потому что из большинства материалов он является одним из самых непроницаемых и рентабельных.
Оглядываясь вокруг, вы можете утверждать, что сегодня в строительстве наиболее часто используются бетон и сталь. Однако, в отличие от дерева, бетон производится с использованием нерациональных методов. Древесину можно сносить для повторного использования, но бетон нельзя утилизировать, и его оставляют там, где его сносят. Сталь - новейший из трех материалов. Сталь стала популярным строительным материалом во время промышленной революции из-за своей прочности. В это время большинство людей начали переходить со строительства из дерева на сталь.Обладая текущими знаниями общества, мы знаем, что древесина - лучший вариант с точки зрения устойчивости. Развитие бетона и стали не может вести по наиболее устойчивому пути.
Учитывая серьезные угрозы глобального изменения климата, устойчивое строительство - это путь вперед, на котором строительная промышленность может сыграть свою роль в достижении устойчивого и более здорового мира. Можно просто определить устойчивость как строительство для удовлетворения потребностей нынешнего поколения без ущерба для способности будущих поколений удовлетворять свои потребности.Ученые и эксперты сходятся во мнении, что деятельность человека способствует изменению климата. Только недавно реальность экологической катастрофы из-за неестественного вмешательства человека в окружающую среду стала более очевидной. Один конкретный процент участия - это строительная отрасль. В конечном счете, на здания приходится треть общих глобальных выбросов парниковых газов, главным образом за счет использования ископаемого топлива на этапе их эксплуатации (Huovila, Ala-Juusela, Melchert, & Pouffary, 2009).Чрезмерные выбросы углерода представляют собой реальную угрозу для мира и могут вызвать серьезные проблемы в будущем. Только в Северной Америке на строительный сектор приходится около 37% двуокиси углерода (CO 2 ) и 40% в Европе, и это, вероятно, будет продолжаться в последующие годы (Beyer, 2012). Вдобавок, если мы продолжим строить из неустойчивых материалов, в конечном итоге у нас закончатся материалы для строительства. Быстро приближается переломный момент, когда в мире заканчиваются ресурсы и энергия.Эта причинно-следственная связь будет влиять не только на текущее поколение, но и на каждое следующее поколение, которое будет иметь дело с созданными проблемами. Однако для достижения желаемых целей устойчивого и экологичного строительства строительная отрасль должна с гораздо большей серьезностью решать проблемы выбросов в строительном секторе.
Aciu (2014) объясняет, что весь жизненный цикл здания влияет на окружающую среду. Это оценивается с помощью функционального инструмента под названием «Оценка жизненного цикла» (LCA) или сквозного подхода.LCA используется для выполнения оценки, в которой материалы, конструкция, использование и снос здания количественно выражаются в воплощенных эквивалентах энергии и углекислого газа, а также представлены потребление ресурсов и выбросы. Эти результаты полезны для архитекторов, инженеров-строителей, подрядчиков и владельцев, заинтересованных в прогнозировании воздействия на окружающую среду на протяжении всего срока службы конструкции. Жизненные циклы строительных материалов должны быть лучше поняты, прежде чем их воздействие на окружающую среду можно будет уменьшить, и LCA стала эффективным инструментом в ответах на важные вопросы по актуальным темам, вызывающим обеспокоенность общественности, таким как выбросы парниковых газов (Hsu, 2010).
Производство, транспортировка и установка строительных материалов, таких как сталь и бетон, требуют большого количества энергии, несмотря на то, что они представляют собой минимальную часть конечных затрат в здании в целом. Эксперты называют энергию, потребляемую всеми процессами, воплощенной энергией (EE) (Høibø et al, 2015). Небольшое количество воплощенной энергии (углерода) в одной тонне бетона, умноженное на огромное количество используемого бетона, приводит к тому, что бетон является материалом, содержащим наибольшее количество углерода в мире.ЭЭ для бетона, который является самым высоким, составляет 12,5 МДж / кг ЭЭ, для стали - 10,5 МДж / кг ЭЭ, а самый низкий - для древесины с 2,00 МДж / кг ЭЭ. (Сюй, 2010). Воплощенное энергосодержание каждого строительного материала сильно различается, особенно бетона, потому что производство цемента чрезвычайно энергоемкое и требует использования ископаемого топлива, что делает его одним из ведущих производителей выбросов углекислого газа, способствующих глобальному потеплению (Shams et al, 2011).
Рассматривая воплощенную энергию бетона и стали, можно сделать вывод, что их воздействие на окружающую среду чрезвычайно велико.С другой стороны, с точки зрения углеродного следа, деревянным зданиям требуется меньше энергии от добычи ресурсов посредством производства, распределения, использования и утилизации по окончании срока эксплуатации, и они несут ответственность за гораздо меньшие выбросы парниковых газов, загрязнение воздуха и воды. Shams et al. (2011) сравнили среднюю школу Эльдорадо в Арканзасе, построенную из дерева, с другими зданиями, построенными из стали или бетона. Авторы обнаружили, что экологичная конструкция деревянного здания, также называемая зеленым зданием, состоит примерно из 153 140 кубических футов пиломатериалов, панелей и конструкционной древесины можно сравнить с 2184 автомобилями, находящимися вне дорог в течение года.Для этого объема древесины ASTF (Альянс за сохранение лесов) предлагает, чтобы леса вырастили такое количество древесины за 13 минут, и углерод, поглощенный древесиной, составляет примерно 3660 метрических тонн CO 2 , и, что более важно, предотвращенные выбросы парниковых газов 7780 метрических тонн. из CO 2 . Это подтверждает, что древесина является лучшим возобновляемым, биоразлагаемым, нетоксичным и энергоэффективным строительным материалом. В ответ древесина получила практический импульс со стороны правительств и промышленности в таких богатых древесиной регионах, как Австрия, Скандинавия, а недавно Министерство сельского хозяйства США объявило конкурс деревянных многоэтажных домов и объявило об инвестициях в 1 миллион долларов для обучения архитекторов и строителей навыкам. работа с деревом (Хамфрис, 2015).
Часто эксперты принимают во внимание производство строительных материалов, когда говорят о факторах, которые делают упор на экологичность. Этот фактор оценивается с помощью LCA. Некоторые строительные материалы, такие как сталь, создать сложнее, и как практически невозобновляемые ресурсы они вносят больший вклад в общее потребление материалов (Kim et al, 1998). Сталь - новейший из трех материалов. Сталь стала популярным строительным материалом во время промышленной революции из-за своей прочности.В это время большинство людей начали переходить со строительства из дерева на сталь. К сожалению, тогда еще не было известно о вреде его изготовления. Производство стали, цемента и стекла требует температуры до 3500 градусов по Фаренгейту, что достигается за счет большого количества энергии на основе ископаемого топлива. С другой стороны, дерево производится с использованием энергии солнца (Shams, Mahmud, & Amin 2011). Переход от экологически чистых строительных материалов, таких как бетон и сталь, к экологически чистым строительным материалам, таким как дерево, в офисных и коммерческих зданиях может существенно снизить негативное воздействие, которое здание оказывает на окружающую среду .
Если говорить о производстве строительных материалов, древесина имеет одно большое экологическое преимущество перед сталью и бетоном. Дерево - поистине натуральный материал, способный расти и воспроизводиться. Деревья можно собирать, как любую культуру, и легко превращать их в каркас. Лесные фермы - это доступный вариант для массового производства конструкционного материала. Они способны быть эффективными и устойчивыми, однако от них не требуется соблюдать какие-либо законы устойчивости. Это прискорбно, но с введением в действие новых законов мы можем сделать наиболее экологичные материалы еще более устойчивыми.Мы могли бы сделать это обязательным по закону, чтобы оно было сертифицировано Американской системой лесоводства. Если это необходимо, то больше нет оправданий тому, почему дерево не является самым устойчивым материалом. (Стандарты сертификации, 2016 г.)
Для получения сертификата American Tree Farm System необходимо соблюдать восемь стандартов. Первый стандарт - это приверженность устойчивому ведению лесного хозяйства. Фермеры, выращивающие деревья, могут сделать это с помощью разработки плана управления лесами и внедрения устойчивых методов.Второй стандарт - соблюдение законов. Этот стандарт просто требует, чтобы землевладелец соблюдал все соответствующие правила. Третий стандарт - лесовозобновление и облесение землевладельца. Четвертый стандарт - это защита воздуха, воды и почвы. Этот стандарт является устойчивым, поскольку требует от землевладельца поддерживать или улучшать качество земли. Пятый стандарт - это здоровье вашего леса и животных, которые называют его своим домом. Шестой стандарт - эстетика леса. Седьмой стандарт - защита специальных сайтов.Особые места должны иметь исторические, археологические, культурные, геологические, биологические или экологические характеристики. Последний стандарт, стандартный восемь, - это заготовка лесной продукции и другие виды деятельности. Это восемь стандартов, которым вы должны следовать, чтобы получить сертификат Американской системы лесоводства (Стандарты сертификации, 2016). Все стандарты доказывают общественности, что даже те лесные фермы, которые используются для материальных целей, по-прежнему вносят свой вклад в экологическое здоровье района.Фермы будут иметь постоянное присутствие от 50 до 80 лет. Это количество времени укрепляет постоянный доход и защищает эту территорию от дальнейшего развития. Мир гораздо больше выиграет от леса, который приносит деньги, чем от электростанции, которая приносит деньги. Такой баланс индустриализации и здоровья лесов создает очень устойчивую систему.
Второй важный момент в стоимости энергии бу
.Типы строительных материалов, используемых в строительстве, и их свойства
Строительный материал - это любой материал, используемый в строительных целях, например, материалы для строительства домов. Дерево, цемент, заполнители, металлы, кирпич, бетон, глина - наиболее распространенные строительные материалы, используемые в строительстве. Их выбор основан на их экономической эффективности для строительных проектов.
Многие природные вещества, такие как глина, песок, дерево и камни, даже ветки и листья, были использованы для строительства зданий.Помимо природных материалов, используется много искусственных продуктов, некоторые из них более синтетические, а некоторые менее.
Производство строительных материалов - это устоявшаяся отрасль во многих странах, и использование этих материалов обычно подразделяется на отдельные специализированные профессии, такие как столярные работы, сантехника, кровельные и изоляционные работы. В этом справочнике рассматриваются среды обитания и конструкции, включая дома.

Виды строительных материалов, используемых в строительстве
1.Природные строительные материалы
Строительные материалы можно разделить на две категории: натуральные и синтетические. Натуральные материалы - это необработанные или минимально обрабатываемые промышленностью материалы, например пиломатериалы или стекло.
Синтетические материалы, такие как пластмассы и краски на нефтяной основе, производятся на промышленных предприятиях после многих человеческих манипуляций. Оба имеют свое применение.
Грязь, камень и волокнистые растения являются основными материалами, за исключением палаток, сделанных из гибких материалов, таких как ткань или шкуры.Люди во всем мире использовали эти три материала вместе, чтобы создать дома, соответствующие их местным погодным условиям.
Обычно камень и / или щетка используются в качестве основных конструктивных элементов в этих зданиях, а грязь используется для заполнения пространства между ними, выступая в качестве типа бетона и изоляции.


Базовый пример - плетень и мазня, которые в основном использовались в качестве постоянного жилья в тропических странах или в качестве летних построек древними северными народами.

2.Ткань
Эта палатка была излюбленным местом кочевых групп по всему миру. Два хорошо известных типа включают конический вигвам и круглую юрту. Он был возрожден как основная строительная техника с развитием растяжимой архитектуры и синтетических тканей.
Современные здания могут быть сделаны из гибкого материала, такого как тканевые мембраны, и поддерживаться системой стальных тросов или внутренних (давление воздуха).
3. Грязь и глина
Количество каждого используемого материала приводит к разным стилям зданий.Решающий фактор обычно связан с качеством используемой почвы. Большее количество глины обычно означает использование стиля глыба / саман , в то время как слабоглинистая почва обычно ассоциируется со зданием дерна .
Другие основные ингредиенты включают больше или меньше песка / гравия и соломы / травы. Утрамбованная земля - это как старый, так и новый подход к созданию стен, который когда-то создавался путем ручного уплотнения глинистого грунта между досками, теперь используются формы и механические пневматические компрессоры.
Грунт и особенно глина имеют хорошую тепловую массу; он очень хорошо поддерживает постоянную температуру. Дома, построенные из земли, как правило, имеют естественную прохладу в летнюю жару и теплые в холодную погоду. Глина удерживает тепло или холод, выделяя его в течение определенного периода времени, как камень.
Земляные стены изменяют температуру медленно, поэтому искусственное повышение или понижение температуры может потребовать больше ресурсов, чем, скажем, в деревянном доме, но тепло / холод остаются дольше.
Люди строили в основном из земли и глины, такой как глыба, дерн и саман, в результате появились дома, которые веками строились в Западной и Северной Европе, а также во всем остальном мире, и продолжают строиться, хотя и на меньший масштаб.Некоторые из этих построек оставались жилыми на протяжении сотен лет.
4. Камень
Скальные сооружения существуют столько, сколько помнит история. Это самый долговечный строительный материал из доступных и обычно легко доступен. В мире существует множество типов камня с разными атрибутами, которые делают их лучше или хуже для конкретных целей.
Rock - очень плотный материал, поэтому он также обеспечивает хорошую защиту, его основным недостатком как материала является его вес и неудобство.Его энергетическая плотность также считается большим недостатком, поскольку камень трудно сохранить в тепле без использования большого количества тепловых ресурсов.
Стены из сухого камня строились с тех пор, как люди кладут один камень на другой. В конце концов, для скрепления камней стали использоваться различные формы раствора, и цемент стал самым распространенным в настоящее время.
Усыпанные гранитом возвышенности национального парка Дартмур в Соединенном Королевстве, например, давали достаточно ресурсов для первых поселенцев. Круглые хижины были построены из рыхлых гранитных пород на протяжении всего неолита и раннего бронзового века, и сегодня можно увидеть останки примерно 5000 человек.
Гранит продолжал использоваться на протяжении всего средневекового периода (см. Длинный дом в Дартмуре) и в наше время. Сланец - это еще один тип камня, обычно используемый в качестве кровельного материала в Соединенном Королевстве и других частях мира, где он встречается.
В основном каменные здания можно увидеть в большинстве крупных городов, некоторые цивилизации построены полностью из камня, такие как пирамиды в Египте, пирамиды ацтеков и остатки цивилизации инков.
5. Соломенная
Солома - один из старейших известных материалов; трава - хороший изолятор, и ее легко собирать.Многие африканские племена круглый год жили в домах, полностью построенных из травы. В Европе когда-то были распространены соломенные крыши домов, но этот материал вышел из моды, поскольку индустриализация и улучшение транспорта увеличили доступность других материалов.
Сегодня, однако, практика возрождается. В Нидерландах, например, многие новостройки тоже имеют соломенные крыши со специальной коньковой черепицей наверху.
6. Щетка
Щеточные конструкции полностью состоят из частей растений и обычно встречаются в тропических и субтропических областях, таких как тропические леса, где в здании можно использовать очень большие листья.Коренные американцы также часто строили кустарные конструкции для отдыха и проживания.
Они построены в основном из веток, прутьев, листьев и коры, как у бобрового домика. Их по-разному называли фитилями, навесами и т. Д.
7. Лед
Лед использовался инуитами для иглу, но также использовался для ледяных отелей в качестве туристической достопримечательности в северных районах, которые в противном случае могли бы не увидеть много зимних туристов.
8. Дерево
Древесина - продукт деревьев, а иногда и других волокнистых растений, используемый в строительных целях при распиловке или прессовании пиломатериалов и древесины, таких как доски, доски и аналогичные материалы.Это обычный строительный материал, который используется для строительства практически любого типа конструкции в большинстве климатических условий.
Древесина может быть очень гибкой при нагрузках, сохранять прочность при изгибе и невероятно прочна при вертикальном сжатии.
У разных пород древесины много разных качеств, даже у одной и той же породы. Это означает, что определенные виды лучше подходят для различных целей, чем другие. Условия выращивания важны для определения качества.
Исторически древесина использовалась для строительства крупных сооружений в необработанном виде в виде бревен.Деревья просто обрезали до необходимой длины, иногда снимали кору, а затем нарезали или прибивали на место.
Раньше и в некоторых частях мира многие загородные дома или общины имели личные участки леса, на которых семья или община выращивали и собирали деревья для строительства. Эти участки будут похожи на сад.
С изобретением механизированных пил началось массовое производство размерных пиломатериалов. Это сделало постройки более быстрыми и однородными.Таким образом был построен современный дом в западном стиле.
9. Кирпич и блок
Кирпич - это блок, сделанный из обожженного в печи материала, обычно глины или сланца, но также может быть из глины более низкого качества и т. Д. Глиняные кирпичи формуются путем формования (метод мягкого глиняного раствора) или в промышленном производстве, чаще всего с помощью выдавливание глины через матрицу с последующей нарезкой проволокой до нужного размера (процесс получения твердого раствора).
Кирпич широко использовался в качестве строительного материала в 1700, 1800 и 1900-х годах.Вероятно, это было связано с тем, что в постоянно переполненных городах он был намного более огнестойким, чем древесина, и был довольно дешевым в производстве.
Другой тип блоков заменил глиняный кирпич в конце 20 века. Это был шлакоблок. Сделано в основном из бетона.
Важным дешевым материалом в развивающихся странах является блок песчаника, который слабее, но дешевле, чем обожженный глиняный кирпич.
10. Бетон
Бетон - это композитный строительный материал, состоящий из комбинации заполнителя (композита) и связующего, такого как цемент.Наиболее распространенной формой бетона является портландцементный бетон, который состоит из минерального заполнителя (обычно гравия и песка), портландцемента и воды.
После смешивания цемент гидратируется и в конечном итоге затвердевает в камнеобразный материал. В общем смысле это материал, обозначаемый термином бетон .
Для бетонных конструкций любого размера, поскольку бетон имеет довольно низкую прочность на разрыв, его обычно укрепляют с помощью стальных стержней или стержней (известных как арматура).Этот усиленный бетон в таком случае называют железобетонным.
Чтобы свести к минимуму любые пузырьки воздуха, которые могут ослабить конструкцию, используется вибратор для удаления воздуха, который был увлечен при заливке жидкой бетонной смеси вокруг металлических конструкций. Бетон был преобладающим материалом в нашу современную эпоху из-за его долговечности, формуемости и простоты транспортировки.
11. Металл
Металл используется в качестве структурного каркаса для больших зданий, таких как небоскребы, или в качестве внешнего покрытия поверхности.
В строительстве используются разные металлы. Сталь - это металлический сплав, основным компонентом которого является железо, который обычно используется для изготовления металлических конструкций. Он прочный, гибкий, и если его хорошо обработать и / или обработать, он прослужит долго. Коррозия - главный враг металла, когда дело касается долговечности.
Более низкая плотность и лучшая коррозионная стойкость алюминиевых сплавов и олова иногда превосходит их более высокую стоимость. Раньше латунь была более распространена, но сегодня она обычно используется только для определенных целей или для специальных предметов.
Металл фигурирует довольно заметно в сборных конструкциях, таких как хижина Квонсет, и может использоваться в большинстве космополитических городов. Для производства металла требуется много человеческого труда, особенно в больших количествах, необходимых для строительства.
Другие используемые металлы включают титан, хром, золото, серебро. Титан можно использовать в конструкционных целях, но он намного дороже стали. В качестве украшения используются хром, золото и серебро, поскольку эти материалы дороги и не обладают такими структурными качествами, как прочность на разрыв или твердость.
12. Стекло
Прозрачные окна использовались с момента изобретения стекла для закрытия небольших проемов в здании. Они предоставили людям возможность пропускать свет в комнаты и в то же время сохранять ненастную погоду на улице. Стекло, как правило, изготавливается из смеси песка и силикатов, и оно очень хрупкое.
Современные стеклянные «навесные стены» могут использоваться для покрытия всего фасада здания. Стекло также можно использовать для перекрытия широкой конструкции крыши в «космическом каркасе».
13. Керамика
Керамика - это такие вещи, как плитка, арматура и т. Д. Керамика в основном используется в качестве арматуры или покрытия в зданиях. Керамические полы, стены, столешницы, даже потолки. Многие страны используют керамическую черепицу для покрытия многих зданий.
Керамика раньше была просто специализированной формой обжига глиняной посуды в печах, но теперь она превратилась в более технические области.
14. Пластик
Пластиковые трубы, проходящие через бетонный пол в многоквартирном доме в Канаде
Термин «пластмассы» охватывает ряд синтетических или полусинтетических органических продуктов конденсации или полимеризации, которые можно формовать или экструдировать в предметы, пленки или волокна.Их название происходит от того факта, что в полужидком состоянии они пластичны или обладают свойством пластичности.
Пластмассы сильно различаются по термостойкости, твердости и упругости. В сочетании с этой адаптируемостью общая однородность состава и легкость пластмасс обеспечивают их использование практически во всех промышленных областях на сегодняшний день
15. Пена
Лист вспененного пластика, который будет использоваться в качестве основы для противопожарного раствора в банке CIBC в Торонто.
В последнее время синтетический полистирол или пенополиуретан использовались в ограниченном количестве. Это легкий, легко формируемый и отличный изолятор. Он обычно используется как часть структурной изолированной панели, где пена зажата между деревом или цементом.
16. Цементные композиты
Цементно-связанные композиты - важный класс строительных материалов. Эти продукты изготовлены из гидратированного цементного теста, который связывает древесину или подобные частицы или волокна для изготовления сборных строительных компонентов.В качестве связующих использовались различные волокнистые материалы, включая бумагу и стекловолокно.
Древесина и натуральные волокна состоят из различных растворимых органических соединений, таких как углеводы, гликозиды и фенолы. Эти составы, как известно, замедляют схватывание цемента. Поэтому перед использованием древесины для изготовления композитных материалов на цементной основе необходимо оценить ее совместимость с цементом.
Совместимость древесины и цемента - это отношение параметра, относящегося к свойствам древесно-цементного композита, к качеству чистого цементного теста.Совместимость часто выражается в процентах.
Для определения совместимости древесного цемента используются методы, основанные на различных свойствах, таких как характеристики гидратации, прочность, межфазное соединение и морфология.
Исследователи используют различные методы, такие как измерение характеристик гидратации цементно-крошечной смеси; сравнение механических свойств цементно-крошечных смесей и визуальная оценка микроструктурных свойств древесно-цементных смесей.
Было обнаружено, что испытание на гидратацию путем измерения изменения температуры гидратации во времени является наиболее удобным методом. Недавно Karade et al. рассмотрели эти методы оценки совместимости и предложили метод, основанный на «концепции зрелости», то есть с учетом времени и температуры реакции гидратации цемента.
17. Строительные материалы в современной промышленности
Современное строительство - это многомиллиардная отрасль, а производство и сбор сырья для строительных целей осуществляется во всем мире.Часто является основным правительственным и торговым центром между странами.
Экологические проблемы также становятся главной мировой темой, касающейся доступности и устойчивости определенных материалов, а также добычи таких больших количеств, необходимых для среды обитания человека.
18. Виртуальные строительные материалы
Некоторые материалы, такие как фотографии, изображения, текст, могут считаться виртуальными. Хотя сами они обычно существуют на подложке из природного материала, они приобретают другое качество значимости по сравнению с природными материалами в процессе репрезентации.
19. Строительные изделия
Когда мы говорим о строительных изделиях, мы имеем в виду готовые частицы, которые используются в различных архитектурных деталях и деталях декоративной фурнитуры здания.
Список строительных материалов не включает исключительно материалы, которые используются для создания архитектуры здания и поддерживающих приспособлений, таких как окна, двери, шкафы и т. Д. Строительные продукты не являются частью здания, а поддерживают и заставляют их работать.
Подробнее:
Какие экологически чистые строительные материалы используются в строительстве?
Типы напольных материалов и их применение в строительстве
Строительные материалы для недорогого жилищного строительства
Проблемы со здоровьем строительных материалов во время и после строительства
.История бетона - InterNACHI®
Ник Громико, CMI® и Кентон ШепардПериод времени, в течение которого был впервые изобретен бетон, зависит от того, как интерпретировать термин «бетон». Древние материалы представляли собой неочищенный цемент, полученный путем дробления и обжига гипса или известняка. Известь также относится к измельченному обожженному известняку. Когда к этим цементам добавляли песок и воду, они превращались в строительный раствор, который представлял собой штукатурный материал, используемый для склеивания камней друг с другом. За тысячи лет эти материалы были усовершенствованы, объединены с другими материалами и, в конечном итоге, превратились в современный бетон.
Сегодняшний бетон изготавливается с использованием портландцемента, крупных и мелких заполнителей камня и песка, а также воды. Добавки - это химические вещества, добавляемые к бетонной смеси для контроля ее схватывания и используемые в основном при укладке бетона в экстремальных условиях окружающей среды, таких как высокие или низкие температуры, ветреные условия и т. Д.
Прекурсор бетона был изобретен примерно в 1300 г. до н.э., когда Срединный Восточные строители обнаружили, что, когда они покрывали внешние поверхности своих крепостей из толченой глины и стены домов тонким влажным слоем обожженного известняка, он вступал в химическую реакцию с газами в воздухе, образуя твердую защитную поверхность.Это не был бетон, но это было началом развития цемента.
Ранние цементирующие композитные материалы, как правило, включали измельченный в строительный раствор, обожженный известняк, песок и воду, которые использовались для строительства из камня, в отличие от заливки материала в форму, что по сути является тем, как используется современный бетон, с формой бетонные формы.
Цемент, как один из ключевых компонентов современного бетона, существует уже давно. Около 12 миллионов лет назад на территории нынешнего Израиля естественные отложения образовались в результате реакций между известняком и горючими сланцами, образовавшимися в результате самовозгорания.Однако цемент - это не бетон. Бетон - это композитный строительный материал, и ингредиенты, из которых цемент является лишь одним из них, со временем менялись и меняются даже сейчас. Рабочие характеристики могут меняться в зависимости от различных сил, которым бетон должен будет противостоять. Эти силы могут быть постепенными или интенсивными, они могут поступать сверху (гравитация), снизу (пучение почвы), по бокам (боковые нагрузки) или могут принимать форму эрозии, истирания или химического воздействия. Ингредиенты бетона и их пропорции называются дизайнерской смесью.
Раннее использование бетона
Первые бетонные сооружения были построены набатейскими торговцами или бедуинами, которые оккупировали и контролировали ряд оазисов и создали небольшую империю в регионах южной Сирии и северной Иордании примерно в 6500 году до нашей эры. . Позже они обнаружили преимущества гидравлической извести, то есть цемента, который затвердевает под водой, и к 700 г. до н.э. они строили печи для производства раствора для строительства домов из щебня, бетонных полов и подземных водонепроницаемых цистерн.Цистерны держались в секрете и были одной из причин, по которым набатеи смогли процветать в пустыне.
При изготовлении бетона Набатеи понимали необходимость сохранять смесь как можно более сухой или с низкой оседанием, поскольку избыток воды приводит к образованию пустот и слабых мест в бетоне. Их строительные методы включали утрамбовку свежеуложенного бетона специальными инструментами. В процессе утрамбовки образуется больше геля, который представляет собой связующий материал, образующийся в результате химических реакций, происходящих во время гидратации, которые связывают частицы и агрегаты вместе.
Древнее здание Набатеи
Как и у римлян, 500 лет спустя, у Набатеи был доступный на местном уровне материал, который можно было использовать для создания водонепроницаемого цемента. На их территории были крупные поверхностные месторождения мелкодисперсного кварцевого песка. Подземные воды, просачивающиеся через кремнезем, могут превратить его в пуццолановый материал, представляющий собой песчаный вулканический пепел. Чтобы сделать цемент, набатеи обнаружили отложения, зачерпнули этот материал и соединили его с известью, а затем нагрели в тех же печах, которые они использовали для изготовления своей керамики, поскольку целевые температуры лежали в том же диапазоне.
Примерно к 5600 году до нашей эры вдоль реки Дунай в районе бывшей Югославии дома были построены с использованием бетона для полов.
Египет
Примерно за 3000 лет до нашей эры древние египтяне использовали грязь, смешанную с соломой, для изготовления кирпичей. Грязь с соломой больше похожа на саман, чем на бетон. Тем не менее, они также использовали гипс и известковые растворы при строительстве пирамид, хотя большинство из нас думают, что раствор и бетон - это два разных материала. Для постройки Великой пирамиды в Гизе потребовалось около 500 000 тонн строительного раствора, который использовался в качестве подстилки для облицовочных камней, образующих видимую поверхность законченной пирамиды.Это позволило каменщикам вырезать и устанавливать облицовочные камни с открытыми швами не более 1/50 дюйма.
Камень для облицовки пирамиды
Китай
Примерно в то же время северные китайцы использовали форму цемента при строительстве лодок и при строительстве Великой стены. Спектрометрические испытания подтвердили, что ключевым ингредиентом строительного раствора, используемого для строительства Великой Китайской стены и других древних китайских сооружений, был клейкий клейкий рис.Некоторые из этих построек выдержали испытание временем и противостояли даже современным попыткам сноса.
Рим
К 600 г. до н.э. греки открыли природный пуццолан, который при смешивании с известью приобрел гидравлические свойства, но греки были далеко не так успешны в строительстве из бетона, как римляне. К 200 г. до н.э. римляне очень успешно строили из бетона, но он не был похож на бетон, который мы используем сегодня. Это был не пластиковый текучий материал, налитый в формы, а больше похожий на цементированный щебень.Римляне строили большинство своих построек, складывая камни разного размера и вручную заполняя промежутки между камнями раствором. Над землей стены как внутри, так и снаружи были облицованы глиняными кирпичами, которые также служили формой для бетона. Кирпич имел небольшую структурную ценность или не имел ее вообще, и их использовали в основном в косметических целях. До этого времени и в большинстве мест того времени (включая 95% Рима) обычно используемые растворы представляли собой простой известняковый цемент, который медленно затвердевает от реакции с переносимым по воздуху углекислым газом.Истинной химической гидратации не произошло. Эти минометы были слабыми.
Для более грандиозных и искусных построек римлян, а также для их наземной инфраструктуры, требующей большей прочности, они делали цемент из вулканического песка с естественной реакцией под названием harena fossicia . Для морских сооружений и сооружений, подверженных воздействию пресной воды, таких как мосты, доки, ливневые стоки и акведуки, они использовали вулканический песок под названием пуццуолана. Эти два материала, вероятно, представляют собой первое крупномасштабное использование действительно цементирующего вяжущего.Pozzuolana и harena fossicia химически реагируют с известью и водой, гидратируются и затвердевают в каменную массу, которую можно использовать под водой. Римляне также использовали эти материалы для строительства больших сооружений, таких как римские бани, Пантеон и Колизей, и эти сооружения все еще стоят сегодня. В качестве добавок они использовали животный жир, молоко и кровь - материалы, которые отражают очень примитивные методы. С другой стороны, помимо использования природных пуццоланов, римляне научились производить два типа искусственных пуццоланов - кальцинированную каолинитовую глину и кальцинированные вулканические камни, которые, наряду с впечатляющими строительными достижениями римлян, свидетельствуют о высоком уровне технической сложности для того времени.
Пантеон
Построенный римским императором Адрианом и завершенный в 125 году нашей эры, Пантеон имеет самый большой из когда-либо построенных неармированных бетонных куполов. Купол имеет 142 фута в диаметре и имеет 27-футовое отверстие, называемое окулусом, на вершине, которая находится на высоте 142 фута над полом. Он был построен на месте, вероятно, начавшись над внешними стенами и создав все более тонкие слои по мере продвижения к центру.
Пантеон имеет внешние фундаментные стены шириной 26 футов и глубиной 15 футов, сделанные из пуццоланового цемента (извести, химически активного вулканического песка и воды), утрамбованного поверх слоя плотного каменного заполнителя.То, что купол все еще существует, - это случайность. Оседание и движение в течение почти 2000 лет, наряду со случайными землетрясениями, создали трещины, которые обычно ослабляли бы структуру настолько, что к настоящему времени она должна была бы упасть. Наружные стены, поддерживающие купол, содержат семь равномерно расположенных ниш с камерами между ними, которые выходят наружу. Эти ниши и камеры, изначально спроектированные только для минимизации веса конструкции, тоньше основных частей стен и действуют как контрольные соединения, контролирующие расположение трещин.Напряжения, вызванные движением, снимаются за счет трещин в нишах и камерах. Это означает, что купол, по существу, поддерживается 16 толстыми, структурно прочными бетонными столбами, образованными частями внешних стен между нишами и камерами. Другим методом снижения веса было использование очень тяжелых заполнителей с низкой структурой и использование более легких и менее плотных заполнителей, таких как пемза, высоко в стенах и в куполе. Стенки также сужаются по толщине для уменьшения веса наверху.
Римские гильдии
Еще одним секретом успеха римлян было использование ими торговых гильдий. У каждой профессии была гильдия, члены которой отвечали за передачу своих знаний о материалах, методах и инструментах ученикам и римским легионам. Помимо боевых действий, легионы обучались самодостаточности, поэтому они также обучались методам строительства и инженерии.
Технологические вехи
В средние века технология производства бетона поползла назад.После падения Римской империи в 476 году нашей эры методы изготовления пуццоланового цемента были утеряны, пока в 1414 году не было обнаружено рукописей, описывающих эти методы, и возродился интерес к строительству из бетона.
Только в 1793 году технология сделала большой скачок вперед, когда Джон Смитон открыл более современный метод производства гидравлической извести для цемента. Он использовал известняк, содержащий глину, которую обжигали, пока она не превратилась в клинкер, который затем измельчал в порошок.Он использовал этот материал при исторической перестройке маяка Эддистон в Корнуолле, Англия.
Версия Смитона (третья) маяка Эддистоун, построенная в 1759 году.
Через 126 лет он разрушился из-за эрозии скалы, на которой он стоял.
Наконец, в 1824 году англичанин по имени Джозеф Аспдин изобрел портландцемент, сжигая мелко измельченный мел и глину в печи до тех пор, пока не будет удален углекислый газ.Он был назван «портлендским» цементом, потому что он напоминал высококачественные строительные камни, найденные в Портленде, Англия. Широко распространено мнение, что Аспдин был первым, кто нагревал глинозем и кремнезем до точки стеклования, что привело к плавлению. В процессе стеклования материалы становятся стеклоподобными. Аспдин усовершенствовал свой метод, тщательно распределив известняк и глину, измельчив их, а затем обожгнув смесь в клинкер, который затем измельчили в готовый цемент.
Состав современного портландцемента
До открытия портландцемента и в течение нескольких лет после этого использовались большие количества натурального цемента, который производился путем сжигания смеси извести и глины природного происхождения.Поскольку ингредиенты натурального цемента смешаны по своей природе, его свойства сильно различаются. Современный портландцемент производится по строгим стандартам. Некоторые из многих соединений, содержащихся в нем, важны для процесса гидратации и химических характеристик цемента. Его получают путем нагревания смеси известняка и глины в печи до температур от 1300 ° F до 1500 ° F. До 30% смеси становится расплавленным, но остальная часть остается в твердом состоянии, подвергаясь химическим реакциям, которые могут быть медленными.В конечном итоге смесь образует клинкер, который затем измельчают в порошок. Небольшая часть гипса добавляется, чтобы замедлить скорость гидратации и сохранить бетон более пригодным для обработки. Между 1835 и 1850 годами были впервые проведены систематические испытания цемента на сжатие и растяжение, а также первые точные химические анализы. Только в 1860 году были впервые произведены портлендские цементы современного состава.
Обжиговые печи
В первые дни производства портландцемента печи были вертикальными и стационарными.В 1885 году английский инженер разработал более эффективную печь, которая была горизонтальной, слегка наклонной и могла вращаться. Вращающаяся печь обеспечивала лучший контроль температуры и лучше справлялась с перемешиванием материалов. К 1890 году на рынке доминировали вращающиеся печи. В 1909 году Томас Эдисон получил патент на первую длинную печь. Эта печь, установленная на цементном заводе Эдисона Портленд в Нью-Виллидж, штат Нью-Джерси, имела длину 150 футов. Это было примерно на 70 футов длиннее, чем используемые в то время печи. Промышленные печи сегодня могут достигать 500 футов в длину.
Вращающаяся печь
Вехи строительства
Хотя были и исключения, в 19, -м, -м веке, бетон использовался в основном для промышленных зданий. В качестве строительного материала он считался социально неприемлемым по эстетическим соображениям. Первое широкое использование портландцемента в жилищном строительстве было в Англии и Франции между 1850 и 1880 годами французом Франсуа Куанье, который добавил стальные стержни, чтобы предотвратить распространение наружных стен, а затем использовал их в качестве элементов изгиба.Первым домом, построенным из железобетона, был коттедж для прислуги, построенный в Англии Уильямом Б. Уилкинсоном в 1854 году. В 1875 году американский инженер-механик Уильям Уорд построил первый железобетонный дом в США. Он до сих пор стоит в Порт-Честере, штат Нью-Йорк. Уорд усердно вел записи о строительстве, поэтому об этом доме известно очень много. Он был построен из бетона из-за страха его жены перед огнем, и, чтобы быть более социально приемлемым, он был спроектирован так, чтобы напоминать каменную кладку.Это было началом того, что сегодня является отраслью с оборотом в 35 миллиардов долларов, в которой работают более 2 миллионов человек только в США.
Дом, построенный Уильямом Уордом, обычно называют Замком Уорда.
В 1891 году Джордж Бартоломью залил первую бетонную улицу в США, и она существует до сих пор. Бетон, используемый для этой улицы, испытан на давление около 8000 фунтов на квадратный дюйм, что примерно вдвое превышает прочность современного бетона, используемого в жилищном строительстве.
Корт-стрит в Беллефонтене, штат Огайо, которая является старейшей бетонной улицей в США
К 1897 году Sears Roebuck продавала бочки импортного портландцемента емкостью 50 галлонов по 3,40 доллара за штуку. Хотя в 1898 году производители цемента использовали более 90 различных формул, к 1900 году базовые испытания - если не методы производства - стали стандартизованными.
В конце 19-го, 90-го, 14-го, 90-го, 14-го века, использование железобетона более или менее одновременно развивалось немцем Г.А. Уэйсс, француз Франсуа Хеннебик и американец Эрнест Л. Рэнсом. Рэнсом начал строительство из железобетона в 1877 году и запатентовал систему, в которой использовались скрученные квадратные стержни для улучшения связи между сталью и бетоном. Большинство построенных им построек были промышленными.
Компания Hennebique начала строить дома из стали во Франции в конце 1870-х годов. Он получил патенты во Франции и Бельгии на свою систему и добился большого успеха, в конечном итоге построив империю, продавая франшизы в крупных городах.Он продвигал свой метод, читая лекции на конференциях и разрабатывая стандарты своей компании. Как и Рэнсом, большинство построек, построенных Хеннебиком, были промышленными. В 1879 году Уэйсс купил права на систему, запатентованную французом по имени Монье, который начал использовать сталь для армирования бетонных цветочных горшков и контейнеров для растений. Уэйсс продвигал систему Уэйсс-Монье.
В 1902 году Август Перре спроектировал и построил многоквартирный дом в Париже, используя железобетон для колонн, балок и перекрытий.В здании не было несущих стен, но у него был элегантный фасад, который помог сделать бетон более социально приемлемым. Здание вызывало всеобщее восхищение, и бетон стал более широко использоваться как архитектурный материал, а также как строительный материал. Его дизайн оказал влияние на проектирование железобетонных зданий в последующие годы.
25 Rue Franklin в Париже, Франция
В 1904 году в Цинциннати, штат Огайо, было построено первое бетонное высотное здание.Его высота составляет 16 этажей или 210 футов.
Здание Ингаллса в Цинциннати, Огайо
В 1911 году в Риме был построен мост Рисорджименто. Его ширина составляет 328 футов.
Римский мост Рисорджименто
В 1913 году первая партия товарной смеси была доставлена в Балтимор, штат Мэриленд. Четыре года спустя Национальное бюро стандартов (ныне Национальное бюро стандартов и технологий) и Американское общество испытаний и материалов (теперь ASTM International) установили стандартную формулу портландцемента.
В 1915 году Matte Trucco построил пятиэтажный автозавод Fiat-Lingotti в Турине из железобетона. На крыше здания находился автомобильный испытательный полигон.
Автозавод Fiat-Lingotti в Турине, Италия
Эжен Фрейсине был французским инженером и пионером в использовании железобетонных конструкций. В 1921 году он построил два гигантских ангара для дирижаблей с параболической аркой в аэропорту Орли в Париже. В 1928 году он получил патент на предварительно напряженный бетон.
Ангар для дирижаблей с параболической аркой в аэропорту Орли в Париже, Франция
Строительство ангара для дирижаблей
Воздухововлечение
В 1930 году были разработаны воздухововлекающие агенты, которые значительно повысила устойчивость бетона к замерзанию и улучшила его удобоукладываемость. Воздухововлечение стало важным шагом в улучшении долговечности современного бетона. Воздухововлечение - это использование агентов, которые при добавлении в бетон во время перемешивания создают множество очень маленьких пузырьков воздуха, расположенных близко друг к другу, и большинство из них остаются в затвердевшем бетоне.Бетон затвердевает в результате химического процесса, называемого гидратацией. Для гидратации бетон должен иметь минимальное водоцементное соотношение 25 частей воды на 100 частей цемента. Вода, превышающая это соотношение, является избыточной водой и помогает сделать бетон более пригодным для укладки и отделочных работ. По мере высыхания и затвердевания бетона излишки воды испаряются, оставляя поверхность бетона пористой. В эти поры может попадать вода из окружающей среды, например, дождь или талый снег.Морозная погода может превратить эту воду в лед. Когда это происходит, вода расширяется, создавая небольшие трещины в бетоне, которые будут увеличиваться по мере повторения процесса, что в конечном итоге приведет к отслаиванию поверхности и ее разрушению, называемому отслаиванием. Когда бетон увлекается воздухом, эти крошечные пузырьки могут слегка сжиматься, поглощая часть напряжения, создаваемого расширением, когда вода превращается в лед. Вовлеченный воздух также улучшает обрабатываемость, поскольку пузырьки действуют как смазка между заполнителем и частицами в бетоне.Захваченный воздух состоит из более крупных пузырьков, застрявших в бетоне, и не считается полезным.
Thin Shell
Опыт в строительстве из железобетона в конечном итоге позволил разработать новый способ строительства из бетона; Метод тонкой оболочки включает в себя строительные конструкции, такие как крыши, с относительно тонкой оболочкой из бетона. Купола, арки и сложные кривые обычно строятся этим методом, так как они имеют естественные формы. В 1930 году испанский инженер Эдуардо Торроха спроектировал для рынка Альхесирас невысокий купол толщиной 3½ дюйма и шириной 150 футов.Стальные тросы использовались для образования натяжного кольца. Примерно в то же время итальянец Пьер Луиджи Нерви начал строительство ангаров для ВВС Италии, как показано на фото ниже.
Монтируемые на месте ангары для ВВС Италии
Ангары были отлиты на месте, но большая часть работ Nervi использовала сборный бетон.
Вероятно, наиболее опытным человеком, когда дело дошло до строительства с использованием методов бетонной оболочки, был Феликс Кандела, испанский математик-инженер-архитектор, который в основном практиковал в Мехико.Крыша лаборатории космических лучей в Университете Мехико была построена толщиной 5/8 дюйма. Его фирменной формой был гиперболический параболоид. Хотя здание, показанное на фотографии ниже, не было спроектировано Канделой, это хороший пример гиперболической параболоидной крыши.
Гиперболическая параболоидная крыша церкви в Боулдере, штат Колорадо
Та же строящаяся церковь
Некоторые из самых ярких крыш в мире были построены с использованием тонкослойной технологии, так как изображенный ниже.
Сиднейский оперный театр в Сиднее, Австралия
Плотина Гувера
В 1935 году плотина Гувера была завершена после заливки примерно 3250000 ярдов бетона, с дополнительными 1110000 ярдами, использованными на электростанции и другие сооружения, связанные с плотиной. Имейте в виду, что это произошло менее чем через 20 лет после того, как была установлена стандартная рецептура цемента.
Колонны блоков, заполненные бетоном на плотине Гувера в феврале 1934 г.
Инженеры Бюро мелиорации подсчитали, что если бетон был помещен в единую монолитную заливку, строительство плотины заняло бы 125 лет чтобы остыть, и напряжения от выделяемого тепла и сжатия, которое происходит при застывании бетона, могут привести к растрескиванию и разрушению конструкции.Решение заключалось в том, чтобы залить плотину серией блоков, образующих колонны, при этом некоторые блоки имели размер 50 квадратных футов и 5 футов высотой. Каждая секция высотой 5 футов имеет ряд установленных 1-дюймовых труб, по которым закачивается речная вода, а затем механически охлажденная вода для отвода тепла. Как только бетон перестал сжиматься, трубы были заполнены раствором. Образцы бетонного ядра, испытанные в 1995 году, показали, что бетон продолжает набирать прочность и имеет более высокую прочность на сжатие.
Верхняя часть плотины Гувера показана в момент ее первого заполнения
Плотина Гранд-Кули
Плотина Гранд-Кули в Вашингтоне, построенная в 1942 году, является крупнейшим бетонным сооружением. когда-либо построенный. Он содержит 12 миллионов ярдов бетона. Раскопки потребовали удаления более 22 миллионов кубических ярдов земли и камня. Чтобы уменьшить количество грузовых перевозок, была построена конвейерная лента длиной 2 мили. В местах фундамента цементный раствор закачивали в отверстия, пробуренные глубиной от 660 до 880 футов (в граните), чтобы заполнить любые трещины, которые могут ослабить землю под плотиной.Чтобы избежать обрушения грунта под весом покрывающих пород, в землю были вставлены 3-дюймовые трубы, по которым закачивалась охлажденная жидкость из холодильной установки. Это заморозило землю, сделав ее достаточно стабилизированной, чтобы строительство могло продолжаться.
Плотина Гранд-Кули
Бетон для плотины Гранд-Кули был уложен с использованием тех же методов, что и для плотины Гувера. После помещения в колонны, холодная речная вода перекачивалась по трубам, встроенным в застывающий бетон, снижая температуру в формах с 105 ° F (41 ° C) до 45 ° F (7 ° C).Это привело к сокращению дамбы примерно на 8 дюймов в длину, и образовавшиеся щели были заполнены раствором.
Строящаяся плотина Гранд-Кули
Высотное строительство
За годы, прошедшие после постройки Ингаллз-билдинг в 1904 году, большинство высотных зданий были построены из стали. Строительство в 1962 году 60-этажных башен-близнецов Бертрана Голдберга в Чикаго вызвало новый интерес к использованию железобетона для высотных зданий.
Самое высокое сооружение в мире (по состоянию на 2011 год) было построено из железобетона. Бурдж-Халифа в Дубае в Объединенных Арабских Эмиратах (ОАЭ) имеет высоту 2717 футов.
Вот несколько фактов:
- Это многофункциональная структура с гостиницей, офисными и торговыми помещениями, ресторанами, ночными клубами, бассейнами и 900 резиденциями.
- В строительстве использовано 431 600 кубических метров бетона и 61 000 тонн арматуры.
- Вес пустого здания составляет около 500 000 тонн, примерно столько же, сколько миномет, использовавшийся при строительстве Великой пирамиды в Гизе.
- Бурдж-Халифа может одновременно вместить 35 000 человек.
- Чтобы преодолеть 160 этажей, некоторые из 57 лифтов перемещаются со скоростью 40 миль в час.
- Жаркий влажный климат Дубая в сочетании с кондиционированием воздуха, необходимым для поддержания температуры наружного воздуха выше 120 ° F, производит такое количество конденсата, что он собирается в сборном баке в подвале и используется для орошения ландшафтов.
Бурдж-Халифа в Дубае
Великая пирамида в Гизе удерживала рекорд как самое высокое сооружение в мире, созданное руками человека около 4000 лет.Строительство здания на 568 футов выше Бурдж-Халифа планируется завершить в 2016 году в Кувейте.
************************
Эта статья является первой из серии, которая поможет инспекторам InterNACHI понять характеристики и визуально осмотреть бетон.
.
Как делается бетон (новое исследование) Бетон
Как производится бетон: - Бетон представляет собой жидкую смесь цемента, воды, песка и гравия . Бетон можно заливать в формы или формы, и он затвердеет, чтобы создать необходимые компоненты бетонной конструкции. Вам интересно узнать о микроструктуре бетона? Вот Новое исследование по микроструктуре бетона.
Химическая реакция и гидратация
схватывание и твердение бетона вызвано химической реакцией между портландцементом и водой, это может быть продемонстрировано путем добавления небольшого количества цемента в воду, содержащую индикатор, быстрое развитие синего цвета отражает выделение гидроксила. Ионы из растворяющегося цемента химическая реакция между цементом и водой называется гидратацией.
Связанные: - Высокопрочные свойства бетона, прочность, добавки и состав смеси

Растворение цемента увеличивает уровни кальция и кремния в растворе, когда концентрация растворенных веществ достигает критических уровней, в результате реакции осаждения образуются новые твердые продукты. Это эскиз цементных зерен, взвешенных в воде.
Твердые продукты Hydration образуют покрытия вокруг частиц цемента и постепенно заполняют пространство между ними, когда покрытия впервые начинают схватываться, происходит устойчивое увеличение прочности по мере того, как покрытия срастаются вместе, величина прочности, достигаемая за счет смесь цемента и воды зависит от того, насколько эффективно заполнено пространство между зернами.
Бетон затвердеет в течение нескольких часов, , но гидратация продолжается в течение недель, даже лет после укладки. Вот изображение частиц цемента до воздействия воды. Сухой цемент представляет собой мелкий порошок, и частицы не прикрепляются друг к другу после того, как цемент смешан с водой и оставлен стоять.
Сейчас картина совсем иная, частицы сгруппированы вместе и прикреплены твердым материалом, обеспечивающим структурную целостность.Ученые из Национального института стандартов и технологий научились смоделировать гидратацию цемента на компьютере с помощью компьютерного моделирования.
Гидратация происходит быстрее, чем за несколько дней до гидратации. Моделирование частиц цемента размещаются на дисплее компьютера, компьютер определяет области частиц, которые могут растворяться в воде.
Кусочки растворенного цемента случайным образом диффундируют в воде и реагируют с образованием твердых фаз.Согласно определенным правилам после завершения цикла , растворения, диффузии и осаждения , компьютер переходит к другому циклу, поскольку этот процесс повторяется снова и снова.
Микроструктура бетона
Микроструктура создает мосты между частицами, которые придают материалу прочность. Компьютерное моделирование оказалось ценным, поскольку позволяет исследователям проверять условия и проводить измерения, которые трудно достичь в реальной жизни.В конце моделирования гидратации структура затвердевшего цементного теста очень похожа на ту, что наблюдается под микроскопом.
Гидратация - это экзотермический процесс, при котором в результате химических реакций выделяется тепло, за процессом гидратации можно легко следить, отслеживая выделение тепла, которое сопровождает реакции,
это делается путем отхаркивания раствора из партии бетона и его взвешивания в бутылку, которая помещается в изотермический контейнер, термистор - это погруженный в свежий раствор , выходной сигнал термистора можно регистрировать с помощью На компьютере результаты этого эксперимента могут быть представлены в виде кривой зависимости температуры от времени .
Подробнее : Производство портландцемента - процесс и материалы
Площадь под основным пиком может быть связана с ранним развитием прочности, начальное растворение цемента Purdue - это кратковременное выделение тепла, показанное первым пиком на калориметрической кривой.
После того, как продукты гидратации начального растворения быстро осаждаются на поверхности каждой частицы цемента, слой действует как защитный барьер и временно задерживает дальнейшее растворение частицы, что замедляет реакцию на несколько часов и называется период покоя.
Наличие периода покоя позволяет транспортировать бетон на строительную площадку, укладывать и обрабатывать формы, конец периода покоя представляет собой начало схватывания, после чего цемент снова начинает реагировать. быстро с водой, поскольку образуются новые продукты гидратации.
Ученые используют измерения других свойств для контроля схватывания и твердения бетона, исследователям часто необходимо знать, какая часть цемента гидратирована.
Степень гидратации
Степень гидратации можно оценить путем нагревания образца цементного теста и измерения потери веса в зависимости от температуры с использованием оборудования для термогравиметрического анализа , свободная вода в образце удаляется путем нагревания до 105 градусов Цельсия при 105 градусах . Образец сухой, но сохраняет свою прочность.
Вода, участвующая в реакциях гидратации, химически соединяется с цементом. Ее можно удалить из образца путем нагревания до 1000 градусов при 1000 градусов всей исходной смеси.вода была удалена из образца. Степень гидратации рассчитывается по весу химически объединенной воды, типичное цементное тесто, отвержденное во влажных условиях, достигает степени гидратации около 80% за 28 дней с,
Электрические свойства образцов цемента или раствора можно отслеживать с течением времени, что приводит к профилям изменений электрического сопротивления. Электрические свойства этого образца цемента измеряются с помощью двух металлических дорог и оборудования, которое измеряет сопротивление и импеданс.
На этой диаграмме показано, как сопротивление электричества через цемент увеличивается по мере того, как цемент гидратируется в раннем возрасте, вода легко проводит ток через образец, но когда продукты гидратации заполняют открытые пространства внутри образца, электрический ток не может проходить так же легко, в этом случае Таким образом, электрические свойства могут быть связаны со степенью гидратации.
Сопротивление и импеданс цемента - это тема исследований, которые когда-нибудь могут изменить методы испытаний свежего бетона в полевых условиях.Текучие свойства бетона очень важны в этой области, потому что качественное строительство требует соответствующего уплотнения.
Стандартное испытание осадки обеспечивает грубую оценку удобоукладываемости бетона, это испытание широко используется, поскольку его легко проводить в полевых условиях, свойства жидкости также являются предметом исследования в лаборатории из-за потока изменений цемента по мере гидратации. Такие свойства, как вязкость и начальное сопротивление потоку, используются для характеристики жидких материалов.
Вода - это жидкость с низкой вязкостью и низким начальным сопротивлением текучести, но бетонный раствор и свежий цементный клей имеют гораздо более высокую вязкость, чем вода.
Вибрация часто используется для преодоления этого сопротивления в бетоне в лаборатории, жидкие свойства цементного теста можно измерить с помощью этого реометра Brookfield , исследователи используют более крупное оборудование, такое как реометр Tattersall, для измерения свойств раствора и бетона.
Реологическое оборудование т можно использовать для измерения начального сопротивления потоку, которое во время схватывания называется пределом текучести.Предел текучести начинает увеличиваться, и способность к течению теряется, исследователи заинтересованы в характеристиках текучести, чтобы понять, как процесс гидратации делает свежий бетон жестким и приводит к его застыванию.
Скорость гидратации можно регулировать несколькими способами, такими как температура, тип цемента и примеси . влияет на скорость, одна из наиболее важных переменных - температура окружающей среды, высокие температуры ускоряют гидратацию, так что схватывание также происходит быстрее. как последующее развитие силы.
Обратное происходит, когда температура понижается, хорошее практическое правило состоит в том, что на каждые 10 градусов Цельсия изменение температуры скорость гидратации изменяется в два раза, например, повышение температуры с 20 градусов Цельсия до 30. градусов Цельсия удваивает скорость увлажнения , важно помнить, что когда погода становится более прохладной, бетон медленно затвердевает и его необходимо хранить в формах в течение более длительного периода времени.
Гидратацию бетона также можно контролировать, используя различные типы цемента для противодействия влиянию высоких или низких температур в полевых условиях, например, использование 3-х типов цемента противодействует холодным температурам, потому что они быстрее гидратируются, есть также специальные химические вещества которые регулируют гидратацию, могут быть добавлены в бетон, чтобы ускорить процесс гидратации.
Установить замедлители гидратации этих материалов широко доступны.
Таким образом, гидратация - это химическая реакция между цементом и водой, которая связывает частицы цемента и заполнитель в бетоне в прочную структуру, и во время массирования одним из важных преимуществ бетона перед другими строительными материалами является то, что он смешивается. и формируется на месте и может принимать очень больших и гибких. Способность бетона быстро набирать прочность делает его ценным материалом для дорог, зданий, мостов и других важных сооружений .
Вам также понравится:
(Посещений 1730 раз, сегодня 1)
Продолжить чтение
. |
Словарь Недвижимость Прочность, Устойчивость к распаду Преимущества и недостатки Выпаривать Возобновляемые природные ресурсы Облицовки, Мощение Ширина, ширина - Длина Высота Масса - Размеры Местный обычай Crosswise, по длине, Глина - Строительные материалы обладают разными свойствами.Они отличаются прочностью, прочностью, массой, огнестойкостью и стоимостью. Дерево, древесина, кирпич, камень, бетон, металлы и пластмассы относятся к наиболее популярным строительным материалам, используемым в настоящее время. Все они имеют свои достоинства и недостатки, которые учитываются при проектировании конструкции. Дерево - это естественно растущий материал. Он известен как самый старый строительный материал и до сих пор широко используется в различных целях. Древесина популярна, поскольку имеет небольшой вес и проста в обработке.Но его использование ограничено из-за недостатков: он легко горит и разлагается. Дерево с доисторических времен широко использовалось в качестве строительного материала. Древесина, как самый старый строительный материал, также известна как единственный естественно растущий органический материал. Дерево прочное? Вряд ли, потому что в древесине всегда есть вода, которая снижает ее прочность. Но после резки древесины содержание воды начинает испаряться, и по мере уменьшения содержания воды прочность распиленной древесины и ее твердость начинают расти.Как известно, чем суше распиленная древесина, тем больше ее прочность и твердость. Известно, что деревья растут естественным путем, что делает древесину постоянно возобновляемым природным ресурсом. Среди других преимуществ древесины - ее невысокая стоимость, малый вес и высокая технологичность. Но, как и любой другой строительный материал, у дерева есть свои недостатки. Основные из них следующие - он не огнестойкий, легко горит. Среди других широко используемых строительных материалов - бетон, сталь, кирпич, камень и пластмассы.Все они различаются по своим свойствам и способам использования. Что касается камня, то он также относится к старейшим строительным материалам. Среди его преимуществ - прочность, высокая теплоизоляция и огнестойкость. Бетон - один из самых популярных строительных материалов. Его получают путем смешивания цемента, гравия, воды и песка в надлежащих количествах. Кирпич - это древний строительный материал, который римляне производили и использовали для изготовления арок, облицовки, мощения и т. Д.Хотя в то время они были большего и меньшего размера, чем те, которые обычно используются в наши дни, они всегда делались из полукирпичей или двойных кирпичей, удваиваемых по длине, чтобы обеспечить скрепление, как будет объяснено ниже. Таким образом, их длина варьировалась от 7 до 22 дюймов. В более позднее время кирпичи использовались для стен, облицовки, арок и мощения; и обычно их размеры теперь составляют около 9 дюймов в длину и 41 дюйм (или половину их длины) в ширину, так что два, уложенные крест-накрест, будут покрывать два, уложенные в длину.Их делают в высоту от 2 до 31 дюймов, в соответствии с местными обычаями или требованиями строительства. Они бывают множества различных качеств, видов и цветов, каждый из которых соответствует своей специфической природе, адаптированной к определенной цели или использованию. Следует отметить, что качество кирпича зависит от глины, из которой он сделан, и от различных манипуляций с глиной. Ответьте на вопросы.
1. На какие группы можно разделить строительные материалы? 2.В чем преимущества (недостатки) дерева, камня, металла? 3. На какие две группы делятся металлы? 4. Как римляне использовали кирпичи? Что вы знаете о современности? 5. Какие из перечисленных ниже материалов натуральные, искусственные? Упражнения. 1) Какие свойства строительных материалов можно отнести к числу выгодных? Выгодно? Высокая огнестойкость не огнестойкость
Низкое сопротивление, низкая стоимость, высокая прочность
Высокая прочность, устойчивость к коррозии
Твердость Тяжелая Мягкость
: 2015-10-27; : 1975 | | : : : © 2015-2021 лекции.орг - - |
7. Бетон
Бетон изготавливается из цемента, крупного заполнителя (камни), мелкого заполнителя (песка или щебень) и воду. Крупный заполнитель от 5 мм до 40 мм. мм можно использовать для нормальной работы. Максимальный размер агрегата не должна быть больше четверти минимальной толщины готовый бетон. Нормальные максимальные размеры - 20 мм и 40 мм. (Чаще 20 мм).Максимальный размер агрегата, который должен использоваться на небольших бетонных участках или там, где армирование близко вместе составляет 10 мм.
В бетоне с широко расставленными армирование, например сплошные плиты, размер крупного заполнителя не должно быть больше минимального покрытия арматуры в противном случае произойдет скалывание, т. е. откол кусков бетон под арматурой. Для сильно армированных секций например ребра основных балок, максимальный размер крупного заполнителя должно быть либо:
1) На 5 мм меньше минимального расстояния по горизонтали между арматурные стержни, или,
2) На 5 мм меньше минимального покрытия арматуры, в зависимости от того, что тем меньше.
(1057 знаки)
8. Известь
Минометы, использованные в работа каменщиков состоит из примеси извести, или портландской цемент и песок. Знание свойств этих материалов необходимо. очень необходим мастеру, если он хочет добиться наилучших результатов от его трудов.
Лайм это произведенные прокаливанием или обжигом карбоната кальций, наиболее распространенным примером которого является мел.В течение прокаливание, разложение происходит, угольная кислота и вода отгоняются, остается окись кальция (негашеная известь).
Если вода будет добавляется в комки негашеной извести, получается быстрое соединение, отличный жар и объемы производимого пара. Комки распадаются с серии небольших взрывов, и в конечном итоге сводятся к очень мелким порошок. Этот процесс называется гашением ; и при изготовлении раствора крайне необходимо, чтобы он был тщательно выполняются, так как непогашенные частицы впоследствии расширяются и серьезно повредить работе.
Лаймы можно разделить на три различных класса -
1. Насыщенный лайм.
2. Плохой лайм.
3. Гидравлическая известь.
Богатый лаймы содержат не более 6% примесей, очень быстро гашатся и полностью зависит от внешних агентов для настройки мощности. Они есть в основном используется для внутренних штукатурных работ.
Плохо лаймы содержат от 15% до 30% бесполезных примесей и обладают общие свойства насыщенного лайма, только в меньшей степени.Oни годны только для неважной работы.
Гидравлический лаймы содержат определенные пропорции примесей, которые при прокаливании объединяются с известью, и наделить его ценным свойством установка под водой или без внешних агентов. Пропорции эти примеси определяют, является ли известь в высшей степени , умеренно, или только слабо гидравлический. Основные виды извести, используемые при изготовлении строительного раствора для строительных работ: разновидности Грейстоун.Они обладают гидравлическими свойствами и будут взять большую часть песка, не ослабляя их схватывания полномочия. Обычные пропорции от двух до четырех частей песка до один из лаймов.
Настройка извести зависит в основном из-за поглощения углекислоты из атмосферы. В частицы возвращаются к своей первоначальной форме карбоната, и кристаллизоваться. Эти кристаллы имеют тенденцию прилипать к чему угодно. шероховатая, например, песок или поверхность из кирпича.
Чистые известковые растворы, встроенные в толстые стены никогда не затвердевают в интерьере.Кристаллизация внешняя поверхность стыка при установке предотвращает доступ углекислого газа к внутренней стороне стены. По этой причине растворы для чистки времени должны нельзя использовать для строительных работ, только те, которые не полностью зависит от внешних агентов. Для более важной работы, где требуется большая прочность, вместо извести используется портландцемент.
(2698 знаки)
.