Комплексные поставки запорной арматуры
и деталей трубопроводов →

Тел: +7 (3522) 55-48-26

Армирование монолитных стен


порядок выполнения работ, определение размера опалубки и ее монтаж, советы профессионалов

Армированные монолитные конструкции впервые в России использовали в 1802 году при постройке Царскосельского дворца. Материалом служили металлические стрежни. Монолитные железобетонные конструкции позволяют возводить здания с разным уровнем сложности и конфигурации. Часто такую технологию используют при строительстве резервуаров, фундаментов, перекрытий, стен.

Преимущества и недостатки монолитно-каркасной технологии

Монолитные армированные стены имеют такие преимущества:

  • цельная конструкция без швов прочная и надежная, ее не продувает, не образуются температурные мосты;
  • гладкая ровная поверхность позволяет приступить к отделочным работам без предварительной подготовки;
  • сооружения здания в короткие сроки;
  • монолитные дома имеют свободную планировку;
  • повышенный срок службы железобетонных сооружений;
  • сложные архитектурные криволинейные элементы и арки выполняются достаточно легко.

Недостатки монолитных стен:

  • низкая звукоизоляция;
  • обязательное утепление стен;
  • способность бетона проводить вибрации.

В чем необходимость армирования?

Для того чтобы повысить прочность бетона и сократить его количество, используют арматуру. В теории, в роли арматуры может выступать любой материал. Но на практике чаще всего используют сталь и композит.

Композит - это комплекс материалов. Основой могут служить базальтовые или углеродные волокна, которые заливают полимером. Такая арматура обладает небольшим весом и не подвержена коррозии.

Сталь, по сравнению с композитом, имеет гораздо большую прочность и относительно невысокую стоимость. В процессе армирования монолитных стен используют швеллеры, уголки, двутавровые балки, рифленые и гладкие прутья. В случае создания сложных строительных конструкций для армирования применяют металлические сетки.

Арматура бывает разной формы. Но чаще всего в продаже можно встретить стержневую. При строительстве малоэтажных зданий обычно используют рифленые прутья. Они имеют низкую цену и отличное сцепление с бетоном, что делает их очень популярными среди покупателей. Стальные стержни, которые используют при строительстве монолитных конструкций, обычно имеют диаметр в диапазоне 12-16 мм.

Нюансы армирования

При самостоятельном армировании монолитных стен следует учесть такие факторы:

  • При создании арматурной сетки лучше всего применить новые стальные стержни, потому что они могут выдержать большие нагрузки.
  • В случае обнаружения ржавчины на новых стрежнях не следует ее удалять. Это может привести к ухудшению сцепки бетона и прутьев.
  • Чтобы разрезать стержни, лучше всего применить болгарку. Если стрежень нужно согнуть, то место сгиба предварительно прогревают непосредственно перед самой манипуляцией. Но это делать крайне не рекомендуется. Как в случае со сваркой, материал теряет прочность.
  • Если уже бетон был залит в опалубку, то арматуру ставить нельзя. В случае если порядок работ не соблюден, то весь процесс нужно начинать сначала.
  • Наращивать арматурную сетку по длине или высоте также не рекомендуется, так как при сильных нагрузках в местах наращивания могут образоваться разрывы. Если же таких нагрузок не предвидится, то нужно выполнить эти работы максимально качественно.

На стены помещений, расположенных ниже уровня грунта, будет сильная нагрузка. Поэтому для монтажа сетки нужно выбрать качественную арматуру стандартных размеров, а узлы армирования монолитных стен стоит выполнять из специальной проволоки.

Опалубка и ее монтаж

Возведение монолитных стен происходит с помощью опалубки. По своей сути - это форма для заливки бетонной смеси. Делится конструкция на два вида:

  • съемная - удаляется после застывания бетонной смеси;
  • несъемная - является частью стены, придавая ей дополнительные качества.

Чаще всего применяют опалубки из вспененного полистирола. Он выпускается в виде блоков, которые соединены замками. Пенополистирол утепляет слой бетона и увеличивает звукоизоляцию.

Монтаж несъемной опалубки достаточно прост:

  • На гидроизоляционный слой фундамента укладывают блоки опалубки. Это нужно сделать таким образом, чтобы сквозь них проходила арматура, скрепленная с фундаментом. В процессе укладки первого ряда блоков оформляются откосы для дверей и отводы внутренних стен.
  • Второй ряд блоков должен перерыть все вертикальные швы первого ряда. То есть способ укладки очень похож на кладку кирпича. Замки, находящиеся внизу и вверху кромок, должны соединяться без зазоров.
  • Третий ряд - самый важный. Именно по нему выравниваются все слои блоков.

На количество необходимого материала влияет площадь, которую будут заливать бетонной смесью, и толщина стенок. Чем больше будет бетона, тем больше нужно опорных стенок.

По сути, процесс расчета опалубочной системы не сложен. Размер конструкции вычисляют способом деления на высоту и ширину доски. К примеру, среднее количество досок для монтажа 1 м3 опалубки - 40-43 шт.

Типичные размеры блоков из пенополистирола:

  • длина - 1,2 м;
  • ширина - 25 или 30 см;
  • высота - 25, 30 или 40 см;
  • толщина внутренней стенки - 5 см;
  • толщина наружной стенки - 5 или 10 см.

Армирование монолитных стен и простенков

Процент армирования от сечения стены около 10 %. Для этого процесса применяют армирующие сетки из стали или каркас (для повышенной прочности).

Укрепление арматурой чаще всего выполняют по горизонтали и вертикали. Для этого используют прутья диаметром 6-8 мм. Располагают их симметрично у боковых стен. Горизонтальные стержни с вертикальными у противоположных боковых стен соединяют поперечными связями. Нужны такие соединения для того, чтобы предотвратить выпучивание вертикальной арматуры. Армирование углов монолитной стены выполняется обязательно. Для этого желательно использовать П-образные хомуты. Они дают необходимое скрепление концов горизонтальных стержней и защищают вертикальные от выпучивания.

Простенок - это часть стены между двумя проемами (окна, двери). Армирование маленьких простенков в монолитных стенах происходит с помощью плоских сеток, монтируемых с двух сторон. В случае если перекрытия сборные, то используют сборный каркас. Плоские стенки первого простенка нужно объединить пространственными каркасами соединив стержни.

Типовая последовательность по армированию стен подвала

Укрепление стен подвала необходимо в любом случае и независимо от их толщины. Армирование монолитных стен подвала проходит следующим образом:

  • Покупка проволоки диаметром 3 мм. Сетку для армирования можно купить в виде рулонов (наиболее распространенный вариант). Именно ее чаще всего применяют для стяжки пола или армирования стен.
  • Подготовка инструмента. Обычно достаточно проволоки и кусачек. Но ускорит процесс вязки сетки пистолет для вязки арматуры. Он обладает электродвигателем, запускающим протяжку проволоки.
  • Производятся нужные расчеты. Обязательно берется во внимание уровень залегания подземных вод при расчете толщины стен. Если армирование монолитной стены подвального помещения нужно провести ниже уровня грунтовых вод, то плита основания должна быть толщиной от 20 см и выходить за стены на 40 см. При условии, когда подземные воды далеки от основания, то требования следующие: толщина стен подвала с глубиной размещения 1,5-2,5 м может быть от 20 до 40 см, а нижняя стена может быть несиловая, и допускается выступ за контур постройки на 10 см.
  • Очищение опалубки. По факту, это удаление строительной пыли и грязи из конструкции.
  • Изготовление армирующей сетки. На этом моменте важно правильно определить размер ячейки. Для стен подвала он может быть в диапазоне 25-35 см. Соответственно, чем меньше звено, тем прочнее и надежнее сетка. Но ячейки менее 5 см не допускаются, так как возможно возникновение пустот при заливке бетонной смеси.
  • Прокладка арматурной сетки в опалубку. Необходимую прочность монолитной стене придаст армирование сеткой в два слоя. Важно, чтобы диаметр проволоки был не меньше 12 мм, а шаг и по горизонтали и по вертикали не больше 40 см. Оба слоя сетки нужно соединить в шахматном порядке через каждые две ячейки. Для соединения используют проволоку такого же диаметра. Кроме того, арматура и ее элементы не должны соприкасаться со стенками опалубки.
  • Проверка правильности монтажа армирующей сетки. Арматура должна быть размещена строго вертикально. Допустимое отклонение 1-2 мм. Причина этого - давление почвы на стены подвала. Правильность расположения можно проверить строительным или лазерным уровнем.
  • Заливка бетона и засыпание почвы возле стен. Чтобы обеспечить антикоррозийную защиту арматуры, в бетон добавляют специальные растворы.

Усиление проемов

Любой проем является слабым местом конструкции. Поэтому периметры оконных и дверных проемов обязательно укрепляют дополнительно. Если это сделать неправильно, то конструкция растрескивается и деформируется.

Размеры и тип металлоконструкций для усиления проемов подбирается согласно точным расчетам. Нужно учитывать все параметры, которые влияют на целостность конструкции здания: материал стен, этажность, размер проема, тип основания, вес кровли.

Существует несколько способов армирования проемов в монолитной стене:

  • Армирование в один ряд с использованием швеллеров. Это стандартный способ, который заключается в анкерном креплении к стене металлической рамы. Ширина швеллера должна немного больше ширины стены.
  • Двухрядное армирование. Суть заключается в накладке двух швеллеров на стену, которые потом дополнительно крепятся и привариваются к металлическим пластинам.
  • Усиление с помощью уголков. К краям проема крепятся металлические элементы. Их внутренняя часть соединяется с помощью полосы, которая зафиксирована в стене. Стойки в таких случаях стягивают шпильками или сваривают.
  • Коробковое усиление. Швеллеры приваривают параллельно и вертикально. В качестве верхнего элемента служит силовой двутавр.
  • Армирование из уголка. Применяют, когда необходимо усиление нестандартных проемов и отверстий.
  • Комбинирование способов. Зависит от конструктивных особенностей проемов.

Армирование отверстий в монолитной стене — довольно сложный и ответственный процесс, тем более когда проем необходимо сделать в несущей стене. Неправильно выполненное устройство проема может привести к значительному снижению надежности здания. Поэтому такие процессы лучше производить с помощью специалиста.

Краткий алгоритм усиления проемов:

  • Разметка будущего отверстия и армирования.
  • Установка временных подпорок.
  • Непосредственное усиление с использованием металлических профилей.
  • Резка.

Армирование цокольного этажа

Нулевой этаж чаще всего имеет высоту от 1,5 до 2,5 м. Армирование монолитной стены цокольного этажа проходит следующим образом:

  • Устанавливают несъемную опалубку из пластика. Она одновременно служит и утеплителем для стен.
  • При установке опалубки прокладываются проемы для окон и дверей, а также гильзы из металла для прокладки коммуникаций.
  • Армировать нужно в продольном направлении стен. При этом металлические стержни связываются с уже установленными вертикальными прутьями. Сечение стержня не менее 10 мм.
  • При наличии необходимой техники и материалов бетон лучше заливать сразу же. Если возможности такой нет, то бетонную смесь заливают слоями. При втором варианте каждый последующий слой заливается через трое суток после предыдущего. Набор требуемой твердости происходит в течение 28 суток.
  • После окончательного затвердения можно приступать к дальнейшим строительным работам.

Полезное видео по теме и выводы

В дополнение полезное видео по теме армирования.

В заключение стоит сказать, что сам процесс армирования монолитных стен не сильно сложен. Но требуется правильный расчет, точность выполнения работ и качественный материал.

Армирование Бетонных Стен: Технология Выполнения Работ

Любая монолитная бетонная стена должна быть усилена внутренним армирующим каркасом

Бетон является наиболее востребованным строительным материалом. Его используют при устройстве фундаментов, строительстве стен и перекрытий. Из бетона изготавливают плитку, которая в дальнейшем применяется при отделке. Такая популярность материала обусловлена значительной прочностью застывшего раствора.

При этом, бетонные конструкции являются довольно хрупкими на изгиб. Для того, чтобы устранить данный недостаток применяются различные способы усиления.

В статье мы расскажем для чего необходимо производить армирование бетонных стен, и как данную процедуру можно произвести самостоятельно. Опишем технологии и материалы для армирования бетона.

Содержание статьи

Для чего нужно усиливать бетон

Зачем армируют бетон, ведь это довольно прочный материал. По факту обычный бетонный блок не усиленный каким-либо образом, является крепким лишь на сжатие. Любое растяжение, происходящее под действием различных факторов, приводит к его деформации.

Изменить геометрию монолитная конструкция может в следствии:

  • пучения грунта;
  • сейсмической активности;
  • естественной временной осадки здания;
  • проведения работ по надстройке;
  • изменения планировки строения.

При несоблюдении техники армирования или его полном отсутствии, бетон обязательно начнет разрушаться

Достоинства усиленного бетона

Технологически правильное армирование и заливка бетона решают несколько очень существенных задач:

  • Усиление прочности конструкций даже сложной лекальной формы, например, эркеров или забежных полукруглых ступеней.
  • Делают бетонные элементы здания более устойчивыми к воздействию температурных перепадов.
  • Значительно увеличивают срок эксплуатации строения.
  • Повышая прочность, дают возможность увеличения механических нагрузок на несущие конструкции.
  • Предотвращают растрескивание скрытых бетонных элементов, в том числе подвальных стен.

Материалы

Армирование – это усиление бетонного блока изнутри при помощи различных материалов. Могут использоваться прутки или волокна, которые при растяжении блока не позволяют ему растрескиваться.

На практике материалы армирования можно разделить на 3 группы:

  1. металлические прутья,
  2. композитная арматура,
  3. фибра.

Стальные прутки

Норма длины стального прутка для усиления бетонных конструкций — 11,75 м. Арматура может иметь различный диаметр и марку. В зависимости от маркировки прутки в усиливающий каркас соединяются свариванием или вяжутся проволокой.

В массе бетона соединение стальных стержней с раствором достаточно прочное благодаря рифлению на прутке. Стальной остов внутри монолита перераспределяет нагрузки и сдерживает бетон от растрескивания, поскольку металл имеет большее сопротивление на разрыв. При этом бетон в свою очередь защищает металл от коррозии.

Стальной усиливающий каркас

Композитный материал

Такая арматура имеет довольно широкий спектр исходных материалов, увеличивающийся почти ежегодно. К настоящему моменту более или менее используются стеклопластиковые и базальтопластиковые прутки со спиральной накруткой, имитирующей периодичность профиля стальной армации.

Кроме того, на строительном рынке представлена полиэтиленрефталатовая и углеводородная арматура, не получившая пока широкой популярности. Неоспоримым достоинством композита является низкий вес. Но при устройстве фундаментов или подпорных стен данное преимущество имеет мало значения, а вот прочностные характеристики выступают очень важны.

Композитная арматура, как правило, используется в горизонтальных элементах строения, имеющих опору на грунт

Фиброволокно

Мелкодисперсный материал (фибра) добавляется в раствор на этапе замешивания. При этом само волокно может иметь различный диаметр и длину.

Изготавливают фибру из волокна на основе:

  • стали,
  • стекла,
  • полипропиленовых соединений,
  • базальта.

На заметку! Чаще других применяется усиление стекловолокном, по причинам наличия достаточно высоких прочностных характеристик и наиболее доступной стоимости материала.

Фиброволокно для усиления прочности бетона на разрыв

Способы армации

Независимо от усиливающего материала, технология армирования бетона может так же различаться. В строительстве укрепление цементного раствора может быть произведено несколькими способами. На практике применяют монолитное, сеточное или дисперсное усиление.

Монолитное

Стальное или композитное армирование арматурой бетона — наиболее распространенный способ усиления конструкций в частном строительстве. Особенно часто монолит с внутренним усиливающим остовом заливают при строительстве фундаментов, стен или перекрытий.

Прутья связываются или свариваются в несколько уровней, опускаются в опалубку и заливаются бетоном. При этом каркас из прутьев неподвижен и прочен.

Важно! При связывании в одной линии двух прутков, длина нахлеста должна составлять 40 диаметров стержня. Нахлест связывается, как минимум, в трех местах.

Для сохранения большей упругости прутья в каркас связываются, а не свариваются

Сеточное

Армировка бетона с использованием строительной сетки — быстрый и удобный способ. Сетка выполняется из стальной или композитной проволоки. Данный метод весьма эффективен для усиления бетонных стяжек, ремонта небольших участков монолита.

  • Сетка продается в картах длиной 2 м с различной шириной полотна. При этом размер ячейки может быть разным.
  • При выборе сетки лучше отдавать предпочтение композитному или полимерному материалу.
  • Цена их несколько ниже, чем у стальных карт, но при эксплуатации строения значительно снижается риск возникновения коррозии бетона.

Металлическая армирующая сетка в картах

Волоконное

Усиление бетонной заливки фиброволокном называется дисперсной армацией. Фибра вводится в раствор при затворении. Как правило, данный способ используется при необходимости усилить тонкий слой заливки или в качестве дополнительного укрепления конструкций с повышенной механической нагрузкой.

Например, при устройстве железобетонных лестниц, которые зачастую являются несущим элементом здания, кроме укладки в опалубку стальных прутьев, в раствор замешивается фиброволокно. Это делает конструкцию значительно прочнее и продлевает срок её безремонтной эксплуатации.

На заметку! Инструкция по замешиванию, а также пропорции добавления фибры в раствор прописываются заводом — производителем на упаковке.

Фиброволокно чаще используется в качестве дополнительного усиления к основному армированию

Технология армирования опорных стен

Если с использованием стекловолоконной фибры или сетки любого вида всё просто, то монолитное армирование — процесс, требующий строго соблюдения определенных правил. Мы остановимся на армирование стен из бетона, как на наиболее актуальной теме.

  • Заливая фундамент под дом с подвалом, вы практически устраиваете несущие стены, которые будут служить опорой всему зданию.
  • Данные конструктивные элементы требуют качественного усиления, так как они будут испытывать значительные вертикальные и горизонтальные нагрузки: сверху от веса здания, по бокам от грунта.
  • Именно по этой причине, прочность подвальных или фундаментных стен строения очень важна.

Схема деформации опорной стены подвала в результате давления пучинистого грунта

  • Сразу отметим, что в данном случае, специалисты не рекомендуют использовать композитные прутья, а отдают предпочтение стальным стержням.
  • Это придаст дополнительную подвижность конструкции и ещё больше снизит риск возникновения разломов и трещин.

Совет: При армировании опорных стен может использоваться любая марка металлической арматуры, но соединять каркас лучше связыванием, а не сваркой.

Основные правила

Итоговая задача усиления – получить максимально прочную, но упругую конструкцию.

Каких правил следует придерживаться, устраивая армирование в бетон:

  • Металлическая армация связывается вне стен опалубки. Установка каркаса может происходить крупными частями.

Каркас собирают значительными частями, а затем закладывают в опалубку стены

  • В местах пересечения стержней, прутья должны быть связаны, но не жестко. Необходимо сохранить малую подвижность узла, чтобы при растяжении бетона проволока не порвалась и каркас не утратил целостности.

Металлические прутья лучше фиксировать способом связывания

  • Прутья в каркасе должны сохранять строгое направление вертикальное или горизонтальное. Смещение угла наклона прутка приведет к сдвигу распределения нагрузки, а как следствие — к разрушению части бетонной стены.
  • Укладка усиливающего каркаса производится внутрь опалубки без давления почвы. То есть, внешние стены опалубки не должны соприкасаться с грунтом.

Стальной остов внутри опалубки, готовой к закладке раствора

  • Металлический остов закладывается в подготовленную опалубку на специальные грибки. Расстояние от металла до края бетона не должно быть менее 5 см.

Металлические стержни укладываются на специальные «грибки»

  • Оптимальный размер ячейки армирования для подвальной стены от 25 до 35 см, в зависимости от толщины заливки.
  • Для снижения риска возникновения коррозии, в бетон следует добавлять специальные присадки.

Универсальная присадка в бетонный раствор

  • После того, как каркас связан и установлен в опалубку, происходит заливка раствора — его следует залить единовременно по всему объему опалубки.
  • Залитый монолит накрывают пленкой и оставляют до полного схватывания. Для того, чтобы избежать растрескивания, в первые десять дней бетон следует увлажнять.

Для того чтобы более подробно ознакомиться с процессом армирования бетонных стен стальными прутьями, рекомендуем посмотреть видео в этой статье.

На заметку! Данные правила действительны при устройстве металлического усиливающего каркаса в любой конструкции, не исключение и подпорная стенка из армированного бетона.

Устройство подпорной стены обязательно включает металлическое усиление

Советы специалистов

В любом процессе существуют нюансы и тонкости, которые хорошо понятны специалистам, а непрофессионал не уделит этому должного внимания.

При устройстве металлической армации для подпорной или подвальной стены своими руками, обратите внимание на следующие моменты:

  • Категорически нельзя наращивать армирование в уже залитый бетон. Если обнаружилось, что высоты стены фундамента недостаточно, придется разрушить все и собрать заново с требуемыми размерами. В противном случае, в местах стыковки старого и нового фундамент будет ослаблен.
  • Не стоит использовать стержни уже бывшие в употреблении. Металл стареет и теряет свойства, поэтому для такого важного места как фундамент старые прутья не подойдут.
  • Если арматура покрылась ржавчиной, не красьте и не смазывайте её перед укладкой. Подобные действия только ухудшат сцепление металла с бетоном и никак не остановят процесс окисления.
  • Сгибать стержни в углах при помощи высокой температуры также не рекомендуется. Термическая обработка снижает упругость металла. Если нет возможности согнуть прут, обрежьте его до нужного размера и зафиксируйте угол при помощи вязки проволокой.

На фото пример углового соединения стального армирования

Важно! Многие ошибочно полагают, что чем меньше ячейка, тем прочнее получится монолит. В мелкие ячейки с трудом проникает раствор оставляя пустоты, поэтому если мельчить с каркасной сеткой, то эффект получится обратный.

Заключение

Армирование стен из бетона производится с целью упрочнения монолита на изгиб и продления срока эксплуатации здания в целом. Строители советуют в части подвальных, и подпорных стен использовать для армации металлические стержни периодического профиля.

Технология армирования бетона здесь, как нигде, обязательна к точному и скрупулёзному исполнению. И как всегда, если вы не уверены в своих силах и умении, доверьте работу на столь важном участке профессионалам.

Армирование монолитных стен подвала - особенности процесса

Если вам необходимо армировать стены подвала, то можно справиться с работой и самостоятельно, не прибегая к дорогостоящим услугам. Главное – знать технологию и особенности армирования монолитных стен.

Армирование – это строительный процесс, при котором металлическая арматура используется в качестве одной из составляющих материала для повышения его прочности. Армирование увеличивает сроки службы конструкции, а также улучшает ее рабочие и эксплуатационные характеристики.

С помощью добавления арматуры простой бетон превращается в более прочный и надежный железобетон. При устройстве несущих конструкций (таких, как стены здания) применяется именно второй вариант. Для того чтобы построить стену с нужными техническими характеристиками из обычного бетона, его потребуется очень много. А возводить стены большой толщины не рационально и дорого. Использование арматуры позволяет усилить бетонный слой, не делая его слишком толстым.

Армирование также используется в тех случаях, когда предполагается высокая механическая нагрузка на бетонную конструкцию.

Также нельзя не отметить, что армирование очень хорошо помогает увеличить прочность и устойчивость кирпичной кладки или стены из газобетонных блоков (и их аналогов). Арматура в таких случаях не проходит вертикально сквозь всю стену, а укладывается поясами через каждые несколько рядов. Когда делают бетонную стяжку пола, для армирования обычно пользуются проволокой. Очень важно укрепить стяжку в тех местах, где на нее будет ложиться максимальная нагрузка (например, у входа).

Арматурная конструкция для стены подвала

Стены подвала нуждаются в качественном армировании, так как на них сверху будет давить вес конструкций дома, а по бокам – окружающий постройку грунт.

Для стен небольшого частного подвала вязка арматуры может быть произведена своими руками, без привлечения специалистов.

Правильная вязка стержней.

В случае с подвальными стенами необходимо сделать такую арматурную сетку, которая будет обладать одним важным качеством – упругостью. Лучше использовать именно вязку, а не сварку. Если фундамент здания будет двигаться из-за осадки или пучения грунта, то с вязаной арматурной сетью ничего не произойдет, а сварная может развалиться, если осадка слишком значительна.

Впрочем, устройство монолитных стен подвала может предусматривать и сварной, и вязаный вариант арматурной сетки. Какой именно метод выбрать, следует уточнить у специалистов, ответственных за проектирование сооружения.

Арматурный каркас не должен соприкасаться со стенками опалубки.

Вязка арматуры для стен подвала происходит в местах пересечения стержней. Для этого необходимо будет дополнительно приобрести проволоку, которая используется для скрепления стержней. В большинстве случаев, диаметр этой проволоки составляет несколько миллиметров.

Чтобы связать арматуру, потребуются кусачки или специальное устройство, которое облегчит и ускорит работу. Такое приспособление можно найти только у профессионалов, поэтому можно взять его в аренду в ближайшей строительной фирме. Вне зависимости от того, какой метод армирования буде выбран, прочность стены подвала в любом случае повысится. При заливке бетона очень важно уделить повышенное внимание узлам конструкции.

Как только вы свяжете или же сварите арматурную сеть, необходимо очистить установленную заранее опалубку от грязи и пыли, после чего разметить на ней будущее расположение сетки. Только после проведения всех расчетов можно укладывать арматуру внутрь конструкции.

Укладка арматуры и устройство опалубки для монолитной стены должны производиться без воздействия давления грунта. Иными словами, нужно с обеих сторон от опалубки освободить пространство для нормального проведения работ.

Засыпка грунта производится только после того, как арматурная сеть будет установлена в опалубку и залита цементным раствором. Использование вынутого грунта не всегда оправдано. Для обратной засыпки также пользуются специально подготовленным песком или глиной. Все зависит от типа грунта и особенностей здания.

Особенности укладки арматуры

Армирование монолитных бетонных стен – ответственный процесс, который требует определенных умений и навыков. Стены подвала будут испытывать большую нагрузку, поэтому крайне важно правильно уложить арматуру, снизив до минимума риск разрушения сетки при эксплуатации.

Какие основные правила укладки арматуры можно выделить?

  1. Необходимо проследить за тем, чтобы арматура – проволока и другие ее элементы – даже близко не касались опалубки и были расположены на некотором расстоянии. Если это соприкосновение допустить, то в момент, когда вы будете убирать опалубку, вы вполне сможете повредить арматурную сеть, хотя вероятность этого относительно невысока. Если опалубка не снимаемая, то через это соприкосновение к стальному стержню будет проникать нежелательная влага.
  2. Ячейки арматурной сети должны быть определенного размера. Для подвальных стен оптимальной будет ширина в 25-35 см.
  3. Для пущей надежности и прочности конструкции, получаемой после армирования монолитных стен, рекомендуется уменьшать размер ячеек, предусматривая нагрузку, исходящую от перекрытия (если перекрытие также бетонное). Одновременно с этим, делать размер ячеек меньше 5 см не стоит, потому что цементный раствор в этом случае утратит проникающие свойства, и в процессе бетонирования поверхности начнут образовываться нежелательные пустоты.
  4. Дополнительно следует предусмотреть защиту арматуры от коррозии. Для этого используются специальные добавки в заливаемый бетон. Помимо этого, от поверхности стены арматура должна быть отделена слоем бетона толщиной не менее 15-20 мм. Неважно, выполняете ли вы армирование монолитных стен подвала самостоятельно или с помощью наемных работников – всё нужно тщательно проконтролировать и проверить.
  5. Следует также проследить за тем, чтобы арматурные стержни стояли в опалубке максимально прямо, без каких-либо отклонений (в противном случае давление грунта может привести к негативным последствиям). Конечно, незначительные отклонения (до нескольких миллиметров) допускаются, однако, лучше всего обойтись без них. Для проверки ровности монтажа арматурной сети рекомендуется использовать лазерный или традиционный строительный уровень.

Пример армирования плитного фундамента и монолитных бетонных стен.

По завершении укладки арматуры, необходимо лишний раз проверить правильность установки и монтажа всей конструкции. Главное, чтобы всё соответствовало проекту (если он имеется). Только после этого можно начать заливку раствора.

Тонкости армирования и типичные ошибки

Разумеется, когда домовладелец самостоятельно армирует стены подвала, он может не предусмотреть какие-то моменты и допустить ошибки. Чтобы при эксплуатации подвального помещения не возникало проблем, стоит заранее учесть некоторые факторы:

  • Не стоит пользоваться для создания арматурной конструкции теми стальными стержнями, которые ранее эксплуатировались в других местах. Такая арматура может не выдержать новой нагрузки (давление грунта и перекрытий), поэтому от нее стоит отказаться.
  • Если на новых стержнях перед их установкой вы обнаружили следы ржавчины, то знайте, что их удалять и закрашивать не нужно. Проведение этих мероприятий только ухудшит сцепление стержней с цементным раствором при армировании монолитных стен.
  • Когда вы будете соединять стержни в сеть, то их нужно будет разрезать или сгибать. Для резки подходит традиционная болгарка. А вот для гибки стали, стержень порой предварительно разогревают в целевом месте. Этот подход не является правильным, потому что при нагревании материал будет изменять свою структуру, в результате чего может произойти его разрушение. Отчасти поэтому многие строители не рекомендуют использовать сварку. Конечно, нет ничего страшного, что стержень сломается при эксплуатации в стене небольшого отдельно стоящего подвала, но если такое произойдет в испытывающем высокую нагрузку фундаменте?
  • Ни в коем случае нельзя укладывать арматурную сетку в ту опалубку, куда уже был залит бетон. Если не получилось по каким-либо причинам соблюсти правильную последовательность действий, то необходимо все работы начать сначала. То есть надо убрать залитый раствор, демонтировать опалубку, очистить ее и поставить снова, уложив в нее готовый каркас.
  • Если вы хотите нарастить сделанную арматурную сеть по высоте или длине, то делать это крайне не рекомендуется, потому что при сильной нагрузке в местах наращивания может произойти разрыв. Когда вы уверены, что стены погреба большой нагрузки испытывать не будут, то можно попытаться максимально качественно нарастить каркас, если на то есть необходимость.

При армировании стен подвала нужно учитывать тот момент, что давление грунта с внешней стороны, скорее всего, будет значительным. Поэтому необходимо выбирать качественную арматуру стандартных размеров и связывать ее специальной проволокой. Сварку для скрепления стержней можно использовать только в том случае, если давление грунта не настолько высокое, чтобы оказывать на стену ощутимое воздействие.

В тех случаях, когда дом будет давать осадку, давление грунта также придется принимать во внимание.

Специальный пистолет для вязки стержней.

Очень важно на этапе создания монолитной бетонной стены подвального помещения предусмотреть с ее внешней стороны наличие теплоизоляционного и гидроизоляционного слоя.

Кроме того, выше уже было сказано, что арматурные стержни рекомендуется защитить от коррозии с помощью специальных добавок в бетон.

Самостоятельное выполнение работ

Из всего вышесказанного можно сделать вывод о том, что выполнить армирование монолитной стены можно своими руками и без привлечения специалистов. Однако следует обязательно обратиться за помощью к профессионалам, если вы не можете рассчитать давление грунта, вычислить необходимую толщину стержней, выбрать тип проволоки для обвязки, а также хотите уточнить какие-либо важные нюансы.

Армирование монолитных стен СНИП - МастерСам

СТЕНЫ ИЗ МОНОЛИТНОГО БЕТОНА

5.82. Наружные и внутренние стены из монолитного бетона при применении переставных опалубок возводятся одновременно или последовательно (сначала внутренние стены, а затем наружные или наоборот).

Внутренние монолитные стены рекомендуется проектировать однослойными. Наружные стены могут быть однослойными или слоистыми.

5.83. Для возведения несущих стен из монолитного бетона рекомендуется применять тяжелые бетоны класса не ниже В7,5 и легкие бетоны класса не ниже В5. В зданиях высотой четыре и менее этажей допускается в несущих стенах применять легкие бетоны класса В3,5. Для внутренних стен плотность легких бетонов должна быть не ниже 1700 кг/м 3 .

5.84. Монолитные однослойные наружные стены рекомендуется проектировать из легкого бетона плотной структуры. При межзерновой пористости бетона не более 3 % и класса бетона не ниже В3,5 в нормальной и сухой по влажности зонах допускается наружные стены проектировать без защитно-декоративного слоя. Наружные легкобетонные стены без защитно-декоративного слоя следует окрашивать гидрофобными составами.

Наружные однослойные стены рекомендуется проектировать из легких бетонов с плотностью не более 1400 кг/м 3 . При технико-экономическом обосновании в однослойных наружных стенах допускается применять легкие бетоны плотностью более 1400 кг/м 3 .

5.85. Слоистые наружные стены можно проектировать из двух или трех основных слоев. Двухслойные наружные стены могут иметь утепляющий слой с наружной или внутренней стороны. В трехслойных наружных стенах утепляющий слой располагается между бетонными слоями.

5.86. Двухслойные наружные стены с утеплителем с наружной стороны могут быть монолитными и сборно-монолитными.

Монолитные стены возводят в два этапа. На первом этапе в переставных опалубках из тяжелого бетона возводят внутренний слой стены, на втором – наружный слой из теплоизоляционного легкого монолитного бетона.

Сборно-монолитная стена состоит из внутреннего монолитного слоя, выполняемого из тяжелого бетона, и наружного слоя – из сборных элементов.

5.87. Двухслойная наружная стена с утеплением с внутренней стороны состоит из наружного монолитного бетонного слоя, внутреннего утепляющего слоя – из газобетонных блоков толщиной не более 5 см или из жестких плитных утеплителей (например, из пенополистирола) толщиной не более 3 см и внутреннего отделочного слоя (рис. 26, а).

Ограничение толщин утепляющих слоев связано с обеспечением нормального тепловлажностного режима стен.

Тяжелый бетон целесообразно применять при расчетных зимних температурах, не превышающих минус 7°С. В остальных случаях необходимо применять легкие бетоны.

Рекомендуется два варианта возведения наружных монолитных стен с утеплением с внутренней стороны:

сначала на внутреннем щите опалубки укладывают слой утеплителя, затем опалубку собирают и бетонируют слой из монолитного бетона. При этом можно применять некалиброванные по толщине плиты утеплителя;

плиты утеплителя устанавливают после бетонирования стен.

При этом необходимо применять калиброванные по толщине плиты утеплителя.

При проектировании двухслойных стен с утеплителем с внутренней стороны следует учитывать, что возведение таких стен проще, чем стен с утеплителем с наружной стороны, но их применение ограничивается условием отсутствия точки росы в пределах толщины утепляющего слоя.

5.88. Трехслойные наружные стены рекомендуется проектировать сборно-монолитными, состоящими из внутреннего несущего слоя монолитного тяжелого бетона и утепленной сборной панели-скорлупы, устанавливаемой с наружной стороны. Панель-скорлупу можно устанавливать до и после возведения монолитной части стены (рис. 26, б).

Допускается трехслойные наружные стены проектировать с наружными и внутренними слоями из монолитного бетона и утепляющим слоем из жестких плитных утеплителей (рис. 26, в).

Рис. 26. Наружные стены монолитных зданий

а – двухслойная; б – трехслойная с наружным слоем из сборной панели скорлупы; в – то же, с внешними слоями из монолитного бетона

1 – блочная опалубка; 2 – панель-скорлупа; 3 – монолитный бетон стены; 4 – рабочие подмостки; 5 – крепежная система панели-скорлупы; 6 – утеплитель; 7 – связь; 8 – щиты опалубки; 9 – бадья; 10 – рассекатель; 11 – бетон

5.89. Конструктивное армирование стен следует предусматривать двух типов в зависимости от напряженного состояния стены:

если от расчетных нагрузок в сечении стены возникают растягивающие напряжения или в полностью сжатом сечении стены минимальные сжимающие напряжения в бетоне s £ 1 МПа (10 кгс/см 2 ), то конструктивное армирование рекомендуется принимать по всему полю стены, при этом количество вертикальной и горизонтальной арматуры должно быть не менее 0,025 % соответствующего поперечного сечения стены;

в остальных случаях конструктивную арматуру устанавливают только по контуру стены, а в пересечениях несущих стен, в местах резкого изменения толщин стен, у граней дверных и оконных проемов и у граней отверстий устанавливают вертикальную арматуру площадью сечения не менее 1 см 3 .

Вертикальную конструктивную арматуру рекомендуется проектировать в виде гнутых (Г-образных) каркасов.

Стыкование вертикальных каркасов по высоте здания рекомендуется производить в уровне перекрытий внахлестку без сварки. Величина перепуска определяется расчетом. При конструктивном армировании стен величина перепуска принимается не менее 200 мм независимо от диаметра вертикальной арматуры. При сборных перекрытиях стыкование арматурных каркасов рекомендуется производить сдельными стержнями, устанавливаемыми между торцами плит перекрытий.

Роль горизонтальной конструктивной арматуры в случае применения неразрезных монолитных, а также сборных и сборно-монолитных перекрытий, опертых по контуру или трем сторонам, выполняет конструктивная арматура в перекрытиях, расположенная параллельно стенам. В случае применения сборных балочных перекрытий рекомендуется устанавливать дополнительную горизонтальную арматуру в местах сопряжения их с монолитными стенами.

5.90. Расчетное армирование стен из монолитного бетона на внецентренное сжатие из плоскости рекомендуется выполнять арматурными блоками, собираемыми из Г-образных каркасов на строительной площадке. Следует предусматривать дифференцированное расчетное армирование по высоте здания в соответствии с изменением усилий в конструкциях.

Уменьшение расчетного армирования по высоте здания следует осуществлять за счет более редкого расположения вертикальных каркасов и (или) уменьшения диаметра вертикальных стержней.

5.91. Повышение трещиностойкости монолитных стен (ограничение по трещинообразованию или ширине раскрытия трещин) может быть достигнуто за счет выбора рациональных конструктивных систем и конструктивно-технологического решения стен; рационального применения материалов в наружных и внутренних стенах в соответствии с указаниями пп. 5.92-5.93.

5.92. Для предотвращения образования сквозных вертикальных температурно-усадочных трещин рекомендуется назначать отношение длины стены к высоте этажа не более двух.

В случае, если длина стены превышает вдвое высоту этажа, то в глухих участках стен рекомендуется устраивать вертикальные технологические швы.

5.93. Для ограничения раскрытия наклонных трещин во внутренних стенах верхних этажей зданий перекрестно-стеновой конструктивной системы с несущими наружными стенами разность D перемещений сопрягаемых участков наружной и внутренней стен не должны превышать величин, приведенных в табл. 7.

Армирование ленточного фундамента по СНиП

Армирование ленточного фундамента: СНиП

Вес любого здания через фундамент передается на грунт. Основание здания не позволяет строению разрушиться. Все требования к фундаментам и информация о них собрана в сборники правил СНиП. Руководствуясь этими документами можно сделать вывод, что армированный ленточный фундамент является самым распространенным при возведении зданий в местах неглубоко промерзающих почв.

Цель армирования

Ленточный фундамент имеет не обычную конструкцию: его длина во много раз больше, чем ширина и глубина. Вследствие такого устройства основы здания почти все нагрузки, которые на него действуют, распределяются вдоль.

Самостоятельно бетонный монолит не может выдержать это давление. И, чтобы сгладить силы, действующие на разрыв, применяется укрепление бетонного фундамента стальной арматурой. Этот процесс и получил название армирование.

Основным нагрузкам подёргается верхняя часть фундамента (сжатие) и нижняя(растяжение), поэтому следует усиливать именно эти части основания. Для середины основания это не имеет смысла, потому что там не наблюдается повышенных нагрузок.

Требования

Основные проекты и условия возведения конструкций из железобетона указаны в СНиП 52-01-2003 «Бетонные и железобетонные конструкции». Данный эталон устанавливает, как правильно монтировать стальную арматуру. Основные условия, предъявляемые к процессу:

  1. • Размеры основания не должны мешать правильному положению арматуры в траншее.
  2. • Зашитый покров над арматурой должен предохранять арматуру от воздействия внешней среды и надежно сопротивляться нагрузкам.
  3. • Расстояние между отдельными прутьями не должно препятствовать правильной состыковке и заполнению бетоном.

При усилении фундамента следует использовать арматуру только высокого качества. Монтирование каркасных сеток для ленточных фундаментов должно происходить в строгом соответствии со СНиП 3.03.01-87 «Несущие и ограждающие конструкции».

Основные принципы

Перед заливкой ленточного фундамента бетоном необходимо грамотно скомпоновать армированный пояс с помощью стальной арматуры. Толщина и глубина основания зависит от будущих нагрузок на здание и используемых материалов для стен.

Ленточный фундамент можно обустроить двумя способами:

  • • использовать готовые блоки заводского изготовления;
  • • залить на месте в готовую траншею.

При использовании заводских блоков можно выделить слабое место: скрепление изделий между собой. Их соединяют армированным бетоном, что не очень надежно. А при заливке бетонным раствором получится надежный и прочный монолитный фундамент.

Монтаж каркаса из арматуры на месте строительства требует соблюдения ряда важных условий:

  1. • Арматура должна находится на расстоянии не менее 5 см от края опалубки.
  2. • Забиваются вертикальные прутки, к которым потом привязываются горизонтальные ряды. Можно и приварить с помощью сварки – это увеличит темп армирования. Но при нагреве металл теряет свою прочность и лучше все-таки вязать мягкой проволокой.
  3. • Один горизонтальный пояс способен сдерживать вертикальную деформацию примерно в пространстве 30-35 см. То есть, для основы высотой в 70 см достаточно двух поясов, а если высота больше, то и количество рядов нужно увеличивать.
  4. • Очень важное значение имеет монтаж армирования в углах фундамента, так как на них приходится самая большая часть нагрузок. При угловом соединении лучше согнуть свободные концы буквой «Г» и прикрепить их к вертикальным пруткам: внутренние к внутренним, а внешние – к внешним.

При проектировании и армирование фундаментов возникает множество вопросов, и чтобы избежать проблем при изготовлении армированного каркаса своими руками, нужно внимательно изучить все нормы и требования ГОСТов, и СНиП.

Армирование ленточного фундамента – правила, схемы, инструкции

Возведение фундаментного основания зданий это важнейший этап строительства, который определяет дальнейшую надежность и долговечность постройки. Поэтому при выполнении этой работы не допустима непродуманная экономия на расходах материалов и самовольные изменения проектных решений принятых специалистами.

Ленточные фундаменты пользуются заслуженной популярности при строительстве объектов индивидуальной застройки. Это объясняется возможностью универсального применения для самых различных зданий на большинстве распространенных типов грунтов.

Они отличаются высоким уровнем надежности и возможностью выполнения монтажа своими руками. Ленточные фундаменты нельзя применять для строительства зданий на неустойчивых грунтах, в заболоченной местности и на вечной мерзлоте.

Описание конструкции ленточного фундамента

Несущее основание этого типа представляет собой заглубленную в землю железобетонную монолитную ленту. Она монтируется под все несущие стены и тяжелые перегородки. Глубина заложения фундамента определяется в зависимости от следующих исходных параметров:
  • общий вес строительных конструкций здания с учетом снеговых нагрузок, мебели и установленного оборудования;
  • тип и строение грунтов на участке;
  • глубина залегания грунтовых вод;
  • нижняя точка промерзания грунта в холодное время года.

В результате фундамент небольших легких зданий домов быть мелкозаглубленным и иметь нижнюю опору на глубине 500-800 мм. Для тяжелых больших зданий и при наличии подвала подошва монолитной конструкции должна находиться ниже точки промерзания грунта более чем на 400 мм.

Ширина фундаментной ленты в ее верхней части зависит от толщины возводимых стен и должна превышать ее более чем на 100 мм, но в любом случае не мене 300 мм. В нижней части может быть предусмотрено наличие более широкой опорной подошвы, которая устраивается при большом весе строительных конструкций или слабых грунтах. Однако правильный расчет такой опоры довольно сложная инженерная задача. Данные о поперечном сечении фундаментной ленты и об общей массе строительных конструкций позволяют правильно рассчитать конструкцию армирующего каркаса.

Расчет фундамента должен быть выполнен на профессиональном уровне

Наличие армирующего каркаса повышает прочность фундаментного монолита и позволяет более равномерно распределить весовую нагрузку на грунт. При проектировании элементов здания всегда учитываются реальные данные, на основании которых получают результат способный обеспечить долговечность и надежность постройки.

На основании этого можно сделать вывод, что для разработки проекта необходимы специальные знания и опыт подобных работ. Поэтому выполнение расчетов и определение проектных схем рекомендуется поручить специалисту, а вот монтажные работы можно выполнять самостоятельно. Если только вы не собираетесь построить небольшой сарай, баньку, хозяйственные постройки или легкий гараж.

Расчет необходимого количества материалов

При определении нужного количества арматуры следует учитывать, что продольные струны и поперечные прутки имеют разный диаметр и цену. Имея проект подсчитать количество необходимого для армирования материала не сложно. Только следует предусмотреть запас 7-10% на остатки в виде коротких обрезков и на нахлесты при соединении прутов на длинных участках.

Если вы производите расчеты самостоятельно, то рекомендуется принять:

  • диаметр арматуры 10 мм для продольных участков длиной до 3-х метров;
  • 12 мм на участках более 3-х метров;
  • поперечная арматура с гладкой поверхностью диаметром 8 мм.

Кроме этого не забудьте приобрести вязальную проволоку (сварка прута для железобетона запрещена), а так же фиксаторы «звездочка» и «опора», которые устанавливаются на каждый крайний прут через каждые 3 метра.

Общее количество продольных армирующих струн определяется по суммарному сечению. Согласно СНиП общая площадь сечения арматуры должна быть не менее 0,1% от поперечного сечения фундаментной ленты. Если в результате вы определите, что для армирования достаточно всего 2-х прутов, то эту количество необходимо увеличить до 4-х. При этом принимая минимальное сечение прутов в 10 мм. Поперечные прутки никаких нагрузок не несут и считаются фиксирующими элементами.

Шаг поперечных прутков (хомутов) должен быть не более трех четвертей высоты фундаментной ленты и меньше 500 мм. В местах примыкания двух прямых конструкций и на углах шаг должен уменьшаться вдвое. Существует много специально разработанных схем вязки углов элементов и примыкающих участков. Перед началом работы рекомендуем с ними ознакомиться.

Что нужно знать про арматуру

Для ленточных фундаментов обычно применяют горячекатаную арматуру классов A-II и A-III с диаметром от 10 мм с периодическим профилем (рифленую), который обеспечивает надежное сцепление металла с бетоном. Пруты класса A-I с гладкой поверхностью и сечением 8-10 мм применяют для изготовления связующих хомутов и перемычек.

Оценка статьи:

Загрузка... Армирование монолитных стен СНИП Ссылка на основную публикацию wpDiscuzAdblock
detector

Армирование монолитных стен СНИП - Строительный журнал

СТЕНЫ ИЗ МОНОЛИТНОГО БЕТОНА

5.82. Наружные и внутренние стены из монолитного бетона при применении переставных опалубок возводятся одновременно или последовательно (сначала внутренние стены, а затем наружные или наоборот).

Внутренние монолитные стены рекомендуется проектировать однослойными. Наружные стены могут быть однослойными или слоистыми.

5.83. Для возведения несущих стен из монолитного бетона рекомендуется применять тяжелые бетоны класса не ниже В7,5 и легкие бетоны класса не ниже В5. В зданиях высотой четыре и менее этажей допускается в несущих стенах применять легкие бетоны класса В3,5. Для внутренних стен плотность легких бетонов должна быть не ниже 1700 кг/м 3 .

5.84. Монолитные однослойные наружные стены рекомендуется проектировать из легкого бетона плотной структуры. При межзерновой пористости бетона не более 3 % и класса бетона не ниже В3,5 в нормальной и сухой по влажности зонах допускается наружные стены проектировать без защитно-декоративного слоя. Наружные легкобетонные стены без защитно-декоративного слоя следует окрашивать гидрофобными составами.

Наружные однослойные стены рекомендуется проектировать из легких бетонов с плотностью не более 1400 кг/м 3 . При технико-экономическом обосновании в однослойных наружных стенах допускается применять легкие бетоны плотностью более 1400 кг/м 3 .

5.85. Слоистые наружные стены можно проектировать из двух или трех основных слоев. Двухслойные наружные стены могут иметь утепляющий слой с наружной или внутренней стороны. В трехслойных наружных стенах утепляющий слой располагается между бетонными слоями.

5.86. Двухслойные наружные стены с утеплителем с наружной стороны могут быть монолитными и сборно-монолитными.

Монолитные стены возводят в два этапа. На первом этапе в переставных опалубках из тяжелого бетона возводят внутренний слой стены, на втором — наружный слой из теплоизоляционного легкого монолитного бетона.

Сборно-монолитная стена состоит из внутреннего монолитного слоя, выполняемого из тяжелого бетона, и наружного слоя — из сборных элементов.

5.87. Двухслойная наружная стена с утеплением с внутренней стороны состоит из наружного монолитного бетонного слоя, внутреннего утепляющего слоя — из газобетонных блоков толщиной не более 5 см или из жестких плитных утеплителей (например, из пенополистирола) толщиной не более 3 см и внутреннего отделочного слоя (рис. 26, а).

Ограничение толщин утепляющих слоев связано с обеспечением нормального тепловлажностного режима стен.

Тяжелый бетон целесообразно применять при расчетных зимних температурах, не превышающих минус 7°С. В остальных случаях необходимо применять легкие бетоны.

Рекомендуется два варианта возведения наружных монолитных стен с утеплением с внутренней стороны:

сначала на внутреннем щите опалубки укладывают слой утеплителя, затем опалубку собирают и бетонируют слой из монолитного бетона. При этом можно применять некалиброванные по толщине плиты утеплителя;

плиты утеплителя устанавливают после бетонирования стен.

При этом необходимо применять калиброванные по толщине плиты утеплителя.

При проектировании двухслойных стен с утеплителем с внутренней стороны следует учитывать, что возведение таких стен проще, чем стен с утеплителем с наружной стороны, но их применение ограничивается условием отсутствия точки росы в пределах толщины утепляющего слоя.

5.88. Трехслойные наружные стены рекомендуется проектировать сборно-монолитными, состоящими из внутреннего несущего слоя монолитного тяжелого бетона и утепленной сборной панели-скорлупы, устанавливаемой с наружной стороны. Панель-скорлупу можно устанавливать до и после возведения монолитной части стены (рис. 26, б).

Допускается трехслойные наружные стены проектировать с наружными и внутренними слоями из монолитного бетона и утепляющим слоем из жестких плитных утеплителей (рис. 26, в).

Рис. 26. Наружные стены монолитных зданий

а — двухслойная; б — трехслойная с наружным слоем из сборной панели скорлупы; в — то же, с внешними слоями из монолитного бетона

1 — блочная опалубка; 2 — панель-скорлупа; 3 — монолитный бетон стены; 4 — рабочие подмостки; 5 — крепежная система панели-скорлупы; 6 — утеплитель; 7 — связь; 8 — щиты опалубки; 9 — бадья; 10 — рассекатель; 11 — бетон

5.89. Конструктивное армирование стен следует предусматривать двух типов в зависимости от напряженного состояния стены:

если от расчетных нагрузок в сечении стены возникают растягивающие напряжения или в полностью сжатом сечении стены минимальные сжимающие напряжения в бетоне s £ 1 МПа (10 кгс/см 2 ), то конструктивное армирование рекомендуется принимать по всему полю стены, при этом количество вертикальной и горизонтальной арматуры должно быть не менее 0,025 % соответствующего поперечного сечения стены;

в остальных случаях конструктивную арматуру устанавливают только по контуру стены, а в пересечениях несущих стен, в местах резкого изменения толщин стен, у граней дверных и оконных проемов и у граней отверстий устанавливают вертикальную арматуру площадью сечения не менее 1 см 3 .

Вертикальную конструктивную арматуру рекомендуется проектировать в виде гнутых (Г-образных) каркасов.

Стыкование вертикальных каркасов по высоте здания рекомендуется производить в уровне перекрытий внахлестку без сварки. Величина перепуска определяется расчетом. При конструктивном армировании стен величина перепуска принимается не менее 200 мм независимо от диаметра вертикальной арматуры. При сборных перекрытиях стыкование арматурных каркасов рекомендуется производить сдельными стержнями, устанавливаемыми между торцами плит перекрытий.

Роль горизонтальной конструктивной арматуры в случае применения неразрезных монолитных, а также сборных и сборно-монолитных перекрытий, опертых по контуру или трем сторонам, выполняет конструктивная арматура в перекрытиях, расположенная параллельно стенам. В случае применения сборных балочных перекрытий рекомендуется устанавливать дополнительную горизонтальную арматуру в местах сопряжения их с монолитными стенами.

5.90. Расчетное армирование стен из монолитного бетона на внецентренное сжатие из плоскости рекомендуется выполнять арматурными блоками, собираемыми из Г-образных каркасов на строительной площадке. Следует предусматривать дифференцированное расчетное армирование по высоте здания в соответствии с изменением усилий в конструкциях.

Уменьшение расчетного армирования по высоте здания следует осуществлять за счет более редкого расположения вертикальных каркасов и (или) уменьшения диаметра вертикальных стержней.

5.91. Повышение трещиностойкости монолитных стен (ограничение по трещинообразованию или ширине раскрытия трещин) может быть достигнуто за счет выбора рациональных конструктивных систем и конструктивно-технологического решения стен; рационального применения материалов в наружных и внутренних стенах в соответствии с указаниями пп. 5.92-5.93.

5.92. Для предотвращения образования сквозных вертикальных температурно-усадочных трещин рекомендуется назначать отношение длины стены к высоте этажа не более двух.

В случае, если длина стены превышает вдвое высоту этажа, то в глухих участках стен рекомендуется устраивать вертикальные технологические швы.

5.93. Для ограничения раскрытия наклонных трещин во внутренних стенах верхних этажей зданий перекрестно-стеновой конструктивной системы с несущими наружными стенами разность D перемещений сопрягаемых участков наружной и внутренней стен не должны превышать величин, приведенных в табл. 7.

Устройство железобетонных монолитных конструкций

Монолитные железобетонные конструкции были впервые применены в России в 1802 году. В качестве материала для армирования использовались металлические стержни. Первым строением, созданным с использованием данной технологии, стал Царскосельский дворец.

Монолитные железобетонные конструкции часто применяются при производстве таких изделий, как:

Железобетонные монолитные конструкции позволяют строить здания любой сложности и конфигурации. К тому же эта технология не ограничивается заводскими стандартами. Конструктор имеет невероятно широкое поле для творчества.

Зачем необходимо армирование?

Безусловно, бетон имеет множество преимуществ. Он обладает большой прочностью и спокойно переносит перепады температур. Даже вода и мороз не могут ему повредить. Тем не менее его сопротивление растяжениям находится на крайне низком уровне. Здесь в игру вступает арматура. Она позволяет добиться повышенной прочности ЖМК и сократить расход бетона.

В теории в качестве материала для армирования можно использовать всё что угодно, даже стебли бамбука. На практике же применяется всего два вещества: композит и сталь. В первом случае — это целый комплекс материалов. В основе изделия могут лежать базальтовые или углеродные волокна. Они заливаются полимером. Композитная арматура имеет небольшой вес и не поддаётся коррозии.

Сталь имеет несравнимо большую механическую прочность, к тому же её стоимость относительно невелика. В процессе армирования железобетонных монолитных конструкций используются:

  • уголки,
  • швеллеры,
  • двутавровые балки,
  • гладкие и рифленые стержни.

При создании сложных строительных объектов в основе монолитной железобетонной конструкции укладываются металлические сетки.

Строительная арматура может иметь разную форму. Но в продаже чаще всего можно найти только стержневую. Рифлёные стальные стержни чаще всего используются при строительстве малоэтажных зданий. Низкая цена и хорошее сцепление с бетоном делают их очень привлекательными для потенциальных покупателей.

Стальные стержни, используемые при создании железобетонных монолитных конструкций, в большинстве случаев имеют толщину от 12 до 16 миллиметров. Они отлично защищают структуру от разрывов. Нагрузку, создаваемую при сжатии, компенсирует сам бетон.

Особенности армирования в зависимости от типа устройства фундамента

Когда закладывается фундамент дома очень важно соблюдать правила армирования монолитных железобетонных конструкций. Это позволит избежать множества дефектов и гарантирует долгий срок эксплуатации объекта. Согласно устройству железобетонных монолитных конструкций выделяют три типа фундамента.

Плитный фундамент

При его армировании применяется стержневая рифлёная арматура. Толщина железобетонной монолитной конструкции (плиты фундамента) зависит от количества этажей и материала, используемого при строительстве. Стандартный показатель 15—30 сантиметров.

Качественное армирование плитного фундамента должно иметь два слоя. Нижняя и верхняя решётки соединяются посредством подпорок. Они формируют зазор нужного размера.

Главным отличием профессионального армирования железобетонных монолитных конструкций — является полное сокрытие всех элементов стального каркаса. При этом в плиточном фундаменте арматура не сваривается между собой, а вяжется посредством проволоки.

Ленточный фундамент

Устройство данной железобетонной монолитной конструкции состоит из решётки, которая размещается в верхней части и берёт на себе все нагрузки, связанные с растяжением.

Сваривать элементы каркаса крайне не рекомендуется — это уменьшит его прочность. При этом слой бетона, разделяющий стальные элементы и грунт должен быть не менее пяти сантиметров. Это защитит металл от коррозии.

В железобетонной монолитной конструкции очень важно соблюдать правильную дистанцию между продольными стержнями. Граничный показатель — 400 миллиметров. Поперечные элементы используются тогда, когда высота каркаса превышает 150 мм.

Дистанция между соседними стержнями в железобетонной монолитной конструкции не может превышать 25 миллиметров. Углы и соединения дополнительно усиливаются. Это позволяет придать фундаменту большую прочность.

Свайный фундамент

Данная технология используется при возведении строения на пучинистых грунтах. Оптимальная дистанция от ростверка до грунта 100—200 мм. Зазор позволяет создать воздушную подушку, что положительно влияет на утеплённость всего дома. К тому же воздушная подушка позволяет избежать образования на первом этаже сырости.

При создании свай используется бетон марки М300 и выше. Предварительно бурятся скважины, в которые вкладывается рубероид. Он также служит опалубкой. Каркас из арматуры опускается внутрь каждого отверстия.

Конструкция каркаса состоит из продольной рифленой арматуры. Сечение стержней от 12 до 14 мм. Крепление осуществляется посредством проволоки. Минимальный диаметр сваи — 250 мм.

Стены и перекрытия

Эти элементы также требуют особых правил армирования. В принципе они сходны с нормами создания фундаментов, но есть некоторые отличия:

  1. Минимальный продольный диаметры арматуры в стене — 8 мм, максимальный шаг в длину 20 сантиметров, поперечный — 35 см. Сечение поперечной арматуры не менее 25% от сечения продольной.
  2. Перекрытия. Диаметр арматуры определяется расчётными нагрузками. Минимальный показатель восемь миллиметров. Дистанция между стержнями не больше 20 мм.
  3. При создании как стен, так и перекрытий допускается использование сетки.

Нормы армирования для стен и перекрытий отличаются из-за разной степени нагрузок, которые испытывают эти железобетонные монолитные конструкции.

Главное правило армирования

Прочность всей железобетонной монолитной конструкции зависит от связи бетона и арматуры. Необходимо чтобы бетон передавал часть нагрузки стальной арматуре без потери энергии.

Главное правило армирования гласит, что в железобетонной монолитной конструкции не должно быть нарушения связи. Максимально допустимое значение данного параметра — 0,12 миллиметра. Надёжное соединение бетона и арматуры — гарантия прочности и долговечности всего здания.

Проектирование

Что такое проектирование?

Проектирование железобетонных монолитных конструкций — это создание чертежей на основе собранных геодезических данных, имеющихся материалов и предназначения здания. Несущую систему монолитного каркасного здания составляют перекрытия, фундамент и колонны.

Задача конструктора правильно рассчитать нагрузки на все элементы и составить оптимальный проект с учётом особенностей грунтов и климатических условий. Сам процесс создания железобетонных монолитных конструкций включает в себя:

  • компоновку;
  • расчёт конструирования второстепенной балки;
  • расчёт нагрузок;
  • расчет перекрытий по предельным состояниям первой и второй группы.

Для упрощения математических расчётов используется специальное программное обеспечение, к примеру, AutoCAD.

Проектировка и расчёт согласно СНиПам

По факту пособие по проектированию монолитных железобетонных конструкций — это и есть СНиП. Это некий свод правил и норм, который содержит стандарты строительства жилых и нежилых зданий на территории РФ. Этот документ динамически обновляется в зависимости от изменений технологий строительства и подходов к безопасности.

СП по монолитным железобетонным конструкциям разрабатывался ведущими учёными и инженерами. СНиП 52-103-2007 касается ЖМК, сделанных на основе тяжелого бетона без предварительного напряжения арматуры. Согласно данному документу различают такие типы несущих элементов:

При использовании железобетонных монолитных конструкций допускается проектировка этажей в разной конструктивной системе несущих элементов.

При расчёте параметров несущих элементов согласно СНиПам учитывается:

  1. Определение усилия, действующего на фундамент, перекрытия и другие элементы конструкции.
  2. Амплитуда вибраций перекрытий верхних этажей.
  3. Расчёт устойчивости формы.
  4. Оценка сопротивляемости процессу разрушения и несущей способности здания.

Данный анализ позволяет не только определить параметры железобетонных монолитных конструкций, но и узнать срок эксплуатации здания.

Особое внимание при проектировании уделяется несущей железобетонной монолитной конструкции. При этом учитываются такие параметры:

  1. Возможность и скорость образования трещин.
  2. Температурно-усадочные деформации бетона при затвердевании.
  3. Прочность ЖМК при снятии опалубки.

Если правильно произвести все расчёты, то созданное изделие прослужит десятки лет даже в самых экстремальных условиях.

Когда рассчитываются параметры несущих ЖМК используются линейные и нелинейные жёсткости железобетонных элементов. Вторые назначают для сплошных упругих тел. Нелинейная жёсткость вычисляется по поперечному сечению. При этом очень важно учитывать возможность образования трещин и других деформаций.

Порядок выполнения строительных работ с ЖМК

Каждая строительная компания старается достичь наилучшей организации производственного процесса. Для этого используются СНиПы и международные стандарты. Тем не менее существует сложившийся порядок работ, который позволяет гарантировать максимальное качество будущей постройки:

  1. Вначале осуществляется расчёт по четырём основным видам нагрузки: постоянная, временная, кратковременная, особая. К примеру, при создании фундамента для агрегатов, создающих сильные вибрации, используются исключительно железобетонные монолитные конструкции.
  2. Геодезическая разведка, составление плана, а также анализ общих показателей.
  3. Определение точек возводимого строения.
  4. Армирование конструкций. Оно бывает двух типов: предварительно напряжённое и обычное.
  5. Монтаж опалубки. Опалубка позволяет создать необходимую форму для будущей железобетонной конструкции. При этом она может классифицироваться по разборности, материалу, назначению и конструкции.
  6. Бетонирование. Есть четыре основных способа заливки бетона: с лотка миксера прямо на опалубку; посредством автобетононасоса; через желоб; при помощи колокола. Для уплотнения бетона применяют вибратор.

Очень важную часть в создании прочной и надёжной железобетонной монолитной конструкции играет уход за бетоном. Всё дело в том, что этот материал может застыть только при определённых условиях. Обычно полное затвердевание бетона занимает около 15—28 суток, если не используются специальные сорта цемента. Чтобы предотвратить испарение влаги в жаркое время года ЖМК поливают водой.

Как проходит монтаж?

Данная технология позволяет экономить на материалах, ведь именно компания застройщик определяет целесообразность использования тех или иных элементов конструкции. Монтаж железобетонных монолитных конструкций проходит прямо на строительной площадке и состоит из таких этапов:

  1. На площадку укладывается материал для армирования. Важно соблюдать нормативные расстояния между элементами каркаса. Это гарантирует равномерность растекания бетона.
  2. Заливается бетон. На этом этапе необходимо следить, чтобы в смесь не попали масляные вещества. Они препятствуют связыванию бетона.
  3. При необходимости устанавливается дополнительное оборудование, ускоряющее сушку.

Железобетонные монолитные конструкции позволяют создавать кривые линии, что делает общую архитектуру здания в разы богаче и насыщеннее.

Итоги

Железобетонные монолитные конструкции позволяют строить здания в минимальные сроки, используя современные сорта бетона. Важным этапом строительства является проектирование. Именно правильные расчёты позволяют создать прочную постройку с длительным сроком эксплуатации.

Железобетонные монолитные конструкции используются как в промышленном строительстве, так и жилищном. Сравнительно небольшая стоимость и прочность делают их незаменимыми в производственных цехах и при возведении многоэтажных зданий.

Армирование железобетонных конструкций: минимальный и максимальный процент усиления. Защитный слой бетона

Самостоятельное строительство уже давно перестало быть чем-то из ряда вон выходящим: при наличии необходимых знаний, навыков и помощников – это вполне осуществимо. Строительные работы редко обходятся без заливки бетона, который в большинстве своем, должен содержать в себе определенное количество армирующих элементов. Надежность и долговечность бетонного объекта может гарантировать только армирование железобетонных конструкций по ГОСТу.

Конечно, самостоятельная заливка железобетонных объектов под строительство многоэтажного дома или другого подобного сооружения не представляется возможным, так как такие масштабы требуют промышленного подхода. В данном случае мы рассмотрим лишь случаи, которые могут возникнуть в частной практике, где вы вполне можно обойтись своими силами.

Усиление фундамента под силу выполнить своими руками

В данной статье будут приведены правила армирования железобетонных конструкций, которые применяются в частном строительстве.

Армирование бетона

Заливка монолитной плиты с усилительным каркасом: фото

Армирование необходимо для повышения прочностного потенциала бетона – железобетон во много раз превосходит обыкновенный аналог по прочности на излом. Повышенную надежность обеспечивает металлический каркас, сваренный из арматуры, который располагается в толще бетона. Он играет роль скелета, который многократно усиливает выносливость объекта (узнайте здесь, как происходит армирование газобетона).

В современном строительстве применение железобетона является стандартом де-факто, несмотря на то, что его цена на порядок выше обычного аналога. Однако наличие арматуры не превращают бетон в железобетон. Иногда в опалубку просто погружаются сваренный наугад каркас, который затем заливается раствором – некоторые строители по ошибке могут назвать это железобетоном, но это заявление ошибочно.

Минимальный процент усиления

Чтобы превратить обычный бетон в железобетон, недостаточно просто заложить в него металлический каркас. Существует такое понятие как минимальный процент армирования железобетонных конструкций, посредством которого определяется степень перехода одного состояния в другое. Если процент вхождения металлических элементов окажется меньше необходимого, то данное изделие относится к бетонным наименованиям.

Обратите внимание! Данный раздел основывается на пункте 5.16 СНиП 2.03.01-84 “Бетонные и железобетонные конструкции”

Готовый каркас и металлического прута

Если количество металлических составляющих будет меньше необходимого, то такой тип усиления считается конструкционным укреплением – при этом изделие не становится железобетоном.

Минимальный процент усиления объекта продольной арматурой рассчитывается исходя из площади сечения бетонного элемента.

  • Во внецентренно растянутых и изгибаемых объектах, в том случае если продольная сила располагается вне пределов рабочей высоты сечения, усиление должно составлять не менее 0,05% (арматура S) от площади сечения бетонного элемента;
  • Во внецентренно растянутых объектах, где продольная сила располагается между арматурами S и S”, усиление должно составлять не менее 0,06% (арматура S и S”) от площади сечения бетонного элемента;
  • Во внецентренно сжатых объектах минимальный процент вхождения металлических элементов составляет от 0,1 до 0,25% (арматура S и S”).

Обратите внимание! Если продольное усиление располагается по контуру сечения (равномерно), то площадь сечения арматуры должна составлять вдвое больше указанных величин. Это также относится к центрально-растянутым объектам.

Максимальный процент усиления

Сборка каркаса перед заливкой

В бетонных работах инструкция – «чем больше, тем лучше» – неуместна.

Чрезмерное количество металлических составляющих существенно ухудшит технические характеристики изделия.

Как и в предыдущем случае, здесь также имеются нормативы.

  • Независимо от класса бетона и усилительных элементов, наибольший процент вхождения арматуры в сечение изделия не должен превышать 5% в случае с колоннами и 4% во всех остальных случаях. При этом бетонный раствор должен эффективно просачиваться между деталями усилительного каркаса;

Обратите внимание! В обоих случаях, в качестве усилительных элементов подразумевается горячекатаная сталь для армирования железобетонных конструкций.

Защитный слой бетона

Схема Ж/б в разрезе

Усилительный каркас должен покрываться защитным слоем бетона, который обеспечивает совместную работу бетона и металлического скелета. Также он защищает металл от коррозии и воздействия окружающей среды (см.также статью «Защита бетона от влаги: способы и применяемые материалы»).

Толщина слоя над металлическим каркасом составляющими должна составлять.

В стенках и плитах (толщиной мм) не менее:

  • Свыше 100 мм – 15 мм;
  • До 100 мм и включительно – 10 мм;

В ребрах и балках:

  • Свыше 250 мм – 20 мм;
  • До 250 и включительно – 15 мм;

В фундаментных балках:

Обратите внимание! Если защитный слой будет иметь большее значение, то для дополнительного укрепления используется проволока для армирования железобетонных конструкций, которая перекроет излишек.

Укрепление лестничного пролета

  • Монолитных с цементной подушкой – 35 мм;
  • Сборных – 30 мм
  • Монолитных без цементной подушки – 70 мм;

Обратите внимание! Данный раздел составлен в соответствии с пунктом 5.5 СНиП 2.03.01-84 “Бетонные и железобетонные конструкции”

Также следует отметить, что алмазное бурение отверстий в бетоне или резка железобетона алмазными кругами должна учитывать расположение и структуру усилительного каркаса. Отделение частей или сквозные отверстия могут существенно снизить потенциал прочности объекта. Если же речь идет о полном демонтаже объекта, то данное обстоятельство учитывать нет необходимости.

Соблюдение норм и стандартов будет надежной гарантией долговечности и надежности железобетонных конструкций. Более подробную информацию по данной теме вы можете получить посредством просмотра видео в этой статье (узнайте также как осуществляется прогрев бетона сварочным аппаратом).

Грамотное армирование монолитной ж/б плиты

Коровин Сергей Дмитриевич

Магистр архитектуры, закончил Самарский Государственный Архитектурно-Строительный Университет. 11 лет опыта в сфере проектирования и строительства.

Армирование монолитной плиты — это сложная и ответственная задача. Конструктивный элемент воспринимает серьезные изгибающие нагрузки, с которыми бетону не справится. По этой причине при заливке монтируют арматурные каркасы, которые усиливают плиту и не дают ей разрушаться под нагрузкой.

Как правильно армировать конструкцию? При выполнении задачи нужно соблюдать несколько правил. При строительстве частного дома обычно не разрабатывают подробный рабочий проект и не делают сложных расчетов. Из-за небольших нагрузок считаю, что достаточно соблюсти минимальные требования, которые представлены в нормативных документах. Также опытные строители могут заложить арматуру по примеру уже сделанных объектов.

Плита в здании может быть двух типов:

В общем случае армирование плиты перекрытия и фундаментной не имеет критических отличий. Но важно знать, что в первом случае потребуются стержни большего диаметра. Это вызвано тем, что под элементом фундамента есть упругое основание — земля, которое берет на себя часть нагрузок. А вот схема армирования плиты перекрытия не предполагает дополнительного усиления.

Армирование фундаментной плиты

Арматура в фундамент в этом случае укладывается неравномерно. Необходимо усилить конструкцию в местах наибольшего продавливания. Если толщина элемента не превышает 150 мм, то армирование для монолитной плиты фундамента выполняется одной сеткой. Такое бывает при строительстве небольших сооружений. Также тонкие плиты используются под крыльца.

Для жилого дома толщина фундамента обычно составляет 200—300 мм. Точное значение зависит от характеристик грунта и массы здания. В этом случае арматурные сетки укладываются в два слоя друг над другом. При монтаже каркасов необходимо соблюдать защитный слой бетона. Он позволяет предотвратить коррозию металла. При возведении фундаментов величина защитного слоя принимается равной 40 мм.

Диаметр армирования

Перед тем как вязать арматуру для фундамента, потребуется подобрать ее сечение. Рабочий стержни в плите располагаются перпендикулярно в обоих направлениях. Для соединения верхнего и нижнего ряда используют вертикальные хомуты. Общее сечение всех прутов в одном направлении должно составлять не менее 0,3% от площади сечения плиты в этом же направлении.

Пример армирования

Если сторона фундамента не превышает 3 м, то минимально допустимый диаметр рабочих прутов назначается равным 10 мм. Во всех остальных случаях он составляет 12 мм. Максимально допустимое сечение — 40 мм. На практике чаще всего используют стержни от 12 до 16 мм.

Перед закупкой материалов рекомендуется посчитать массу необходимой арматуры для каждого диаметра. К полученному значению прибавляют примерно 5 % на неучтенные расходы.

Укладка металла по основной ширине

Схемы армирования монолитной плиты фундамента по основной ширине предполагают постоянные размеры ячейки. Шаг прутьев принимается одинаковым независимо от расположения в плите и направления. Обычно он находится в пределах 200—400 мм. Чем тяжелее здание, тем чаще армируют монолитную плиту. Для кирпичного дома рекомендуется назначать расстояние 200 мм, для деревянного или каркасного можно взять большее значение шага. При этом важно помнить, что расстояние между параллельными прутами не может превышать толщину фундамента более чем в полтора раза.

Обычно и для верхнего, и для нижнего армирования используют одинаковые элементы. Но если есть необходимость уложить пруты разного диаметра, то те, которые имеют большее сечение укладывают снизу. Такое армирование плиты фундамента позволяет усилить конструкцию в нижней части. Именно там возникают наибольшие изгибающие силы.

Основные армирующие элементы

С торцов вязка арматуры для фундамента предполагает укладку П-образных стержней. Они необходимы для того, чтобы связать в одну систему верхнюю и нижнюю часть армирования. Также они предотвращают разрушение конструкции из-за крутящих моментов.

Зоны продавливания

Связанный каркас должен учитывать места, в которых изгиб ощущается больше всего. В жилом доме зонами продавливания будут участки, в которых опираются стены. Укладка металла в этой области осуществляется с меньшим шагом. Это значит, что потребуется больше прутов.

Например, если для основной ширины фундамента использован шаг 200 мм, то для зон продавливания рекомендуется уменьшить это значение до 100 мм.
При необходимости каркас плиты можно связать с каркасом монолитной стены подвала. Для этого на этапе возведения фундамента предусматривают выпуски металлических стержней.

Армирование монолитной плиты перекрытия

Расчет арматуры для плиты перекрытия в частном строительстве выполняется редко. Это достаточно сложная процедура, выполнить которую сможет не каждый инженер. Чтобы заармировать плиту перекрытия, нужно учесть ее конструкцию. Она бывает следующих типов:

Последний вариант рекомендуется при выполнении работ самостоятельно. В этом случае нет необходимости устанавливать опалубку. Кроме того, за счет использования металлического листа повышается несущая способность конструкции. Самая низкая вероятность ошибок достигается при изготовлении перекрытия по профлисту. Стоит отметить, что оно является одним из вариантов ребристой плиты.

Перекрытие с ребрами залить непрофессионалу может быть проблематично. Но такой вариант позволяет существенно сократить расход бетона. Конструкция в этом случае подразумевает наличие усиленных ребер и участков между ними.

Еще одни вариант — изготовит сплошную плиту перекрытия. В этом случае армирование и технология похожи на процесс изготовления плитного фундамента. Основное отличие — класс используемого бетона. Для монолитного перекрытия он не может быть ниже В25.

Стоит рассмотреть несколько вариантов армирования.

Перекрытие по профлисту

В этом случае рекомендуется взять профилированный лист марки Н-60 или Н-75. Они обладают хорошей несущей способностью. Материал монтируется так, чтобы при заливке образовались ребра, обращенные вниз. Далее проектируется монолитная плита перекрытия, армирование состоит из двух частей:

  • рабочие стержни в ребрах;
  • сетка в верхней части.

Наиболее распространенный вариант, когда в ребрах устанавливают по одному стержню диаметром 12 или 14 мм. Для монтажа прутов подойдут инвентарные пластиковые фиксаторы. Если нужно перекрыть большой пролет, в ребро может устанавливаться каркас из двух стержней, которые связаны между собой вертикальным хомутом.

В верхней части плиты обычно укладывается противоусадочная сетка. Для ее изготовления используют элементы диаметром 5 мм. Размеры ячейки принимаются 100х100 мм.

Сплошная плита

Толщина перекрытия чаще всего принимается равной 200 мм. Армирующий каркас в этом случае включает в себя две сетки, расположенные друг над другом. Такие сетки нужно связать из стержней диаметром 10 мм. В середине пролета устанавливают дополнительные пруты усиливающей арматуры в нижней части. Длина такого элемента назначается 400 мм или более. Шаг дополнительных прутов принимают таким же, как шаг основных.

В местах опирания нужно тоже предусмотреть дополнительное армирование. Но располагают его в верхней части. Также по торцам плиты нужны П-образные хомуты, такие же как в фундаментной плите.

Пример армирования плиты перекрытия

Расчет армирования плиты перекрытия по весу для каждого диаметра стоит выполнить до закупки материала. Это позволит избежать перерасхода средств. К полученной цифре прибавляют запас на неучтенные расходы, примерно 5%.

Вязка арматуры монолитной плиты

Для соединения элементов каркаса между собой пользуются двумя способами: сварка и связывание. Лучше вязать арматуру для монолитной плиты, поскольку сварка в условиях строительной площадки может привести к ослаблению конструкции.

Для выполнения работ используют отожженную проволоку, диаметром от 1 до 1,4 мм. Длину заготовок обычно принимают равной 20 см. Существует два типа инструмента для вязания каркасов:

Второй вариант существенно ускорят процесс, снижает трудоемкость. Но для возведения дома своими руками большую популярность получил крючок. Для выполнения задачи рекомендуется заранее подготовить специальный шаблон по типу верстака. В качестве заготовки используют деревянную доску шириной от 30 до 50 мм и длинной до 3 м. На ней делают отверстия и углубления, которые соответствуют необходимому расположению арматурных прутов.

Оценка статьи:

Загрузка... Сохранить себе в: Армирование монолитных стен СНИП Ссылка на основную публикацию wpDiscuzAdblock
detector

монолитных из бетона и кирпичных, чертежи. Через сколько рядов армировать стены из газоблоков?

Бетон – стройматериал, востребованность которого очень высока. Он используется в создании фундамента, строительстве разного рода несущих и ограждающих конструкций, а также стен. Из него же делают плитку, что впоследствии станет отделкой. Именно прочность раствора при застывании обеспечивает такой большой спрос на бетон. Армирование бетонных стен – процесс обязательный и требующий учета всех деталей технологии. Но армировать приходится и стеновые панели жилых (и не только) зданий, и стены из газоблоков, кирпича и т. д. Следует разобраться, нужны ли для армирования чертежи и проекты, и как это может происходить в принципе.

Особенности

Бетон сам по себе является прочным материалом, но усиливать его все равно нужно. Говоря просто, крепким бетонный блок является только на сжатие, а любое растяжение может обусловить его деформацию.

Что может случиться с бетонной стеной:

  • естественная усадка;
  • изменение вследствие пучения грунта;
  • работы по надстройке.

Технологически грамотное армирование с последующей бетонной заливкой решает ряд стратегических задач. К примеру, увеличивается прочность даже самой сложной конструкции (например, эркера либо полукруглых ступеней с их непростыми лекальными формами). Бетонные элементы постройки не так восприимчивы к термоскачкам после армирования стен.

Срок использования строения вырастает, а усиление прочности повышает возможные механические нагрузки на несущие конструкции.

А теперь к вопросу о сути самого армирования. Так называют внутреннее усиление блока, берутся для этого разные материалы: волокна либо прутки, фибра, композиты. Чтобы грамотно произвести армирование, помимо материалов потребуются раствор для заливки, инструменты для соединения каркасных элементов, опалубка, инструменты для трамбования состава.

Можно перечислить случаи, когда армировать стены точно необходимо.

  1. Трещины внешней стены. Объемы крупных трещин после армирования уменьшаются, а если трещины некрупные, то от них вовсе может не остаться и следа. Как профилактика появления трещин армирование также оптимальная мера.
  2. Неровности на стене. Большие перепады высоты плоскости нуждаются в маскировке, чтобы это сделать, нужно наложить толстый штукатурный слой. А ведь застывшая штукатурка тяжела сама по себе, и пласт без армирования может осыпаться или даже вздуться.
  3. Слишком гладкая стена. И такое случается – армирование поможет увеличить плотность прилегания раствора к стене.

Строительные работы осуществляются по четким стандартам (СНиП и не только). Так, существует целый ряд требований по конструктивному армированию стен, которые определяют их металлоемкость и другие показатели.

Арматура может быть расчетной и конструктивной, и все эти термины должны хотя бы базово пониматься людьми, которые ведут ремонт без привлечения профессионалов. Но с последними, конечно, все пройдет более успешно.

Основные способы

Вне зависимости от того, какой усиливающий материал будет применен, технологии процесса усиления могут быть вариативны.

  • Монолитное армирование. Бывает стальным либо композитным. В частном строительстве эта технология максимально востребована. Прутья сваривают или связывают в несколько уровней, опускают в опалубку и заливают бетонным составом. Прутковый каркас будет абсолютно неподвижен, прочен.
  • Сеточное. Строительная сетка ускоряет работы по армированию. Ее делают из проволоки, которая может быть стальной либо композитной. Для усиления бетонных стяжек этот вариант довольно продуктивен. Продают сетку в двухметровых картах, ширина полотна бывает разной (как и размер ячейки).
  • Волоконное. Другое название этого способа – дисперсное армирование. В данном случае используется именно фиброволокно. В раствор фибра включается на этапе затворения. Обычно таким вариантом пользуются, если нужно упрочить тонкий слой заливки, а также если укреплять приходится конструкцию со значительной механической нагрузкой.

Как замешивать фибру в раствор, в каком количестве ее добавлять – прописано на упаковке с составом.

Используемые материалы

И в этом тоже есть выбор. Рассмотрим основные варианты.

Фиброволокно

Это материал мелкой дисперсии, который всегда добавляется на этапе замешивания. Волокно встречается разного диаметра и длины, то есть имеется возможность подобрать материал с нужными показателями. Фибру делают на основе стали, стекла, базальта, а также полипропиленовых соединений.

Композитные полимерные сетки

У такой арматуры спектр исходников очень широк. И каждый год на рынке появляется какая-то новинка с привлекательными характеристиками. Сегодня в разряд самых ходовых можно включить базальтопластиковые и стеклопластиковые прутки, имеющие спиральную накрутку. Еще варианты – полиэтилентерефталат, а также углеводородная арматура.

Пока большой востребованностью эти материалы похвастаться не могут, но за счет низкого веса это обстоятельство может измениться.

Другие

По-прежнему популярны стандартные стальные прутки с нормированной длиной 11,75 м. Стальные стержни в массе бетона «чувствуют» себя уверенно, да и оба материала отлично сливаются друг с другом благодаря рифленой поверхности прутка. Стальная арматура внутри монолита помогает перераспределить нагрузку и не дает бетону растрескаться (как известно, металл имеет отличные показатели сопротивления на разрыв). Ну а бетон, что логично, защищает металл от коррозийной атаки.

Технология

Армирование призвано усилить конструкцию стены, оставив ее прочной. И начать нужно не с пошаговых действий, а с правил, не зная которых армировать нельзя в принципе.

  • Арматуру предполагается связывать вне стен опалубки. Устанавливать каркас можно крупными частями.
  • Там, где стержни будут пересекаться, прутья предстоит связывать. Но без особой жесткости. Все же малая подвижность узла должна сохраниться, иначе при бетонном растяжении проволока внутри может порваться, в результате чего целостность каркаса будет под ударом.
  • Прутьям в каркасе следует изначально задать строгое направление: либо горизонталь, либо вертикаль. Если угол наклона прутка сместится, случится сдвиг распределения нагрузки, то есть часть стены может разрушиться.
  • Чтобы снизить риски коррозийных процессов, в бетон добавляют особые присадки.
  • Когда каркас связан и стоит в опалубке, заливается раствор. Это делается единовременно по всему объему. Залитый монолит обязательно укрывают пленкой, и он остается нетронутым до полного застывания. Чтобы бетон не растрескался, первые дней 8-10 его увлажняют.

Теперь приведем пошаговую схему армирования подвальных стен.

  1. Приобретается проволока, диаметр которой 3 мм. Проще купить сетку в виде рулона.
  2. Готовится инструмент – кусачек вполне может быть достаточно, смотря, какие объемы работ. Но если найдется пистолет для вязки арматуры, это значительно ускорит рабочий процесс.
  3. Производятся расчеты (с чертежами, проектами), чтобы понять, какой будет толщина стен, учитывается, например, уровень залегания грунтовых вод. Так, если грунтовые воды от основания далеки, толщена стен подвала будет в пределах 20-40 см.
  4. Далее следует очистить опалубку, затем можно приступать к изготовлению сетки для армирования. Ячейки меньше 5 см недопустимы, ведь при заливке смеси в таком варианте могут образоваться пустоты.
  5. Арматурная сетка укладывается в опалубку. Если делать армирование в два слоя, в прочности стены можно будет не сомневаться. А соединить оба слоя сетки можно в шахматном порядке, через две ячейки. Соединение происходит проволокой того же диаметра. Арматура и ее элементы – это очень важно – не должны соприкасаться с опалубкой.
  6. Осталось проверить, правильно ли смонтирована арматура. Например, выверить ее строгую вертикальность с учетом допустимого отклонения не больше 2 мм.
  7. Наконец, заливается бетон, засыпается почва рядом со стенами.

Другая задача стоит перед строителем, если армировать приходится кирпичную кладку. Конструктивное решение армирования стенки из кирпича предполагает два варианта.

  • Первый – продольное армирование. Так сетку монтируют нечасто, делают это, когда кладут ограждающие конструкции и всяческие перегородки. Элементы армирующего слоя могут находиться с наружной либо внутренней стороны стены.
  • Второй – поперечное армирование. Наружные стены, колонны, перегородки в подвале, погребе и не только – вот когда используется данный вариант. Строители обычно отдают предпочтение просечным и вытяжным сеткам, как наиболее комфортным в работе. Можно использовать зизгагообразную сетку, которая укладывается в соседних рядах перпендикулярно.

И еще несколько советов по армированию уже железобетонных стен. Каркас арматуры в этой ситуации требует двухслойности, что не дает развиться стеновому изгибу под действием нагрузки. Нагрузки на сжатие являются основными, а значит, минимальная толщина арматуры должна быть 8 мм. И если строительство ведется малоэтажное, такой сетки достаточно.

Продольная арматура предполагает интервал в 20 см, а поперечная – в 35 см.

      Для отделки готовых стен используются штукатурные сетки. Такие нужны, чтобы риск появления трещин свелся к нулю. Но и хорошее сцепление штукатурки со стеной – это тоже неплохой бонус армирования. Делать это необходимо, если толщина штукатурного слоя больше 2 см. Но даже если толщина меньше, армировать придется, если стены штукатурят до полной усадки дома.

      И это только часть большой темы армирования, которое может быть Т-образным, затрагивать стыки двух видов материала, касаться стен возле проемов, наконец, со стен переходить в необходимость усиления стяжки пола. Перед работой, даже если она будет осуществляться руками рабочих, имеет смысл хотя бы немного узнать об особенностях процесса, чтобы увереннее его контролировать.

      Об особенностях монтажа арматурного каркаса смотрите далее.

      проектирование, маркировка и этапы строительства

      Монолитный железобетонный фундамент на сегодняшний день является наиболее распространенным решением при строительстве частных домов. За многие десятилетия эксплуатации он хорошо зарекомендовал себя, так как достаточно прост в устройстве, не требует использования специального оборудования и особо сложных устройств.

      Технологии

      Чтобы конструкция была прочной и надежной, необходимо соблюдать технологию.Он предусматривает создание проекта фундамента, рытье траншей, установку опалубки, укладку арматуры и работы по гидроизоляции. В основном ленточный фундамент представляет собой монолитную полосу из бетонного раствора, на которой возводятся несущие стены дома. Такая основа актуальна, если предлагается построить частный дом из материалов с внушительной массой, среди которых следует отметить:

      • шлакоблоков;
      • кирпич;
      • бетон;
      • камень.

      Проект фундамента можно создать для зданий, генплан которых представляет собой подвал, цокольный этаж или подземный гараж. Такую основу можно использовать и в том случае, если в доме будет мансарда или тяжелое перекрытие. Обычно такой тип строительства выбирают для регионов, где грунт преимущественно неоднородный. В целом ленточное основание подходит практически для всех типов грунтов, кроме торфяников и просадочных грунтов.

      Разновидности монолитного ленточного фундамента

      Ленточный монолитный железобетонный фундамент представлен несколькими разновидностями, которые можно классифицировать по нескольким факторам, в том числе по глубине залегания залежи.Для массивных построек из тяжелых строительных материалов применяется заглубленный фундамент, который располагается на глубине от 250 до 300 мм.

      Укладывать такой фундамент необходимо ниже уровня промерзания грунта. Еще один вид ленточного фундамента - это неглубокая конструкция, которая подходит для каркасных легких конструкций. Глубина в этом случае может равняться пределу от 550 до 600 мм.

      Подготовка материалов

      Ленточный монолитный железобетонный фундамент возводится после подготовки некоторых инструментов и материалов.Среди последних следует отметить:

      • рубероид;
      • проволока стальная;
      • арматура;
      • саморезы или гвозди;
      • щебень и песок;
      • бетон.

      Монолитный железобетонный ленточный фундамент можно заполнить самоподготовленным бетоном. Для этого потребуется цемент марки М-400 и выше. Для раствора необходимо приготовить также щебень средней фракции, песок и гравий.

      Чертеж

      Проектирование фундамента может осуществляться на основании Данных, которые диктуют глубину залегания оснований в зависимости от грунта.Например, в случае каменистого грунта глубина составляет 200 мм, а нагрузка на грунт составит 20 кН / м 2 . Эти цифры актуальны для хозяйственных построек, бань и сараев. Нагрузка увеличится до 30 кН / м. 2 , при этом глубина насыпи составит 300 мм, если это одноэтажный загородный дом с мансардой. Параметры будут составлять 50 кН / м , 2, и 500 мм соответственно, если вы планируете строительство двухэтажного коттеджа.

      Трехэтажный особняк будет иметь фундамент, углубленный на 650 мм, а нагрузка составит 70 кН / м. 2 .Если это территория с преобладанием глины или плотной глины, то глубина сваи под хозпостройку составит 300 мм. Одноэтажный дом отдыха или двухэтажный коттедж заглубляют в подвальную площадь на 350 мм и 600 мм соответственно. Трехэтажный особняк будет иметь фундамент на высоте 850 мм.

      Реализуя конструкцию фундамента, можно столкнуться с тем случаем, когда территория представляет собой мягкий песок или зольную супесю. В первом случае глубина фундамента хозпостройки составит 450 мм, во втором - 400 мм.Если планируется строительство одноэтажного дачного дома, то на мягком песке его основание следует заделать на 650 мм. Для илистого грунта в случае сарая или бани необходимо основание, которое углубляют на 650 мм. Торфяники требуют другого типа фундамента.

      Расчет нагрузки на фундамент

      Нагрузка на фундамент рассчитывается по нескольким параметрам. Для этого нужно знать площадь стен, рассчитанную путем умножения высоты постройки на периметр дома.Объем стен рассчитывается путем умножения площади на толщину. Также важно определить вес стен, умножив удельный вес материала на объем.

      Определить площадь сторон фундамента можно методом умножения периметра на толщину. Удельная нагрузка на фундамент будет равна величине, которая будет получена путем деления веса стен на площадь всех сторон фундамента.

      Ориентир

      Строя ленточный фундамент для дома, на первом этапе необходимо осуществить разметку.Участок перед его очисткой от мусора и посторонних предметов, с поверхности снимается верхний плодородный слой почвы, толщина которого равняется пределу от 120 до 150 мм.

      Если не позаботиться об удалении органических остатков, это может вызвать возникновение процессов биологического разложения, которые нежелательны для подвалов. На участке необходимо разметить углы при помощи колышков. Плавность их установки следует уточнить, проверив диагонали.При необходимости колышки можно переставить. Между ними протягивается прочный шнур, с помощью которого можно контролировать углы и определять направление подвала.

      Перед тем, как приступить к возведению ленточного фундамента для дома, для обозначения углов можно использовать подготовленные деревянные детали в виде прямоугольников. Один из них устанавливается в нужной точке и фиксируется. На него следует приклеить два шнура, взяв за основу расстояние ширины желоба за основание. Протяните шнуры до следующего места, где будет располагаться второй угол.К этому элементу прикрепляются натянутые шнуры. Это позволит разметить 4 угла.

      Если несущие стены расположены неподвижно и внутри здания, важно выполнить их разметку по той же технологии. Как только все углы обнажены, вы должны проверить диагонали квадрата или прямоугольника. Они должны быть равны, это будет свидетельствовать о правильной установке углов. Перед тем как сделать фундамент, важно разметить территорию. По ходу шнура можно сделать присыпку с сухой известью, это даст возможность понять направление ленты и выявить ошибки.После того, как внутренние стены и очертание завершены, нужно положить фундамент под террасу, веранду или крыльцо.

      Подготовка траншеи

      Если вы задались вопросом, как сделать фундамент, то необходимо вырыть траншею по размеченным линиям, углубляясь в грунт согласно проектным параметрам. Начинайте рытье котлована с нижнего угла фундамента, это обеспечит разную глубину траншеи по всей длине.

      Стены при рытье почвы следует стараться сделать вертикальными и ровными. Когда грунт проливается, в уязвимых местах устанавливают временные опоры. При работе над траншеей следует производить периодические замеры уклона и глубины. Если фундамент должен располагаться на склоне, дно траншеи должно иметь форму

      .

      Хозяйственные постройки ... - Ch5 Элементы конструкции: стены

      Хозяйственные постройки ... - Ch5 Элементы конструкции: стены
      Стены

      Содержание - Предыдущая - Следующая

      Стены можно разделить на два типа:

      a Несущие стены, которые выдерживают нагрузки от перекрытий и крыши в дополнение к их собственному весу и которые выдерживают боковое давление от ветра и, в некоторых случаях, от хранимых материалов или предметов внутри здания,

      b ненесущие стены, не несущие нагрузок на пол или крышу.Каждый тип можно разделить на внешние и закрывающие. стены и внутренние перегородки. Применяется термин разделение к стенам, несущим или ненесущим, разделяющим пространство внутри здания на комнаты.

      Стены хорошего качества обеспечивают прочность и устойчивость к погодным условиям. сопротивление, огнестойкость, теплоизоляция и звук изоляция.

      Виды стен зданий

      Есть разные способы возвести стену и много разных материалы можно использовать, но их можно разделить на четыре основных группы.

      Кладка стены, в которой стена построена из отдельных блоков из таких материалов, как кирпич, глина или бетонные блоки, или камень, обычно в горизонтальных рядах, скрепленных какой-либо формой миномет. Некоторые продукты земного происхождения, высушенные на воздухе или обожженные, имеют разумную стоимость и хорошо подходят для климата.

      Монолитная стена, в которой стена построена из материала размещаются в формах при строительстве. Традиционная земля стена и современная бетонная стена являются примерами.Земляные стены недорогие и долговечные, если их положить на хороший фундамент и защищен от дождя штукатуркой или широкими свесами кровли.

      Каркасная стена, в которой стена выполнена в виде каркаса из относительно небольшие элементы, обычно из дерева, через короткие промежутки которые вместе с облицовкой или обшивкой с одной или обеих сторон образуют несущая система. Обрезки - недорогой материал для каркасное настенное покрытие.

      Мембранная стена, в которой стена выполнена в виде сэндвича из двух тонких обшивок или листов армированного пластика, металла, асбестоцемент или другой подходящий материал, прикрепленный к сердцевине пенопласт для изготовления тонкостенных элементов высокой прочности и небольшой вес.

      Другой вид конструкции, приспособленный для каркаса или земли здания состоят из относительно легких листов, прикрепленных к лицевую сторону стены, чтобы сформировать закрытый элемент. Это обычно называют «облицовкой».

      Факторы, определяющие тип используемой стены:

      • a Материалы доступны по разумной цене.
      • b Наличие мастеров, умеющих использовать материалы в лучшем виде.
      • c Климат
      • d Использование здания - функциональные требования.

      Высота стен должна позволять людям свободно ходить и работать в помещении, не биться головой о потолок, балки и т.д. В жилых домах с потолками подходящей высоты 2,4 м. Низкие крыши или потолки в доме создают удручающую атмосферу. и, как правило, делают комнаты теплее в жаркую погоду.

      Кладка стен

      За исключением некоторых форм каменных стен, вся кладка состоит из прямоугольных блоков, собранных в горизонтальные слои называется курсами.Агрегаты закладываются на строительный раствор в определенных узоры, называемые склеиванием, чтобы распределять нагрузки и противостоять переворачивание, а в случае более толстых стен - коробление.

      Материалом для кирпичной кладки может быть глиняный или сырцовый кирпич, кирпичи из обожженной глины, грунтовые блоки (стабилизированные или нестабилизированные), бетонные блоки, каменные блоки или щебень. Блоки могут быть цельными или полый.

      Рисунок 5.18 Примеры, показывающие зачем склеивание необходимо.

      Рисунок 5.19 английский и Фламандское склеивание кирпичных стен.

      кирпичей

      В кирпичной кладке кирпичи, уложенные вдоль стены, носилки и курс, в котором они возникают, конечно растяжка. Кирпичи, уложенные по толщине стены, называется заголовками и курсом, в котором они возникают, заголовком курс.

      Кирпичи можно расположить самыми разными способами для получения удовлетворительная связь, и каждая договоренность обозначена узор из заголовков и подрамников на лицевой стороне стены.Эти рисунки различаются по внешнему виду, что приводит к характерным «текстуры» на поверхности стен, и определенная связь может быть используется для рисунка поверхности, а не для прочности свойства. Для поддержания связи необходимо в некоторых указывает на использование кирпичей, разрезанных по-разному, каждый из которых имеет техническое название согласно способу огранки.

      Простейшие договоренности, или, как их называют, `` облигации '', растягивающая облигация и заголовочная облигация.В первом случае каждый курс полностью состоит из носилок, уложенных, как показано на рисунке 5.20, и подходит только для полукирпичных стен типа перегородок, облицовки для блочные стены и листы стенок пустот. Построены более толстые стены полностью с носилками, скорее всего, изгибаются, как показано на рисунке 5.18. Заголовок обычно используется только для криволинейных стен.

      Две связки, которые чаще всего используются для стен в один кирпич и более по толщине известны как английская облигация и фламандская облигация.А «Толщина одного кирпича» равна длине кирпича. Эти Связки включают в себя как коллекторы, так и носилки в стене, которые расположены с заголовком, расположенным по центру над каждым носилком в приведенном ниже курсе, чтобы добиться связи и минимизировать прямые стыки. В обеих связях 120 кирпичей стандартного размера. требуется на метр стены 23 см. Этот показатель позволяет от 15 до 20% обрыв и швы на 1см раствора. Рисунок 5.19 иллюстрирует английский язык. и фламандские связи.

      Кирпич иногда используют при строительстве пустотелых стен поскольку воздушное пространство улучшает тепловое сопротивление и устойчивость к проникновению дождя по сравнению со сплошной стеной такая же толщина. Такая стена обычно застраивается внутренней и внешний лист в растягивающейся связке, оставляя пространство или полость 50 до 90 мм между листами. Два листа соединены металлом. стенные анкеры с интервалом 900 мм по горизонтали и 450 мм по вертикали, как показано на рисунке 5.20.

      Рисунок 5.20 Кирпичная полость стена.

      Бетонные блоки

      Большая часть процедуры строительства бетонного блока стены обсуждались под заголовком «Фундаменты». Однако следует учитывать несколько дополнительных факторов.

      Лучше всего работать с сухими, хорошо затвердевшими блоками, чтобы уменьшить усадка и растрескивание стены до минимума. Кроме quins (углы), несущие стены из бетонных блоков не следует приклеивать на стыках как в кирпичной, так и в каменной кладке.На стыках одна стена должен упираться в лицо друг друга, образуя вертикальный соединение, которое позволяет движение в стенах и, таким образом, контролирует растрескивание. Если боковая поддержка должна быть обеспечена пересекающаяся стена, эти два могут быть связаны между собой 5 мм x 30 мм металлические стяжки с разрезными концами, расположенные вертикально с интервалом около 1 200мм. Деформационные швы должны допускаться через определенные промежутки времени. не более 2 1/2 высоты стены. Два раздела стена должна быть соединена шпонками или стабилизирована перекрывающимся косяком блоки, как показано на рисунке 5.21. Стыки заделаны эластичная мастика для предотвращения попадания воды в стену.

      Рисунок 5.21 Боковая опора для стен на деформационных швах.

      Многие стены в тропиках должны пропускать свет и воздух. действуя как солнечные выключатели. Чтобы удовлетворить эту потребность, перфорированные стены популярны и разработаны в различных узорах, некоторые несущие, прочие легкой конструкции. Пустотные бетонные блоки могут использовать для этой цели с пользой.Горизонтально или вертикально плиты из железобетона (ж / б щели) могут использоваться в качестве солнцезащитные очки. Обычно они строятся под наклонным углом в чтобы получить максимальное укрытие от солнца.

      Камни

      Каменные блоки, добытые в карьерах, грубые или гладкие поверхность укладывается так же, как бетон или стабилизированный грунт блоки. Случайные каменные стены строятся из камней случайного размера. и форму по мере их нахождения или добычи из карьера.Стены с использованием ламинированные разновидности камня, которые легко раскалываются прямые грани произвольного размера называются каменными стенами прямоугольной формы.

      Рисунок 5.22 Блочные стены для вентиляция.

      В этих стенах, как и во всей кладке, продольная связь достигается за счет перекрытия камней в соседних рядах, но количество перекрытий варьируется, потому что камни различаются по размеру. поскольку стены из щебня, по сути, построены как две оболочки с Неровное пространство между прочно заполненным щебнем (мелкие камни), поперечное соединение или стяжка обеспечивается за счет использования длинные камни жатки, известные как бондеры.Они распространяются не более чем на три четверти толщины стенки, чтобы избежать прохождения влага к внутренней поверхности стены, и по крайней мере один требуется на каждый метр поверхности стены. Большие камни, разумно квадратной формы или примерно квадратной формы, используются для углов и косяки дверных и оконных проемов для получения повышенной прочности и стабильность в этих точках.

      Случайные стены из щебня могут быть построены как стены без покрытия, в которых не предпринимаются попытки выложить камни горизонтальными рядами, или он может быть доставлен на курсы, в которых камни примерно выровнены с интервалами от 300 мм до 450 мм, чтобы сформировать курсы различной длины глубина с камнями корешка и косяк.

      Грубая квадратная обработка камней дает эффект увеличения стабильность стены и повышение ее устойчивости к атмосферным воздействиям, поскольку камни плотнее ложатся друг на друга, стыки тоньше, и следовательно, в строительном растворе меньше усадка. Внешний несущие каменные стены должны быть толщиной не менее 300 мм для одноэтажные дома.

      Проемы в кладке стен

      Проемы в кирпичных стенах необходимы для дверей и окон.Ширина проема, высота стены над проемом и прочность стены по обе стороны от проема является основным расчетные факторы. Они особенно важны там, где есть много отверстий в стене, которые расположены довольно близко друг к другу.

      Опора над проемом может быть перемычкой из дерева, стали или железобетон или арка из кирпича блоки, аналогичные используемым в прилегающей стене, или такие же, как у них. Перемычки создают только вертикальные нагрузки на прилегающие участки стены и сами подвергаются изгибающим и сдвигающим нагрузкам и сжимающие нагрузки в точках их опоры.Бетонные перемычки май быть отлитым на месте или предварительно изготовленным и установленным в качестве стена построена.

      Рисунок 5.23. необработанные случайные стены из щебня.

      Арки подвергаются одинаковым изгибающим и поперечным силам, но кроме того, есть сила тяги как на арку, так и на примыкающие участки стены.

      Определить нагрузки и выбрать древесину или установить стальную перемычку или спроектировать арматуру для бетонная перемычка.Однако конструкция арки всегда предполагает предположения, а затем проверка этих предположений.

      Перемычки из дерева подходят для легких нагрузок и коротких пролеты. Давление древесины, обработанной консервантом, следует используемый.

      Стальные уголки

      подходят для небольших отверстий и Таблица 5.8. представляет информацию о размерах, пролете и нагрузке для нескольких размеров. Для больших пролетов требуется универсальное сечение 1 - балки и специальный анализ конструкции.Стальные перемычки следует защищать от коррозии. с двумя или более слоями краски.

      Таблица 5.8 Допускается Равномерно Распределенные нагрузки на стальные угловые перемычки (кг)

      Размер уголка, мм Масса Сейф нагрузка (кг) на длину пролета, (м)
      В x В x В кг / м 1 1.5 2 2,5 3
      90 х 90 х 8 10,7 1830 1200 900 710
      125 х 90 х 8 13,0 3500 2350 1760 1420 1150
      125 х 90 х 13 20.3 5530 3700 2760 2220 1850
      125 х 102 х 10 18,3 6100 4060 3050 2440 2032

      V = вертикальная ножка. H = горизонтальная полка, Th = толщина

      Железобетон - очень распространенный материал, используемый для перемычки.

      Бетонные перемычки изготавливаются из бетонной смеси 1: 2: 4 (с предел прочности 13,8 Н / мм) и обычно усилены один стальной стержень на каждые 100 мм ширины. Для достаточно коротких пролетов над дверными и оконными проемами, «выгибание» нормального хорошо склеенные кирпичи или блоки из-за перекрытия блоков могут быть приняты во внимание. Можно предположить, что перемычка будет переносите только ту часть стены, которая окружена равносторонним треугольник с перемычкой в ​​основании.Для широких пролетов угол 60 используется. Для пролетов до 3 м размеры перемычек и количество и размеры стержней арматуры, указанные в таблице 5.9, могут быть используемый. Стальные стержни должны быть покрыты бетоном толщиной 40 мм и опоры на стене должны быть предпочтительно 200 мм или не менее равной глубине перемычки. Перемычки с размахом больше чем 3м должны быть рассчитаны на конкретную ситуацию.

      Длиннопролетные перемычки из бетона можно заливать на месте в опалубку возведен во главе проема.Однако сборное железобетонное обычно применяется там, где есть подходящие подъемные приспособления или кран. доступен для подъема перемычки на место или там, где она легкая Достаточно, чтобы его поставили на место двое мужчин.

      Камень обычно используется в качестве облицовки для стали или бетона. перемычка. Если не армирован стержнями из мягкой стали или сеткой, кирпич перемычки подходят только для коротких пролетов до Im, но как камень, кирпич также используют в качестве облицовки для стального или бетонного перемычка.

      Арка - это подконструкция, используемая для перекрытия проема с компоненты меньше по размеру, чем ширина проема. Это состоит из блоков, которые взаимно поддерживают друг друга по отверстие между абатментами с каждой стороны. Он оказывает нисходящее и толчок наружу на опоры, которые должны быть достаточно сильными для обеспечения устойчивости арки.

      Стыковка и указка

      Перемычки железобетонные

      Соединение и острие - термины, используемые для данной отделки к вертикальным и горизонтальным швам в кладке, независимо от того, кирпичная, блочная или каменная стена строительство.Соединение - это отделка стыков в качестве работа продолжается. Покраска - это отделка стыков разгребание раствора на глубину примерно 20 мм и заполнение лица твердым цементным раствором, способным есть цветная добавка. Этот процесс можно применить как к новым и старые постройки. Типичные примеры соединения и заострения: приведено на рисунке 5.25.

      Рисунок 5.24 Отверстия в кладка стен.

      Размер Перемычка (мм) Пролет снизу Армирование
      H Вт м Количество стержней Размер стержней
      150 200 <2.0 2 10мм, круглый, деформированный
      200 200 2,0–2,5 2 10мм, круглый, деформированный
      200 200 2,5 - 3,0 2 16мм, круглый, деформированный
      Разрезные перемычки с нагрузкой на стену Только
      150 200 <2.0 1 штука 10мм, круглый, деформированный
      200 200 2,0–2,5 1 штука 10мм, круглый, деформированный
      200 200 2,5 -3,0 1 штука 16мм, круглый, деформированный

      Надежная опора на каждом конце, 200 мм

      Рисунок 5.25 примеров стыковка и наведение.

      Монолитные земляные стены

      Конструкция земляной стены широко используется, потому что это недорогой строительный метод и материалы обычно в изобилии доступно на месте. Потому что земляная стена - единственный тип люди могут себе позволить, стоит использовать методы, которые повысить его долговечность. Было обнаружено, что восприимчивость к дождевая эрозия и общая потеря устойчивости из-за высокой влага может быть устранена при соблюдении простых процедур при выборе площадки, строительстве и обслуживании здания.

      Земляные стены в основном подвержены влиянию:

      • эрозия из-за дождя, попадающего прямо на стены или брызгает с земли
      • насыщение нижней части стены подъемом капиллярная вода
      • землетрясение

      Для одноэтажных домов с земляными стенами, конструктивные особенности менее важны из-за обычно используемой легкой кровли. А плохо спроектированное или построенное здание с земляными стенами может треснуть или передернуть, но внезапный обвал маловероятен.Долговечность, не прочность, это основная проблема и сохранение стен сухими после строительство - основное решение. Способы стабилизации земли можно найти в главе 3.

      Ключевые факторы повышения долговечности заземленных в составе строений:

      • Выбор участка с адекватным дренажем и бесплатным дренирующая и не набухающая почва. Строительство земли здания на набухающих почвах и с ними могут привести к перекосы фундамента и стен в сезон дождей.
      • Строительство фундаментной стены из блоков или камни в цементном или грязевом растворе. Основа сводит к минимуму последствия всех видов повреждений, вызванных водой к основанию стены.
      • Стабилизация грунта, используемого для возведения стен. Стабилизированные земляные стены прочнее и устойчивее к влага, дождь и насекомые, особенно термиты. Избегайте использование чистого чернохлопкового грунта для строительства потому что он сильно сжимается при высыхании, что приводит к растрескиванию и искажение.Глинистые почвы должны быть стабилизированы известь, потому что цемент показал плохие результаты для этих почвы.
      • . Пропитка стабилизированной земляной стены водонепроницаемым покрытие.
      • Штукатурка для защиты стены от воды и насекомых.
      • Обеспечение достаточной ширины пещеры (свес крыши) для уменьшить эрозию стен. Однако ширина пещеры ограничена примерно 0,6 м или чуть больше из-за риска повреждения ветром.Включение веранд может быть полезно для защита стен.
      • Уход за стеной и защитным покрытием.
      • Обеспечение свободного испарения капиллярной влаги убирать невысокую растительность у стен здания.

      Материал грунт можно использовать по-разному для стен. строительство. Ручной - утрамбованный или машинный - уплотненный, стабилизированный почвенные блоки и высушенные на солнце глиняные (глинобитные) кирпичи используются в том же маннор, как кладка из других материалов.Пока кладка конструкции уже были описаны, следует отметить что несколько худшие прочностные свойства и долговечность почвенные блоки и сырцовые кирпичи могут сделать их менее подходящими для некоторых типы строительства, например фундаментные стены. Особая осторожность должна при проектировании абатментов перемычки, чтобы гарантировать, что несущие напряжения выдерживаются в пределах допустимых.

      Утрамбованные земляные стены

      Способ возведения монолитной земляной стены - показано на рисунке 5.26. Использование грунта, смешанного с подходящим стабилизатор при правильном соотношении увеличит прочность и прочность стены при условии, что стена должным образом вылечена. Однако самый важный фактор при построении утрамбованная земляная стена (с использованием стабилизированного или естественного грунта) возможно тщательное уплотнение каждого слоя почвы при засыпке форма. опалубка должна быть достаточно прочной, чтобы противостоять боковому силы, действующие на почву во время этой операции.Расстояние между боковыми опорами (поперечными стенами и т. д.) не должно превышать 4 м для утрамбованной земляной стены толщиной 300 мм.

      Рисунок 5.26 Построение стена из утрамбованной земли

      Обработайте фундаментную стену крышкой из песчано-цементного раствора. Поддерживается на горизонтальных кронштейнах, проходящих через стену - a плесень построена. Кронштейны, а также проведите провода выше форма действует как связка и должна вместе с остальной частью плесень быть достаточно прочной, чтобы противостоять давлению земли во время трамбовки.Засыпьте землю тонкими слоями и тщательно уплотните перед нанесением следующего слоя. После форма была заполнена, ее вынимают и кладут поверх уже готовая стена. Хотя форма имеет глубину всего от 500 до 700 мм, он будет перемещен несколько раз до достижения конечной высоты стена достигнута. Вырубка секций увеличит устойчивость стены. Достаточно большая рабочая сила, чтобы позволить несколько операций, таких как подготовка почвы, транспортировка, заполнение и таран, чтобы идти одновременно, обеспечит быстрое строительство.

      Опалубка опалубка для земляных стен

      Фундаментная стена возводится на высоте 50 см от уровня земли. с камнями и известковым раствором. Армирование стен состоит из шестов или бамбука, которые устанавливают в траншее, когда камни кладут фундаментную стену. Панель земли в скольжении опалубку утрамбовывают слой за слоем до полного заполнения формы. В Затем форма перемещается и запускается новая панель. Наконец верхний кольцевую балку привязывают к стержням арматуры.После завершения панели, стыки заделываются земляным раствором.

      Грязевые и опорные стены

      Строительством глинобитных и столбовых стен занимается конец Раздела Земля как Строительный Материал вместе с некоторыми другими виды глинобитных конструкций. Можно построить каркасную стену из столбов с толстой землей (25 см и более) или тонкой землей облицовка (10см и меньше). Пока земля блокирует стены и утрамбовывает землю стены обычно лучше глиняных и столбовых, это должно использоваться, когда имеется запас прочных столбов и почва не подходит для изготовления блоков.Независимо от типа стены, Основа всех улучшений - сохранять стену сухой после строительство.

      Установить гидроизоляционный слой поверх фундаментной стены, около 50 см над уровнем земли. Сборные лестницы из зеленого цвета бамбуковые или деревянные шесты диаметром около 5 см. Улица деревянные или колотые бамбуковые рейки прибиваются или привязываются к лестницам по мере засыпки почвы последовательными слоями. Углы должны быть скреплены по диагонали.Устойчивость к землетрясениям повышается за счет закрепления фундаментный каркас к фундаменту с слоем извести или цемента грунтовый раствор.

      Рисунок 5.27 Построение утрамбованный волк с скользящей формой.

      Рисунок 5.28 Построение стена из грязи и столбов.

      Каркасные стены

      Каркасные стены состоят из вертикальных деревянных элементов, называемых стойками. обрамлена между горизонтальными элементами сверху и снизу.Вершина элемент называется пластиной, а нижний элемент - подошвой или порогом. Используются простые стыковые соединения с гвоздями или гвоздями с носком. Таким образом, рама не очень жесткая и требует фиксации. чтобы обеспечить соответствующую жесткость.

      Для этой цели можно использовать диагональные скобы, но обычные способ, который быстрее и дешевле, - использовать строительную плиту или фанерные листы для придания конструкции жесткости. Шпильки обычно разнесены по центрам 400 или 600 мм, что связано с стандартная ширина 1200 мм для многих типов строительных плит, используемых для обшивка.Так как несущие элементы стен этого типа деревянные, не рекомендуется для термитников, особенно если обе стороны рамы обработаны или закрыты, что делает ее трудно обнаружить нападение термитов.

      Каркасная конструкция из бруса должна подниматься вне контакта с почвенной влажностью и защищен от термитов. Это осуществляется путем установки на фундаментной стене или фундаментной балке поднимаясь на гидроизоляционный слой или на край бетонной плиты пол.В качестве основы для всей конструкции устанавливается подоконник и тщательно выровнен на гидроизоляционном полотне и надежно закреплен к фундаменту. Для поддержания эффективности гидроизоляции Конечно, он должен быть тщательно запломбирован на всех позициях болтов. А сплошной термитный щит должен быть установлен между гидроизоляция, порог и большая осторожность при герметизации вокруг отверстий, необходимых для анкерных болтов. Подоконник может быть 100 мм на 50 мм при креплении к бетонному основанию, но должен быть увеличена в ширину до 150 мм на кирпичной фундаментной стене.

      Вместо бревна можно использовать бамбуковые или круглые деревянные шесты в качестве гвоздики, которые затем покрывают бамбуковыми циновками, тростниковыми циновками, травой, пальмовых листьев и т. д. Другой альтернативой является прикрепление циновок к шпильки, а затем оштукатурить маты цементной штукатуркой или другим материал. Некоторые конструкции этого типа имеют непродолжительный срок службы из-за поражение грибами и термитами. Их также сложно держать чистым и велик риск возгорания. Рисунок 5.30 дает краткую информация о бамбуковых стеновых панелях, которые могут быть изготовлены опытными мастера.

      Рисунок 5.29 Каркасная стена строительство.

      Облицовка

      Облицовка и облицовка относятся к панелям или другим материалам, которые применяются в качестве наружных покрытий на стенах для защиты от элементы или для декоративных эффектов. Облицовка или обшивка особенно полезен для защиты и улучшения внешнего вида стен земляных сооружений, которые сами по себе могут быть размывается дождем и становится совершенно неприглядным.

      Облицовки обычно имеют низкую конструкционную прочность или ее отсутствие и должен быть прикреплен к гладкой сплошной поверхности. Штукатурка или мелкая размер плитки являются примерами.

      Облицовка отличается от облицовки тем, что в материалах есть структурная прочность и способны заполнить промежутки между рейки или планки обрешетки, на которые они крепятся. Разные черепица, плитка большего размера, вертикальная и горизонтальная древесина сайдинг и строительные плиты, такие как фанера и асбестоцемент доски подходят для облицовки.Профнастил стальной кровли также удовлетворительно. Материалы облицовки должны уметь переносить ветровые нагрузки на конструкцию здания и для компенсации некоторых злоупотреблений от людей и животных. Расстояние между полосами обрешетки будет влияют на сопротивление оболочки этим силам.

      Расстояние для черепицы и черепицы определяется длина агрегатов. Расстояние для горизонтального деревянного сайдинга обычно должна быть около 400 мм, а вертикальный деревянный сайдинг можно безопасно перебросить 600 мм.Фанера толщиной не менее 12 мм может мост 1200 мм от края до края, если поддерживается с интервалом 800 мм в другое направление.

      Металлическая кровля, используемая в качестве обшивки, может монтироваться на каркас полосы на расстоянии 600 мм друг от друга. Это обычное дело для производителей строительные материалы для предоставления инструкций по установке, включая частоту поддержки членов.


      Содержание - Предыдущая - Следующая

      .

      Как создаются монолитные купола - несколько фактов о современном строительстве

      Иглу демонстрирует два наиболее важных преимущества таких конструкций, а именно их высокую прочность и отличные изоляционные свойства. Монолитные купола своей долговечностью в основном обязаны естественной прочности арки, а хорошая изоляция обеспечивается минимальной поверхностью сферического сечения.

      Первым современным монолитным куполом стал каток, построенный в Прово (штат Юта, США) в 1963 году.Четыре года спустя его перестроили и превратили в рынок. В таком виде первое монолитное сооружение функционировало до тех пор, пока оно не было снесено в 2006 году. В Польше наиболее узнаваемым купольным сооружением является так называемый «Космический город», в котором находится штаб-квартира Radio RMF FM.

      В настоящее время монолитные купола используются в различных архитектурных проектах, как жилых, так и промышленных и служебных. Благодаря прочной конструкции монолитные конструкции могут использоваться в качестве складов в цементной, минеральной, энергетической, сельскохозяйственной и горнодобывающей промышленности.Они также часто используются в качестве так называемых зданий, ограничивающих радиацию на атомных электростанциях, благодаря своей структурной целостности.

      Этапы возведения монолитного купола

      Современные монолитные купола в основном строятся по методу, разработанному в США тремя братьями: Дэвидом, Барри и Рэнди Саутом. Первый купол был построен в Шелли в Айдахо в апреле 1976 года. Строительство монолитных куполов этим методом основано на нескольких этапах, выполняемых в строго определенном порядке.

      Первый этап - подготовка площадки под строительство. Для этого делается кольцевой бетонный фундамент, армированный стальной арматурой. Выложенные за пределы фундамента бруски служат для связи конструкции с дальнейшим усилением конструкции. Это создает монолит с высокой конструкционной прочностью.

      Второй этап строительства монолитного купола - это закрепление пневматического воздуха для образования кольца с последующей прокачкой воздуха до получения нужной формы.

      На следующем этапе в игру вступают полиуретаны. Внутри купола нанесен слой пенополиуретана , который после затвердевания действует как изоляция всей конструкции и обеспечивает дальнейшее усиление. На этом этапе вы можете использовать, среди прочего, готовые полиуретановые системы , доступные в предложении группы PCC, которые позволяют производить высококачественных изоляционных покрытий . Примером таких продуктов являются серии Ekoprodur и Crossin ®. Изоляционные полиуретановые системы обеспечивают отличную тепло- и звукоизоляцию благодаря полужесткой пене и жесткой пене . Эти типы изоляции имеют очень широкий спектр применения. Применяются для фундаментов, полов, внутренних и внешних стен, крыш и чердаков. Благодаря использованию продуктов Crossin® можно достичь отличных коэффициентов теплопроводности. Помимо готовых полиуретановых систем , портфель продуктов группы PCC также включает полуфабрикаты, такие как полиэфирполиолы Rokopol® , антипирены (серия Roflam ), а также используемые компатибилизаторы и эмульгаторы. производить монтажные пены OCF высокого качества.Все эти химические продукты широко используются в современном строительстве.

      Четвертый этап строительства монолитных куполов - это монтаж арматурных стержней на ранее нанесенный пенополиуретан с использованием специально разработанной системы бортов. Маленькие купола требуют стержней небольшого диаметра с большим шагом. Для более крупных конструкций необходимо использовать более толстые стержни, расположенные на меньших расстояниях.

      Последний этап возведения монолитных куполов заключается в напылении бетона на арматуру, сделанную на предыдущем этапе.Этот слой обычно не превышает 8 см и полностью покрывает стальные стержни, создавая тонкостенный монолитный каркас. После высыхания бетон образует чрезвычайно жесткую и прочную конструкцию. Для улучшения свойств напыляемого бетона часто используются специальные модифицирующие добавки, такие как, например, продукты серии Rofluid ( M, H, P, T ). Добавки для бетона этого типа используются в качестве очень эффективных замедлителей сцепления с бетоном , замедляющих схватывание бетонной смеси.Кроме того, благодаря своей химической структуре и низкому содержанию хлоридов, Rofluids не вызывают коррозию стальной арматуры.

      Преимущества и недостатки монолитных куполов

      Монолитные купола обладают рядом преимуществ. Прежде всего, они характеризуются отличными несущими и изоляционными свойствами, в первую очередь благодаря своей форме. Их уникальный дизайн дает им возможность противостоять даже самым серьезным стихийным бедствиям, таким как штормы, торнадо и даже землетрясения.Поэтому монолитные здания особенно популярны в регионах мира, наиболее подверженных стихийным бедствиям.

      Отсутствие необходимости установки несущих стен в монолитных конструкциях. позволяет удобно расположить планировку помещений. К тому же, благодаря уникальному дизайну, нет необходимости в крыше. Это приводит к значительному сокращению инвестиционных затрат, а также к экономии времени строительства. Большая экономия достигается также за счет использования меньшего количества строительных материалов, чем при стандартном строительстве.

      Одним из недостатков и трудностей, возникающих при возведении монолитных куполов, является необходимость привлечения опытных специалистов со специализированным оборудованием. Это может повлечь за собой относительно высокую стоимость выполнения такой конструкции. Кроме того, криволинейные поверхности внутри купола требуют корректировки всего дизайна интерьера и меблировки. Для оптимального использования поверхностей, особенно труднодоступных частей, обычно необходимо изготавливать мебель на заказ.Первоначальный внешний вид этого типа зданий также может быть недостатком, особенно в районах с традиционными зданиями, где монолитные купола будут слишком самобытными.

      .

      Сравнительное исследование сейсмического поведения монолитной железобетонной конструкции и монолитной бетонной конструкции

      Мы сомневаемся, что монолитная сборная железобетонная конструкция может быть спроектирована как монолитная в зоне с высокой сейсмической интенсивностью. Чтобы решить эту загадку, были спроектированы и протестированы на вибростоле модель монолитной конструкции из сборного железобетона в масштабе 1/5 и модель монолитной конструкции. Был проведен сравнительный анализ между ними, чтобы лучше понять их сейсмическое поведение.Основываясь на результатах экспериментов, характер и механизм разрушения были разными: концентрированное повреждение в соединительной балке, которое затем распространялось на сдвиговые стенки CIPS, а слабые соединения представляли трещины между сборными элементами помимо соединительной балки MPCS. Собственная частота MPCS обладала характерной особенностью слабости связей, которая была изначально больше, чем у CIPS, и быстро уменьшалась после первых волн с PGA 0,035 g. Коэффициенты усиления ускорения представляли тенденцию изменения под разными волнами землетрясений.Распределение сейсмического отклика имело линейность по высоте моделей в пластической стадии и позже превратилось в нелинейность из-за серьезных повреждений. В целом, MPCS и CIPS имели сходные сейсмические характеристики, за исключением типичных характеристик. И было доказано, что они обладают лучшими сейсмическими характеристиками без обрушения при сильных землетрясениях.

      1. Введение

      Сборная железобетонная конструкция состоит из сборных элементов, изготовленных на заводе, которые широко используются для жилых домов, промышленных зданий и общественных зданий, таких как квартиры, автостоянки и стадионы.Он обладает высококачественными сборными элементами: скоростью монтажа и свободой архитектурной формы элементов. Однако целостность и безопасность соединений между сборными железобетонными элементами важны для общей конструкции, особенно при землетрясениях. Как известно, конструкция стены на сдвиг является эффективной системой бокового сопротивления для многоэтажных жилых домов [1, 2] в сейсмоопасной зоне.

      Сборные элементы стены, работающей на сдвиг, по высоте этажа соединяются, образуя боковую систему сопротивления.Чтобы сохранить надежность горизонтального соединения, используются различные способы соединения продольных арматурных элементов, такие как залитые втулки, последующее натяжение и соединительные муфты [3–7]. Далее были испытаны изолированные поперечные стенки с различными горизонтальными соединениями с учетом контактной поверхности и упомянутого соединения продольной арматуры [8–10]. Вертикальное соединение, расположенное между сборными элементами этажа, было исследовано Vaghei et al. [11]. В настоящее время улучшенная герметизированная муфта представляет собой эффективное соединение продольной арматуры, а монолитное вертикальное соединение между сборными элементами этажа выполняется для повышения их целостности.А именно, вертикальное соединение - это краевые составляющие сдвиговой стенки монолитной конструкции.

      Свойства преобладающих соединений сборных элементов и конструкции в целом были определены с помощью псевдостатических испытаний и псевдодинамических испытаний [12–15], в то время как испытания не учитывали влияние продолжительности сейсмических волн. Один из видов сборных стеновых конструкций - крупнопанельное сборное железобетонное здание с тремя одинарными простыми стенами был испытан Oliva et al. [16], а трехэтажная модельная структура была протестирована Lee et al.[17]. А сейсмические свойства сборной конструкции в масштабе 1/4 с резиновыми опорами с высоким демпфированием были изучены Ван и др. [18]. Тем не менее, некоторые отчеты об исследованиях показали, что сборные железобетонные конструкции не обладали отличными сейсмическими характеристиками во время предыдущего землетрясения из-за отказов сварных и плохо сконструированных соединений [19, 20]. Совершенно очевидно, что необходимы дальнейшие экспериментальные исследования, чтобы заполнить пробел в знаниях о сейсмическом поведении сборных железобетонных конструкций. А крупномасштабное испытание на вибростоле - надежный метод исследования динамической сейсмической реакции сборных железобетонных конструкций.

      В этой статье представлена ​​программа сравнительных испытаний на вибростоле, реализованная на двух масштабных 1: 5 моделях 12-этажной конструкции стены со сдвигом, чтобы понять динамический сейсмический отклик сборной железобетонной конструкции. Одна представляет собой монолитную конструкцию (CIPS), а другая - монолитную сборную железобетонную конструкцию (MPCS). Конструкция прототипа была спроектирована с двумя отсеками и двумя пролетами в соответствии с положениями кодекса [21], а конструкция MPCS была спроектирована согласно кодексу [22] и листам чертежей проекта [23].На основе результатов тестирования динамические характеристики двух моделей, такие как частота, коэффициент демпфирования и форма колебаний, оцениваются с помощью теста белого шума. Для сравнения: характер и механизм разрушения, реакция на сейсмические силы, сдвиг яруса, смещение яруса и дрейф между ярусами будут интенсивно изучаться, анализироваться и обсуждаться. Наконец, будет раскрыто всестороннее понимание сейсмических характеристик MPCS и CIPS, особенно реакции MPCS на землетрясение в целом.

      2. Экспериментальная программа
      2.1. Конструкция модели
      2.1.1. Взаимосвязь подобия

      В качестве рабочих параметров встряхиваемого стола и состояния подъемника в лаборатории в испытании на вибростоле применялась масштабированная модель. Конструкция прототипа была разработана с соблюдением положений китайского кодекса [21]. Дизайн моделей в уменьшенном масштабе был основан на теореме Пи Бэкингема [24]. Подобные константы геометрии, напряжения и ускорения сначала были определены как 0.2, 0,2 и 1 соответственно [25]. Затем другие параметры были выведены по правилам подобия и сведены в Таблицу 1. У CIPS и MPCS были одинаковые правила подобия. Кроме того, модели были разработаны как упруго-пластические модели для наблюдения за пластическим поведением при сильных землетрясениях [26].


      Параметр
      Параметр
      Геометрия
      длина
      Физика Нагрузка Динамические характеристики
      Модуль упругости Напряжение Коэффициент Пуассона Деформация Масса Массовая плотность Частота Ускорение

      Формула
      Взаимосвязь 0.2 0,2 0,2 1 1 0,008 1 2,236 1
      Примечание Размер контроля Контрольный материал Контрольный тест на встряхивающем столе

      Примечание. ; «» Означает структуру модели; «» Означает структуру прототипа.
      2.1.2. Материальный дизайн

      В соответствии с масштабируемыми параметрами физики, напряжение и модуль упругости материала модели уменьшились до 20% от таковых для бетона конструкции прототипа. Микробетон был принят в качестве модельного материала для ограничения крупного заполнителя. Шен и др. предложенный керамзит, порошковая угольная зола или пемза в качестве смешивающего агента могут снизить модуль упругости микробетона [27]. Итак, гипс смешали с микробетоном. После испытаний модельный материал представлял собой смесь цемент: мелкий заполнитель: крупный заполнитель: вода: гипс = 1: 3.64: 3,64: 0,93: 0,5 (в весовом соотношении). Предел прочности микробетона составил 8,94 МПа, а модуль упругости - 7,29 ГПа, что соответствует константе подобия 0,2 в отличие от бетона C40. Оцинкованная железная проволока была использована для замены арматуры по аналогичным правилам внутренних сил [25].

      2.1.3. Плоский дизайн

      Учитывая архитектурное пространство, физические размеры и плоскость соединения сборных элементов многоэтажного дома на практике, модель представляла собой двухпролетную, двухпролетную, двенадцатиэтажную конструкцию стены со сдвигом, которая была регулярной в план и высота.Масштабированные модели CIPS и MPCS имели размер 1800 мм × 1800 мм в плоскости и с постоянной высотой этажа 600 мм. Расстояние пролета составляло 1100 мм и 700 мм по направлению и 900 мм и 900 мм по направлению. Толщина стенки сдвига и соединительной балки составляла 40 мм, а толщина плиты 30 мм. Он содержал три вида соединительных балок с разными пролетами: 500 мм, 300 мм и 160 мм соответственно. На рисунке 1 показан вид моделей сверху.


      Модель MPCS включала три типа монтируемых на месте соединений, связывающих сборные элементы, тип «L», тип «T» и тип «+», чтобы сформировать целостную часть в каждом этаже, и три вида сборных железобетонных изделий. бетонные стены со сдвигом (PCSW): PCSW-1, PCSW-2 и PCSW-3.Три соединения представляют собой внешнюю PCSW, соединенную в углу, внешнюю и внутреннюю PCSW, соединенную сбоку, и внутреннюю PCSW, соединенную внутри сборной конструкции. Более того, монолитные соединения соответствовали краевым компонентам поперечной стены модели CIPS, которые были отделены от сборного элемента на заводе, а затем были выполнены из монолитного бетона после установки сборных элементов. А именно, монолитные соединения и PCSW составляли стенку сдвига CIPS.Параметры конструкции, материалы модели и программа загрузки MPCS были такими же, как и у CIPS. Однако модели были построены по-разному. Детали усиления монолитных соединений или краевых компонентов и PCSW показаны на Рисунке 2.


      (a) Усиление соединений CIP
      (b) Усиление PCSW
      (a) Усиление Соединения CIP
      (б) Усиление PCSW
      2.2. Детали сборного железобетона и строительства

      Конструктивные меры CIPS соответствовали положениям кодекса [21].Модель CIPS была построена с использованием общей строительной техники, включая сборку арматуры, установку шаблона, заливку бетона и техническое обслуживание. Однако сборные элементы изготавливаются на заводе, транспортируются на строительную площадку, поднимаются краном и объединяются вместе с монолитным бетоном, позже формируя монолитную сборную бетонную конструкцию на практике. В этом проекте был принят компромиссный метод строительства. Модель стены из сборного железобетона, работающего на сдвиг, была изготовлена ​​в лаборатории.Подкрепления были связаны следующими способами. Верхняя выступающая планка проходила через залитую втулку для соединения следующего PCSW, а боковая зацепляла продольные арматуры в CIP-соединении и позже надевала дополнительные хомуты. Монолитный пол между верхним и нижним ПКСВ заменил сборно-монолитную бетонную композитную плиту с аналогичной жесткостью для удобства. Оставшееся соединение CIP и пол были залиты после того, как PCSW затвердел в течение 48 часов. Таким образом, соединительная балка была предварительно изготовлена ​​наложенной в MPCS, а в CIPS - целостности.Материал модели - микробетонный смешанный гипс с давлением 8,94 МПа. Процедуры MPCS и CIPS показаны на Рисунке 3. Они были отверждены при нормальной температуре в течение 28 дней и испытаны на вибростоле при землетрясении.


      Чтобы восполнить недостающую гравитацию и неструктурные элементы, железные блоки были использованы в качестве искусственной массы и равномерно закреплены на каждом этаже двух моделей примерно на 1,56 тонны. Общая масса каждой модели достигала 13,6 тонны, включая поперечные балки, а высота двух моделей составляла 7.56 м, что соответствует ограничению мощности системы встряхивания.

      2.3. Процедура испытаний

      Хорошо известно, что состояние почвы на площадке является одним из важных факторов при выборе сейсмических входных данных для испытания вибростола. Скорость волны резания, эквивалентная слою почвы, и толщина верхнего слоя почвы определяют классификацию площадки. Участок с грунтом типа II был определен в Кодексе сейсмического проектирования зданий [21], который был условным грунтом для этого проекта.По сравнению со спектрами реакции сейсмического проекта, землетрясение на холмах Суеверия (B-WSM), волна землетрясения Коджаэли (Турция) (DZC) и волна землетрясения Эль-Сентро (ELW) были выбраны в качестве наземных возбуждений и введены упомянутой последовательностью. Волны были выбраны из Тихоокеанского центра инженерных исследований землетрясений (PEER). Испытания проводились с однонаправленными и двунаправленными землетрясениями с коэффициентом PGA 1, 0,85, чтобы оценить общие сейсмические характеристики CIPS и MPCS.Программа испытаний на вибростоле включала восемь фаз, а пиковое ускорение грунта (PGA) составляло 0,035 г, 0,07 г, 0,14 г, 0,22 г, 0,40 г, 0,62 г, 0,70 г и 0,80 г в каждой фазе соответственно. PGA 0,70 г и 0,80 г были введены для наблюдения за их нелинейным поведением. После каждого этапа сосков вводился белый шум с PGA 0,035 г для определения динамических характеристик моделей.

      Для мониторинга реакции на землетрясение двух моделей, 32 одноосных акселерометра, в том числе два на вибростоле, два на поперечной балке, двадцать четыре на каждом этаже по направлениям и четыре по диагонали в 12-м. этаж, были установлены для регистрации горизонтального ускорения.Всего на каждом этаже было установлено по 12 датчиков перемещения и 12 датчиков скорости вибрации. Расположение испытательных инструментов показано на рисунке 4. На рисунке 5 показаны модели на встряхиваемом столе.



      3. Характер и механизм отказов

      Трещины и повреждения моделей отслеживались вместе с увеличением PGA. При PGA 0,035 г диагональные микротрещины на соединительной балке наблюдались только в основном направлении CIPS, а микротрещины MPCS были обнаружены в направлениях стенок сдвига, расположенных с 1-й по 4-ю.Когда PGA увеличился с 0,07 г до 0,22 г, трещины на CIPS расширились вдоль угла соединительной балки и возникли новые диагональные микротрещины. В фазах существующие трещины MPCS проникли в соединительную балку, а тем временем появились новые микротрещины. Диагональные микротрещины были основным рисунком моделей на этом этапе.

      На следующем этапе модели представили различные рисунки трещин. После PGA, равного 0,40 г, трещины CIPS быстро концентрировались на концах соединительных балок, например, с наибольшим отношением глубины пролета с уменьшенным сечением для пластикового шарнира и с наименьшим отношением глубины пролета с диагональными трещинами.Напротив, диагональные трещины MPCS расширялись медленно, и одновременно возникал горизонтальный разрыв между PCSW и полом CIP как особой формы. По мере роста сейсмической энергии новые трещины последовательно добавлялись по высоте моделей. Трещины CIPS были подобны диагональным трещинам, возникающим с PGA 0,035 г, а трещины MPCS были горизонтальными трещинами, возникающими в горизонтальных соединениях. Чтобы наблюдать за их нелинейным поведением, PGA 0.Было введено 80 г. На этом этапе в CIPS возникли вертикальные трещины вдоль краевого компонента и групповые трещины в стене сдвига на 4-м этаже. Мы считали, что слабой историей CIPS была 4-я история. Горизонтальная трещина распространилась на монолитный бетон, а вертикальная трещина возникла в месте контакта сборного железобетона и монолитного соединения на 2-м и 3-м этажах MPCS. Общая структура трещин моделей показана на Рисунке 6.


      В целом диагональные трещины были представлены в концевых соединительных балках CIPS и MPCS.Феномен является благоприятным государством. Они обладали разными механизмами диссипации энергии под воздействием волн землетрясений. Связующий луч действовал как первая линия рассеяния энергии. В то время как соединительная балка образовывала пластиковый шарнир, поперечная стенка превратилась в однослойную стенку для рассеивания энергии в качестве второй линии, предотвращающей схлопывание в CIPS. Помимо соединительной балки, относительно слабые связи между сборными элементами стали новым способом рассеивания энергии в MPCS: сначала горизонтальные трещины, а затем вертикальные трещины.Кроме того, они в некоторой степени защищали систему бокового сопротивления.

      4. Анализ реакции на землетрясение
      4.1. Динамические характеристики

      Динамические характеристики конструкции включают собственную частоту, жесткость, коэффициент демпфирования и форму колебаний. Их можно вывести из белого шума, вводимого передаточной функцией после каждой фазы тестирования. Первая и вторая собственные частоты по направлению и направлению показаны в Таблице 2. Также жесткость может быть рассчитана с помощью частоты, и она представлена ​​на Рисунке 7 [28].Начальная частота MPCS была больше, чем CIPS, и была такой же, как и исходная жесткость. Мы предположили, что примыкающие залитые цементным раствором муфты и дополнительные хомуты в соединениях привели к явлению. Когда было введено первое землетрясение, собственная частота MPCS снизилась примерно на 20%, что могло быть вызвано усадкой и микротрещинами в соединениях в качестве начального повреждения [29]. При увеличении энергии влияние начальных повреждений не было основным фактором. А затем две модели примерно с одинаковой частотой представлены в аварийном состоянии.Кривые деградации жесткости CIPS постепенно уменьшались с увеличением PGA. В отличие от CIPS, MPCS явно снизился на первой фазе, а затем медленно снизился с 0,035 г до 0,14 г. Наконец, они имели схожую остаточную жесткость. Разнообразие тенденций можно понять по упомянутой схеме отказов.


      PGA / g Частота / Гц
      Первая частота Вторая частота
      - направление - направление - направление - направление
      MPCS CIPS MPCS CIPS MPCS CIPS MPCS CIPS

      Начальный 6.19 5,13 7 5,69 25,00 20,75 27,94 23,25
      0,035 г 4,81 5,12 5,13 5,63 20,56 20,13 23,5
      0,07 г 4,80 5,12 5,06 5,5 20,06 19,88 22,00 23,25
      0.14 г 4,69 4,56 4,94 5,37 19,69 19,88 21,06 22,06
      0,22 г 4,26 4,13 4,44 4,81 18,25 19,81 20,94
      0,40 г 2,79 2,81 3,75 3,75 14,19 13,56 16,25 16.56
      0,62 г 2,31 1,94 3,00 2,69 11,63 10,06 13,63 13,00
      0,80 г 1,86 1,55 2,88 9,38 9,42 13,18 12,88


      Коэффициент демпфирования отражает рассеивающую способность конструкции.Как показано на рисунке 8, коэффициент демпфирования постепенно увеличивается после PGA. На первом этапе - 4,2%. Затем коэффициент демпфирования медленно увеличивался до достижения PGA 0,40 г, которое составляло от 4,2% до 5,0%. Средний коэффициент демпфирования каждой фазы изменился с 4,2% до 8,2% в процессе нагружения, что относится к монолитной бетонной конструкции. Тем не менее, механизм диссипации энергии CIPS и MPCS был различным для порядка и распределения трещин.


      Первая и вторая формы колебаний моделей описаны на рисунке 9.В общем, форма моды первого порядка показывала характеристики деформации изгиба, а поперечная жесткость была равномерным распределением по высоте модели. Их формы постепенно изгибались к оси. Это явление может быть вызвано модами высокого порядка. И тенденция CIPS была более очевидной для PGA 0,40 г и 0,62 г, поскольку серьезное повреждение произошло в стенке сдвига. Форма колебаний второго порядка у них была аналогичной. Причем максимальный модовый коэффициент второй формы колебаний был на позиции 4 этажа.


      4.2. Реакция на ускорение

      Отношение измеренного ускорения к соответствующему входному пиковому ускорению грунта называется коэффициентом усиления ускорения. Он отражает динамический отклик конструкции при землетрясении. Коэффициенты усиления ускорения по высоте моделей описаны на Рисунке 10 (а) под движениями грунта B-WSM, DZC и ELW для различных сейсмических уровней. Очевидно, что эта из двух моделей постепенно увеличивалась по высоте на каждом этапе тестирования.При увеличении веса PGA с 0,07 г до 0,62 г общая тенденция его развития постепенно уменьшалась, что подразумевает прогрессирующее ухудшение жесткости конструкции. На каждой фазе испытаний модели представляли разные динамические реакции при различных землетрясениях. В эластичной стадии с PGA 0,07 г и 0,14 г CIPS имел больший отклик на B-WSM и ELW, чем на DZC. MPCS имел однородную реакцию на три возбуждения. Волны землетрясений с различными характеристиками частотного спектра могут привести к этому явлению.Наибольший ответ CIPS наблюдался при ELW с PGA 0,22 г, а ответ MPCS наблюдался в B-WSM с PGA 0,40 г. Различия двух моделей о факторах усиления ускорения могут быть вызваны связями между сборными элементами. Коэффициенты CIPS и MPCS снизились с 5,46 до 3,19 и с 5,23 до 3,08 на заключительном этапе тестирования, соответственно. Как показано на рисунке 10 (b), распределение было более регулярным на этапах испытаний с PGA от 0,035 г до 0.14 г. Когда две модели были подвергнуты серьезным повреждениям, влияние мод колебаний высокого порядка постепенно увеличивалось, и коэффициенты усиления ускорения в некоторых точках измерения больше не соответствовали распределению [30].


      (a) Коэффициенты усиления ускорения изменялись на фазах испытаний CIPS и MPCS
      (b) Факторы усиления ускорения волны B-WSM по высоте двух моделей
      (a) Коэффициенты усиления ускорения изменялись вдоль фазы тестирования CIPS и MPCS
      (б) Коэффициенты усиления ускорения волны B-WSM по высоте двух моделей
      4.3. Землетрясение

      Характеристика распределения сейсмической силы в конструкции является очень важным ориентиром для асейсмического проектирования и применения MPCS и CIPS. Максимальная сейсмическая сила этажа рассчитывается следующим образом:

      .

      Смотрите также

Сделать заказ

Пожалуйста, введите Ваше имя
Пожалуйста, введите Ваш номер телефона
Пожалуйста, введите Ваше сообщение